
















































































































































































































































































































































































































































196 10. Comparison of Models with Observations

The compositions adopted for the different models (labeled 1 to 5) are
listed in Table 10.5. It includes three types of volatile mixtures: amorphous
water ice and trapped gases, crystalline water ice mixed with ices of other
volatiles and also, a combination of amorphous water ice and trapped gases
mixed with ices of the same species of gas.

Table 10.5: Initial volatile abundances: first row – frozen (mass fractions);
second row – percentage trapped in amorphous ice

Model T0 Xd Xice CO CO2 CH4 HCN NH3

1. 50 K 0.50 0.50 — — — — —
am 5% 2% 1% 1% 1%

2. 50 K 0.20 0.80 — — — — —
am 5% 2% 1% 1% 1%

3. 20 K 0.25 0.60 0.03 0.03 0.03 0.03 0.03
cr — — — — —

4. 40 K 0.25 0.60 0.03 0.03 0.03 0.03 0.03
cr — — — — —

5. 50 K 0.20 0.71 — 0.03 — 0.03 0.03
am 5% 2% 1% 1% 1%

The results of these model calculations are summarised in Figs. 10.11
and 10.12, which show production rates of volatiles along one full orbital
revolution, and abundance ratios in the ejecta relative to those of the nu-
cleus, respectively. It is clearly illustrated that abundances in the material
ejected from the nucleus may differ from the initial abundances of the nu-
cleus composition by up to factors of 100. This effect is related to the strat-
ified structure of the nucleus (see Section 11.2 below) to which refreezing
of volatiles makes a significant contribution. Exceptions are supervolatile
species, which preserve their relative abundances. We note that the pro-
duction rates of these species remain nearly constant along the orbit, while
those of the least volatile species change considerably (see also Fig. 10.3).
This is correlated with the depth at which gases are produced: the higher
the volatility, the colder and hence deeper the zone of origin. Deep layers
are less affected by orbital variations in insolation.



— 11 —

Internal Properties of Comet Nuclei

“. . . I propose to investigate the possibility that the molecules
responsible for most of the light of comets near perihelion arise
primarily from gases long frozen in the nuclei of comets. Fur-
thermore, I propose that these primitive gases constitute an im-
portant, if not a predominant, fraction of the mass of a “new” or
undisintegrated comet. On the basis of these assumptions,
a model comet nucleus then consists of a matrix of meteoric
material with little structural strength, mixed together with the
frozen gases—a true conglomerate.”

Fred L. Whipple, Astrophysical Journal, 111, 1950.

11.1 Temperature Profiles

The heat transported into a nucleus in part increases its internal energy and
in part sublimates ices. Heating of the subsurface layers of a nucleus that
contains amorphous ice is illustrated for one spin period in Fig. 11.1. The
affected region is only a few metres deep. At larger heliocentric distances,
rH, the layer of temperature inversion is only about 1 cm thick. The change
in slope of the profile occurs at the boundary between the outer crystalline
layer, which is a better heat conductor, leading to a mild temperature vari-
ation with depth and the inner amorphous ice region, where conductivity
is poorer and the temperature profile is steep. The typical steep rise in
temperature at 1.68 AU pre-perihelion is caused by heat released in crystal-
lization of amorphous ice, which proceeds at a fast rate at that point. We
note the shift of the surface caused by erosion.

The evolution of the temperature profile for models of two different
compositions, Models 1 and 5 of Table 10.5, is shown in Fig. 11.2. We
note that heat is dissipated to larger depths in the case of crystalline ice,
which is a better heat conductor. For the same reason, cooling is more
efficient, as shown by the narrower temperature peaks as function of time
around perihelion. In both cases, an almost steady pattern of temperature
variation with both time and depth is achieved after only a few revolutions.
The orbital skin depth, of about 10 m, is clearly apparent.
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198 11. Internal Properties of Comet Nuclei

Figure 11.1: Modeled temperature profiles in the upper layer of a nucleus in
the orbit of 46P/Wirtanen at several points along the orbit, pre-perihelion
(curves 1 - 4) and post-perihelion (curves 6 - 8). Aphelion (ah) at rH =
5.15 AU, perihelion (ph) at rH = 1.08 AU.

11.2 Stratification of Composition

Heat that is conducted into the interior of a porous nucleus may reach ices
more volatile than water ice. In a comet nucleus, many different volatile
species are expected to be present (e.g. Table 10.3). If the ice is crystalline,
then volatile ices are frozen out as separate phases. As heat diffuses inward,
each volatile constituent forms its own sublimation front depending on its
change in enthalpy of sublimation. If amorphous ice is present, it will
change to crystalline ice, forming an exothermic front for the phase tran-
sition. At this front, gases trapped by the amorphous ice will be released.
As an ice species sublimates, or is released from the amorphous ice, the
gas pressure at the sublimation or crystallization front increases towards its
maximum (equilibrium) value at that temperature. The pressure forms a
gradient that is negative in the outward direction and positive in the inward
direction from the front. This pressure gradient drives the gas flow.
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Figure 11.2: Temperature evolution within a comet nucleus model in the
orbit of 67P/Churyumov-Gerasimenko through repeated revolutions about
the Sun for different initial compositions: upper panel - amorphous water
ice, occluded gases, and dust; lower panel - crystalline water ice mixed with
other ices, and dust.



200 11. Internal Properties of Comet Nuclei

The gas flowing outwards will diffuse through the comet nucleus and
escape through its surface into the coma. The gas flowing inwards will
recondense a short distance below the sublimation or crystallization front
and release its latent heat. This is an additional heat transport mechanism
into the interior, which surpasses advection by flowing gas (Prialnik, 1992;
Steiner and Kömle, 1993). It was observed by Benkhoff and Spohn (1991a)
during the KOSI experiments on cometary ice analogues. Recondensation
occurs within a thermal skin depth. The effect is illustrated in Fig. 11.3,
where we note the advance of crystallization, accompanied by freezing of
the CO gas flowing inwards into the colder regions below the crystallization
front. The decrease of Xc (crystalline ice mass fraction ) near the surface is
caused by sublimation.

Figure 11.3: Mass fraction profiles in the outer layers of a model nucleus near
the subsolar point: Xc - H2O ice that has crystallized, XCO−ice (multiplied
by 10) - frozen CO originating from CO gas released from amorphous water
ice. The initial composition is Xa = 0.5 (amorphous water ice), fCO = 0.05,
and Xd = 0.5 (dust). The model is the same as that of Fig. 11.1.
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Because of heat and gas diffusion, the nucleus will be chemically dif-
ferentiated in layers. The least volatile material (dust) will be at the top
of the nucleus. It will be followed by a layer of dust and water ice. In the
deepest layers we would find dust and all ices including the most volatile
species (such as CO and CH4). An example of the stratified structure of
the nucleus is shown in Fig. 11.4, where the mass fraction of volatiles other
than H2O is mapped as a function of depth and time. The different peaks
as a function of depth at any given time correspond to different volatiles,
the deepest arising from the most volatile, and subsequent ones in order of
volatility (see Table 10.3).

In the lower panel, representing an initial composition of mixed ices,
the enriched volatile fractions arise from refreezing of gases that migrated
inwards into colder regions after sublimating from their ices. The low initial
temperature assumed for the model (T = 20 K) allowed for refreezing even
of CO. Although a composition of amorphous ice with trapped gases follows
a similar pattern, only three enriched layers are observed in the upper panel
of Fig. 11.4, since both CO and CH4 cannot refreeze because of the higher
initial temperature of the model (T = 50 K). The dips in the enriched layers
arise at perihelion as a result of erosion of the nucleus surface, which reduces
the depth of those layers periodically.

11.3 Dust Mantle Thickness

When working with our reference models, dust (if present) was not consid-
ered to be entrained by the escaping coma gas. This gave rise to a rapidly
growing mantle, whose effect on surface temperature and gas fluxes can be
seen in Figs. 7.5, 7.6 and 7.7, in Chapter 7. Surface temperature in models
4a and 4b is much higher after a mantle is formed, and gas fluxes are smaller
by orders of magnitude, but still present because the mantle is assumed to
be porous. The thickness of the mantle is steadily growing, because all the
freed dust particles remain on the surface. Being porous, the mantle is a
good insulator. A steep temperature gradient forms between the ice and
the dust mantle. Generally speaking, dust mantle properties and evolution
are strongly dependent on the modeling assumptions and on the way the
mantle is formed.

When the formation of a mantle on a model nucleus is not forced, i.e.
dust entrainment by gas is permitted, the mantle development depends on
the dust particle size distribution, on the solar input, on the spin period, and
on dust and surface properties, such as sticking coefficients between particles
that can inhibit ablation of a dust layer once it is formed. Following the
criterion of critical dust particle radius (see Section 3.5), a mantle forms
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Figure 11.4: Evolution of volatile mass fractions within a comet nu-
cleus model in the orbit of 67P/Churyumov-Gerasimenko through repeated
revolutions around the Sun for different initial compositions: upper panel -

amorphous water ice, occluded gases, and dust; lower panel - crystalline
water ice mixed with other ices, and dust.
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when ice is sublimating but the gas flux is not strong enough to entrain
all the dust particles that are freed. Among the conditions favouring the
formation process, we can list particle size (large particles are more difficult
to remove), spin period (a slowly spinning nucleus enhances dust mantle
formation), surface roughness, and solar input.

Once the dust mantle has formed, its thickness and stability depend on
the orbit, on the cometocentric latitude, and on the spin period, that is
on the temperature reached by the surface layer and on how long a high
temperature lasts. It should be noted that mantle formation is usually
favoured at high cometocentric latitudes (if the spin axis is approximately
normal to the orbit plane), and is more difficult close to the equator. In some
cases, a thick mantle may form, becoming thicker with every orbit because
the gas flux is not able to destroy the mantle and entrain the particles on
the surface. On the other hand, if the gas flux (e.g. at perihelion) is strong
enough to entrain all the dust particles, the mantle may be destroyed shortly
after its formation: in this case we can have a cyclic mantle, accreting on the
way to and from aphelion and disappearing near perihelion. It is generally
assumed that the mantle layer is porous, so the flow of gases through it is
allowed, but this flux is quenched even for a thin layer of dust.

The dust mantle can reach temperatures much higher than an ice layer:
at 1 AU heliocentric distance, temperatures between 350 K and 380 K,
depending on the physical characteristics attributed to the dust particles,
can be attained. This is in agreement with the high temperatures measured
on the surface of Comet 1P/Halley during the Vega-1 flyby (Emerich et al.,
1987). Once a dust layer is formed, it acts as a powerful insulator: even a
thin layer has typically a very low thermal conductivity (Grün et al., 1993).
In Figs. 10.6 and 10.7 the surface temperature profiles of a nucleus with and
without a dust mantle are shown; note the strong temperature difference
between the surface and the non-devolatilized layers close to the surface.
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Conclusions

“. . .Moreover, it seems reasonable that by this rarefaction the
vapour - continually dilated – is finally diffused and scattered
throughout the whole heavens, and then is by degrees attracted
toward the planets by its gravity and mixed with their atmo-
spheres. For just as the seas are absolutely necessary for the
constitution of this Earth, so that vapours may be abundantly
enough aroused from them by the heat of the Sun, which vapours
either – being gathered into clouds – fall in rains and irrigate and
nourish the whole earth for the propagation of vegetables, or –
being condensed in the cold peaks of mountains (as some phi-
losophize with good reason) – run down into springs and rivers;
so for the conservation of the seas and fluids on the planets,
comets seem to be required, so that from the condensation of
their exhalations and vapours, there can be a continual supply
and renewal of whatever liquid is consumed by vegetation and
putrefaction and converted into dry earth. . . . Further, I suspect
that the spirit which is the smallest but most subtle and most
excellent part of our air, and which is required for the life of all
things, comes chiefly from comets.”

Isaac Newton, Principia, Book 3, Proposition 41, 1687 1

The general conclusion that emerges from simulations of the evolution of
comet nuclei is that a nucleus model of porous, grainy material, possibly
made of gas-laden amorphous ice and dust, is capable of reproducing activity
patterns of comets. This is quite remarkable, keeping in mind the complexity
of the processes that may take place within them, the uncertainties involved,
and the fact that we still have very little direct information regarding the
nature of cometary materials.

1Translation from I.B. Cohen and A. Whitman, Isaac Newton - The Principia, Uni-
versity of California Press, Berkeley, 1999.
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12.1 Numerical Algorithms

One of our most important conclusions concerns the numerical procedures
that must be followed when modeling heat and gas diffusion in porous, icy
materials exposed to and warmed by solar radiation. This is particularly
true when the temperature gradient into the surface of a spinning body is
very steep because of volatile ices below the surface. The amount of heat
flowing into the interior is critical for the amount and speed of sublima-
tion of the volatile ices. When the temperature gradient is calculated from
temperature differences on a fine spatial grid, it is important that the tem-
perature values at the grid points have numerically converged. (Numerical
convergence should not be confused with a physical steady state.) This
depends on the grid spacing, the time step (since the object is spinning),
and the coupling algorithm between the time step and the spatial grid (see
Section 6.1).

Thus, one of the most important conclusions of our study of heat and
gas diffusion in comet nuclei is:

• Steep temperature gradients normal to the surface into a spinning
nucleus require careful selection of time steps, spatial grid, and spe-
cial procedures for coupling these independent variables to guaran-
tee convergence of dependent variables, such as the temperature (see
Chapter 7).

• The flux of extremely volatile ices, such as CO, needs further inves-
tigation (e.g. see Chapter 7). Problems with the CO flux may be
related to the steep temperature gradient at the surface of the nu-
cleus. The large difference between the sublimation temperatures of
H2O and CO can cause steep temperature gradients.

12.2 Goals of Comet Nucleus Modeling

The purpose of modeling comet nuclei is not to predict their behaviour based
on an initial set of parameters. Given the large number of parameters and
their wide range of possible values, predictions may be misleading, as we
have shown in Chapter 10. The purpose of modeling is to reproduce the
observed behaviour, and thereby derive internal properties and processes
characteristic of comet nuclei that are inaccessible to observations. In this
respect, the fact that comet nuclei – unlike the models used to explain
them – are nonspherical (e.g. 1P/Halley, 19P/Borrelly ) should not change
the basic conclusions; thus, stratification patterns, both in structure and in
composition, will not be described by simple concentric spherical surfaces,
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but rather by far more irregular surfaces, defined by isotherms (since the
internal processes are essentially thermal), which in turn will be determined
by the real shape of the nucleus and its spin properties.

12.2.1 Derivation of Internal Properties

The manner in which internal properties are derived is basically by a “trial
and error” procedure, which involves a great deal of art and assiduity. For a
particular comet, given orbital parameters and size, a full set of structural
and compositional parameters is assumed and evolution calculations are car-
ried out. These yield results that can be compared with observations of that
comet, such as production rates for various volatile gases, dust release rates,
surface temperatures, etc. More often than not, the agreement on the first
trial will be poor. Usually, discrepancies can be attributed to one or more
of the initial set of parameters. Changing the values of these parameters
usually improves the agreement between computation results and observa-
tions. However, a series of such adjustments is usually necessary in order
to achieve acceptable agreement and sometimes tens of different parameter
combinations are required. An example of this procedure may be found
in modeling 2060 Chiron (Prialnik et al., 1995). Even then, the combina-
tion of parameters that reproduces the observed characteristics may not be
unique. However, given the high sensitivity of models to these parameters,
the plausibility that they represent reality is high.

As an illustrative example, from the models of Comet Hale-Bopp (C/1995
O1) (see Chapter 10) we have learned that the nucleus is probably bare, that
is not covered by a dust mantle, and therefore the dust particles must be
small (or the dust particle size distribution be steep). The processed outer
layer cannot be thick. Fluxes of CO and CO2 may not emanate only from
the respective ices, but from H2O ice, either in the interior or just below the
surface during crystallization of amorphous H2O ice (if amorphous water
ice exists in comets). However, CO and CO2 ice may occur beneath the
crystallization front. Gases released from the ice flow through the porous
matrix both outward and inward, since the temperature as well as the gas
density peak at the front. Gases that flow inward are bound to reach very
cold regions, and hence refreeze; while CO2 freezes very close below the
crystallization front, CO freezes somewhat deeper. This leads to different
production curves for different gas species, which are now differentiated.
Although we should keep in mind that the behaviour should be history de-
pendent, we can state with confidence that the abundance ratio of ejected
volatiles does not represent the nucleus abundances (Huebner and Benkhoff,
1999).

The closer a simulation is to observed reality, the more reliable are our
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inferences on the elusive nature of comet nuclei and on the clues they hold
to the understanding of the Solar System’s beginnings.

12.2.2 Identification of Internal Processes

The behaviour of comet nuclei, with its wealth of manifestations, sometimes
erratic and unexpected, can be explained in many different ways. For comet
outbursts, for example, a number of very different mechanisms have been
proposed, including collisions, association with solar flares, chemical reac-
tions, crystallization of amorphous ice, internal strains and stresses. How-
ever, even if a mechanism is successful in one case (for a particular outburst
of a particular comet), it may fail in other cases. In principle, it is possible
that each outburst has its own mechanism, but this is highly improbable.
Thus, another goal of comet nucleus modeling is to identify processes that
can account for a large variety of behaviour patterns. In the case of out-
bursts, for example, such a mechanism can be suggested (for more details,
see Chapter 10).

Crystallization of amorphous ice has been recognized as a possible mech-
anism for explaining distant bursts of activity that comets often display (see
Section 10.3).

Numerical models of the evolution of cometary nuclei (e.g. Prialnik and
Bar-Nun, 1987, 1990, 1992; Espinasse et al., 1991; Tancredi et al., 1994),
found that crystallization progresses in spurts, their onset, duration and ex-
tent in depth being largely determined by the structure, composition, and
thermal properties of the nucleus, and by the comet’s orbit. The release of
gas trapped in the amorphous ice provided the link between crystallization
and the eruptive manifestations of comets. The mechanism proved success-
ful for explaining different types of outbursts. One should keep in mind,
however, that as numerical simulations are based on many simplifying as-
sumptions, and often adopt parameters that are not well known, they should
not be expected to accurately reproduce any particular observed outburst.
Rather, such simulations should account for the basic characteristics of the
observed outbursts and in this respect they have been quite successful. It
must also be kept in mind that amorphous ice has not been identified in
the interstellar medium, nor do we have direct evidence of its existence in
comet nuclei.

12.3 General Characteristics of Comet Nuclei

General characteristics that may be expected of comets on the basis of
evolution models are summarized as follows:



12.4. General Behaviour Patterns 209

• Loss of ices of extremely volatile species: Calculations of the long-term
evolution of comets far from the Sun, under the influence of radioactive
heating, show that the internal temperatures attained may be quite
high, at least several tens of Kelvin. As a result, comets may have
lost some volatiles that sublimate below about 40-50 K. Detection of
such volatiles in comets suggests that they were trapped in amorphous
H2O ice undergoing crystallization, or that radioactive heating was
ineffective or did not occur.

• Amorphous water ice: There is no direct evidence that amorphous
water ice exists in comet nuclei, nor has it been observed in the in-
terstellar medium or in molecular clouds. On the other hand, there
are many observations of the ices of H2O, CO (e.g. Thi et al., 2002;
Pontoppidan et al., 2003a, 2005; Spoon et al., 2003), CO2, CH3OH
(e.g. Taban et al., 2003; Pontoppidan et al., 2003b, 2005), NH3, and
CH4 in star-forming regions. Boogert and Ehrenfreund (2004) com-
piled and updated a list of detected interstellar ice absorption features
as a function of wavelength, λ, which can be found at:
www.astro.caltech.edu/ acab/icefeatures.html.

• Stratified composition and inhomogeneous structure: While the inner
part may have been altered by early evolution, the outer layers are
altered by exposure to cosmic radiation in the Oort cloud and in the
Kuiper belt and by recent activity in the inner Solar System. Thus,
the internal composition of comet nuclei is stratified, with increasingly
volatile species at increasingly greater depths. Similarly, the internal
structure of comets is very likely not uniform: density, porosity, H2O
ice phases, and strength vary with depth. Increased porosity arises
from volatile depletion, decreased porosity from recondensation. Weak
regions may form where sharp density changes occur.

• Lack of correlation between abundances in the coma and in the nucleus:

As a result of the inhomogeneous structure that develops with thermal
evolution, gas production rates at any given time should not be taken
to reflect the composition (abundances of ices) of the nucleus (Huebner
and Benkhoff, 1999).

12.4 General Behaviour Patterns

Three types of comet activity, all associated with the flow of volatiles
through and out of a porous nucleus, can be identified. They have ob-
servable outward manifestations on the one hand, and lasting effects on the
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structure of the nucleus on the other.

• Sublimation of volatiles from the pore walls and the subsequent flow of
vapour is the source of gas for the coma and tails, but may also lead to
the formation of an icy crust of enhanced strength below the surface of
the nucleus. Gases flowing to the interior may refreeze when reaching
sufficiently cold regions, at depths correlated with the volatility of the
gas. The resulting effects are a compositionally stratified nucleus.

• Crystallization of amorphous ice, accompanied by the release of heat
as well as trapped gases, may account for comet outbursts and may
also result in fracture of the porous material.

• Entrainment of dust particles by escaping gas leads to the observable
dust coma and tail. The largest particles may accumulate on the
surface of the nucleus and lead to the formation of a gas-quenching
dust mantle that might turn a comet into an asteroid-like object.

In conclusion, the thermal evolution and activity patterns of porous comet
nuclei differ from the old view of solid icy bodies that are controlled by
sublimation from the surface in response to solar heating. The structure
that emerges is shown schematically in Fig. 12.1.

The thermal evolution of comet nuclei may be divided into two phases: a
long phase – of the order of the Solar System’s age – spent at large distances
from the Sun (in the Oort cloud or the Kuiper belt) , and a second, much
shorter phase, spent in orbits around the Sun within the planetary system.
There is also an intermediate, transient phase during which a comet nucleus
is gradually perturbed into its final orbit. Much of the fascination and
interest comets arouse is due to the clues they hold as to the formation of
the Solar System and the possible origins of life.

12.5 Input Data Required from Observations and
Experiments

The success of the thermal evolution theory described in this text in ex-
plaining the structure and activity of comet nuclei is hindered by the lack of
information regarding critical parameters. As a result, explanations about
observed behaviour may be ambiguous; that is, different parameter com-
binations – within the same model – may lead to similar results, or some
observed behaviours may remain inexplicable with parameters deemed to
be reasonable. Consequently, additional input is required both from labo-
ratory studies and from observations. The input required from laboratory
studies includes:
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Figure 12.1: Schematic layered structure of a cometary nucleus.

• Vapour pressure measurements of ices at low temperatures.

• Measurements of changes in enthalpy of sublimation and phase change.

• Thermal conductivity of mixtures and in particular of amorphous ice
(Huebner and Altwegg, 2005).

• Sublimation studies of mixtures.

• Measurements of the strengh of porous ice or ice and dust mixtures.

From observations, we need more information on dynamical properties: spin
axis orientations, spin periods, and shapes of nuclei. It would be interesting
to determine and understand whether an ellipsoid (as is suspected), rather
than spherical shape, is typical of small bodies of negligible self-gravity. Up-
coming in-situ measurements should provide information about the porous
structure – porosity and pore size – as well as material strength.

In order to constrain the parameters used in comet nucleus models, it
becomes necessary to carry out well defined laboratory experiments. A
physical process that is thought to play a key role in the thermal evolution
of comet nuclei is the trapping of volatiles in a matrix of amorphous water
ice. This problem has already been considered by several working groups
(Allamandola et al., Blake et al., Bar-Nun et al., Kouchi et al., Schmitt et
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al.). Up to now no general agreement exists on the conductive properties,
the amount of trapped gas, on the outgassing process during the warming
up of the sample, or on the possibility of clathrate hydrates forming when
the amorphous ice reorganizes. In particular, no systematic study in the
context of applications to comet models has yet been completed. It would
be particularly important to study trapping of molecules that have been
identified in comets, such as CH3OH, CH4, CO, CO2, HCN, C2H2, C2H6,
and C3H4. The type of experiment that should be carried out in a systematic
manner could be as follows:

• Of very high priority is a new and independent measurement of the
thermal conductivity of amorphous ice (see, e.g. Huebner and Al-
twegg, 2005).

• Rapidly co-deposit water vapour with one or more of the above men-
tioned gases at temperatures where water vapour condenses as an
amorphous solid, i.e. between 10 K (a typical temperature of cold
molecular clouds) and say 100 K (a temperature that may have oc-
curred in certain regions of the presolar nebula).

• Check the structure of the deposit by an appropriate method (spectral
signatures in the infrared, X-ray, or electron diffraction).

• Measure the enthalpy change during the warm-up, monitor the con-
tent of guest molecules in the solid phase by an appropriate method,
for example by infrared spectroscopy, and verify the structure of the
matrix.

Such experiments should be carried out for different concentrations of molec-
ular gases. In this way it is possible to determine the change in enthalpy
associated with the crystallization of the amorphous matrix. This change in
enthalpy is a very important parameter in thermal models of comet nuclei.
Furthermore, it is very important to gather more information about the loss
of guest molecules as a function of temperature. In this context, it is also
very important to determine the conditions under which gas molecules can
be stored in clathrate hydrates. The formation of such compounds has been
reported for low pressure conditions. Equally important is the detection and
identification of amorphous ice in the interstellar medium, for example in
interstellar clouds.

We have mentioned a rather long list of assumptions that are common
to most theoretical studies to date. Some of these assumptions should be
relaxed in future, more sophisticated models.
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12.5.1 Recommended Advances for Numerical Modeling

• Use of adaptive grid methods for dealing with receding surfaces during
perihelion passages.

• Development of full-scale 3-D models that allow for lateral flow of heat
and gas.

• Inclusion of boundary conditions accounting for nucleus–coma ex-
change interactions.

• Implementation of modern methods for the simultaneous solution of
a multiple component nucleus.

• Study of surface roughness and topography effects.

12.5.2 Physical Processes

• Coupling between gas phases and rigorous treatment of mixtures.

• Construction of models for stress - strain relationships and for fracture
and crack propagation.

• Treatment of surface properties, such as roughness, topography, shad-
owing, heterogeneous physico-chemical and thermal properties, and
radiative transfer in the outermost porous layer (e.g. Huebner and
Markiewicz, 1993, 2000; Davidsson and Skorov, 2002a, b; Huebner,
2006).

• Modeling of the creation and evolution of the dust mantle on the
nucleus surface.

12.5.3 Modeling the Evolution of Comet Nuclei

• Modeling comet formation including asteroid – comet transition ob-
jects by accretion.

• Long-term evolution over the age of the Solar System, considering
potential gravitational interactions and orbital evolution.

• Improve modeling comet to asteroid transitions through evolution (e.g.
Coradini et al., 1997a).

• Modeling nucleus shape evolution as a result of erosion and ablation.
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Appendix A: Orbital Parameters and

Sizes of Comet Nuclei

In the following tables we list orbital parameters 2 for short-period comets
whose sizes have been determined from observations. The first, short table
lists 5 comets for which the shape of the nucleus is well determined, and
thus the axes lengths are known (La, Lb and Lc, given in km). About 100
comets are listed in the next table: estimates for the radius of the nucleus
(in km) are based mainly on a recent data set provided by Tancredi et al.
(2006), labelled Ra; additional radius estimate are listed, obtained by Meech
et al. (2004), labelled Rb. Rotation periods are summarized and discussed
in an extensive review by Samarasinha et al. (2004).

Comet q (AU) e La × Lb × Lc A Pspin

1P/Halley 0.58597811 0.96714291 15.5 ×8.5 ×8 0.04 68.2
9P/Tempel 1 1.50612525 0.51756748 5.04×6.14×4.8 0.05 41.0
10P/Tempel 2 1.42664936 0.53549253 16 × 8× 8 0.04 9.0
19P/Borrelly 1.35820317 0.62390848 8× 4× 4 0.03 25.0
81P/Wild 2 1.58489778 0.53975820 5.5× 4.0× 3.3 0.04 ∼ 12

2supplied by http://ssd.jpl.nasa.gov/dat/ELEMENTS.COMET
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Comet q (AU) e R(a) (km) R(b) (km) Pspin (hr)

2P/Encke 0.33541700 0.84859557 2.10 11.
4P/Faye 1.65749925 0.56814362 1.83
6P/d’Arrest 1.65749925 0.56814362 1.66 1.52-1.70 6.67
7P/Pons-Winnecke 1.25726995 0.63412259 1.83

14P/Wolf 2.40614959 0.40838829 1.91
15P/Finlay 1.03408498 0.71055148 1.21
16P/Brooks 2 1.83516105 0.49207985 1.59
17P/Holmes 2.16512855 0.41272851 1.59
21P/Giacobini-Zinner 1.03789477 0.70565515 1.00 9.5
22P/Kopff 1.58326283 0.54332250 1.83 12.3
24P/Schaumasse 1.20501004 0.70480036 0.91
26P/Grigg-Skjellerup 0.99681861 0.66379625 1.21
28P/Neujmin 1 1.55215690 0.77541331 9.58 10.83 12.67
29P/Schwassmann-Wachmann 1 5.72233300 0.04410215 15.4 14.0-32.3
30P/Reinmuth 1 1.87739414 0.50187000 1.00
31P/Schwassmann-Wachmann 2 3.40889591 0.19386657 3.03 5.58
32P/Comas-Solá 1.83354932 0.56983541 2.52
33P/Daniel 2.15738391 0.46333049 0.91
36P/Whipple 3.08827962 0.25880575 2.10
37P/Forbes 1.57240363 0.54139288 1.00
40P/Väisälä 1 1.79597439 0.63291236 1.66
41P/Tuttle-Giacobini-Kresák 1.04780498 0.66041820 0.69
42P/Neujmin 3 2.01471456 0.58515624 0.69
43P/Wolf-Harrington 1.58173143 0.54409635 2.10
44P/Reinmuth 2 1.90345012 0.46603475 1.52
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Comet q (AU) e R(a) (km) R(b) (km) Pspin (hr)

45P/Honda-Mrkos-Pajdusakova 0.52839781 0.82507079 0.33
46P/Wirtanen 1.06170446 0.65725604 0.58 6.0
47P/Ashbrook-Jackson 2.30712043 0.39702587 2.64 > 44
48P/Johnson 2.30958336 0.36665416 2.19 29.0
49P/Arend-Rigaux 1.36859401 0.61164042 3.54 5.1 13.47
50P/Arend 1.91685288 0.53007409 0.96
51P/Harrington 1.56831730 0.56220236 0.23
52P/Harrington-Abell 1.75706533 0.54299945 1.10
53P/Van Biesbroeck 2.41486785 0.55229060 3.32 3.33-3.37
56P/Slaughter-Burnham 2.53496984 0.50367142 1.45 1.55
58P/Jackson-Neujmin 1.38117347 0.66150673 0.60
59P/Kearns-Kwee 2.33930581 0.47645561 1.00
60P/Tsuchinshan 2 1.76637969 0.50713897 0.69
61P/Shajn-Schaldach 2.33009391 0.39027755 0.83 > 18
63P/Wild 1 1.96086133 0.64982138 1.45
64P/Swift-Gehrels 1.33901500 0.69443283 1.83
65P/Gunn 2.44384420 0.31935915 4.59
67P/Churyumov-Gerasimenko 1.28931109 0.63193560 2.10 12.3
68P/Kremola 1.75418716 0.64109193 2.52
69P/Taylor 1.94782838 0.46598352 2.10
70P/Kojima 2.00355008 0.45455070 1.26 > 22
71P/Clark 1.55538354 0.50130728 0.83 1.31
74P/Smirnova-Chernykh 3.55298598 0.14854619 3.17 > 20
75P/Kohoutek 1.78465694 0.49630740 1.83
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Comet q (AU) e R(a) (km) R(b) (km) Pspin (hr)

77P/Longmore 2.30955544 0.35818984 2.30
78P/Gehrels 2 2.00867457 0.46226392 1.74
79P/du Toit-Hartley 1.22997814 0.59410787 1.21
82P/Gehrels 3 3.62616828 0.12387435 0.80 > 50
84P/Giclas 1.84573781 0.49329493 1.05
86P/Wild 3 2.31028192 0.36447645 0.53 0.65-0.73 > 11
87P/Bus 2.18087829 0.37480091 0.53 > 25
88P/Howell 1.36725589 0.56124367 0.96
89P/Russell 2 2.28984773 0.39779498 1.15
90P/Gehrels 1 2.96591125 0.50913673 2.64
91P/Russell 3 2.60192197 0.33066477 1.26
92P/Sanguin 1.80804078 0.66308226 1.21 1.19
94P/Russell 4 2.23119189 0.36445056 2.00
97P/Metcalf-Brewington 2.61089722 0.45620917 1.45
98P/Takamizawa 1.58522671 0.57524677 2.89
99P/Kowal 1 4.71876340 0.22633678 4.80
101P/Chernukh 2.35049100 0.59383868 2.19
103P/Hartley 2 1.03718776 0.69956650 1.21
104P/Kowal 2 1.39660195 0.58532519 1.45
105P/Singer-Brewster 2.04130488 0.41097421 0.83
106P/Schuster 1.54968456 0.58777572 0.83
107P/Wilson-Harrington 0.99289408 0.62369170 1.92-1.96 6.10
108P/Ciffréo 1.71336017 0.54236246 0.83
109P/Swift-Tuttle 0.95951616 0.96322576 13.73 67.2
110P/Hartley 3 2.47847172 0.31398179 2.00 10
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Comet q (AU) e R(a) (km) R(b) (km) Pspin (hr)

111P/Helin-Roman-Crokett 3.47757904 0.14048021 1.15
112P/Urata-Niijima 1.45781503 0.58776040 0.76
113P/Spitaler 2.12725266 0.42354904 1.15
114P/Wiseman-Skiff 1.56946350 0.55644468 0.87
115P/Maury 2.04137496 0.52079387 1.11
116P/Wild 4 2.17054010 0.37567697 3.32
117P/Helin-Roman-Alu 1 3.71399575 0.17332990 3.64
118P/Shoemaker-Levy 4 2.00955266 0.42279028 1.91
119P/Parker-Hartley 3.04443318 0.29049872 1.83
120P/Mueller 1 2.74680763 0.33667688 0.83
121P/Shoemaker-Holt 2 2.64844424 0.33878869 2.00
123P/West-Hartley 2.12837050 0.44826919 2.00
124P/Mrkos 1.46706280 0.54270322 1.74
125P/Spacewatch 1.52845126 0.51159372 0.83
129P/Shoemaker-Levy 3 2.80721831 0.24962164 1.66
130P/McNaught-Hughes 2.10424203 0.40591321 1.59
131P/Mueller 2 2.42406482 0.34222181 0.80
134P/Kowal-Vávrová 2.57526168 0.58684094 1.45
135P/Shoemaker-Levy 8 2.72110392 0.28956774 1.38
137P/Shoemaker-Levy 2 1.86737635 0.57951640 2.76
143P/Kowal-Mrkos 2.53947146 0.41037417 4.59 17.2
144P/Kushida 1.43112836 0.62882352 1.15
152P/Helin-Lawrence 1 3.10561963 0.30717058 2.10
154P/Brewington 1.59036887 0.67164174 1.66
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Appendix B: Thermodynamic Properties

B.1 Vapour Pressures and Changes in Enthalpy
of Sublimation

It is important that the vapour pressure of sublimation and the correspond-
ing change in enthalpy of sublimation are internally consistent. Fits for
vapour pressures given below are of the standard form

log P (T ) = A+
B

T
+ C log T +DT (B-1)

Consistency between vapour pressure and change in molar enthalpy for sub-
limation under equilibrium conditions is achieved through the use of the
Clausius-Clapeyron equation

∆Hs,e(T ) =
RgT

2

P (T )
·

dP (T )

dT
(B-2)

Here, Rg is the universal gas constant. Using Eq. (B-1) in Eq. (B-2) gives

∆Hs,e (T ) =
[

−B ln (10) + CT +D ln (10) T 2
]

Rg (B-3)

If Rg = 8.314510 J g-mol−1 K−1, then the change in enthalpy for sublima-
tion under equilibrium conditions is in J/g-mol. To convert the enthalpy
to units of J kg−1, it is necessary to divide by the 10−3M , where M is the
gram-molecular weight.

The equilibrium enthalpy of sublimation includes the work P∆V of the
gas sublimating from the ice on its own vapour pressure. Ices from a comet
sublimate into near vacuum. Thus, to obtain the change of enthalpy for
sublimation into vacuum, it is necessary to subtract this energy. For an ideal
gas this energy is RgT . Thus the equation of sublimation into vacuum in
units of J/kg is

∆Hs (T ) =
[

E + FT +GT 2
] Ro

10−3M
(B-4)

where E = −B ln (10), F = C − 1, and G = D ln (10). Table 1 gives the
constants A through G and the gram-molecular weights, M , for several ices
for which reliable data are available to be fitted by Eq. (B-1) and that are
of potential interest for comets. Except for water ice, the data for the fits
come from the CRC Handbook of Chemistry and Physics (Lide, 2001). The
constant A is adjusted to give the pressure in units of Pa. The temperature
range of validity of the fits is also indicated.
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Table B1. Constants for Vapour Pressures and Changes of Enthalpy for Sublimation into Vacuum
Molec A B C D E F G M Tmin − Tmax

H2Ocr 4.07023 -2484.986 3.56654 -0.00320981 5721.892 2.56654 -0.00739086 18.015 100-273.16
CO 53.2167 -795.104 -22.3452 0.0529476 1830.79 -23.3452 0.121916 28.0105 50-70
CO2 49.2101 -2008.01 -16.4542 0.0194151 4623.61 -17.4542 0.0447049 44.0099 110-220
CH4 26.6055 -708.756 -8.02377 0.0107439 1631.97 -9.02377 0.0247387 16.043 50-95
C2H2 -41.7289 -206.410 23.1873 -0.0262842 475.277 22.1873 -0.0605216 26.038 120-200
C5H12 14.9933 -1742.54 -1.40729 -0.00101225 4012.35 -2.40729 -0.00233079 72.152 166-256.6
HCN 240.713 -7395.48 -94.0317 0.0733612 17028.7 -95.0317 0.168920 27.026 190-260
NH3 24.3037 -1766.28 -5.64472 0.00740241 4067.01 -6.64472 0.0170447 17.031 130-200
N2 17.5901 -435.37 -3.88851 0.0063423 1002.5 -4.88851 0.014604 28.0134 37-63
C2N2 39.0771 -2313.54 -11.4553 0.0106139 5327.12 -12.4553 0.0244394 52.0356 146-218
NO 23.1144 -1134.73 -3.5911 -0.00997388 2612.81 -4.5911 -0.0229657 30.0061 70-110
N2O 53.985 -2010.5 -18.18 0.0163 4629.3 -19.18 0.0375 44.0128 106.16-160.26
H2S 6.96156 -903.815 0.258812 0.00873804 2081.11 -0.741188 0.0201201 34.08 120-190
Ne -23.3389 15.0153 21.8046 -0.103136 -34.5740 20.8046 -0.237479 20.179 12.16-21.16
Ar -9.4588 -259.379 10.581 -0.0353158 597.242 9.581 -0.0813176 39.948 45-85
Kr 122.595 -1858.73 -55.6008 0.112819 4279.88 -56.6008 0.259775 83.8 60-120
Xe 166.211 -3185.37 -71.4244 0.099896 7334.59 -72.4244 0.230256 131.3 100-160
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Since water ice is an important constituent of comets, we give the data
for the vapour pressure and change of enthalpy for sublimation into vacuum
specifically. For crystalline water ice and 100 ≤ T ≤ 273K

logPc−H2O = 4.07023 − 2484.986

T
+ 3.56654 log T − 0.00320981 · T (B-5)

where Pc−H2O is in Pa. This vapour pressure in Eq. (B-5) is of highest
quality over the widest temperature range (Gibbins, 1990) and is based on
the work of Goff (1942) and Goff and Gratch (1946).

The corresponding change in molar enthalpy for sublimation in the range
100 ≤ T ≤ 273K is

∆Hc−H2O(T ) = (5721.892 + 3.56654 · T − 0.00739086 · T 2)Rg (B-6)

where Rg = 8.314510 J g-mol−1 K−1 is the universal gas constant. The
change in enthalpy for sublimation into vacuum in the temperature range
100 ≤ T ≤ 273K is

∆Hc−H2O(T ) = (5721.892 + 2.56654 · T − 0.00739086 · T 2)Rg (B-7)

For amorphous water ice, fit parameters are not available in the standard
form [Eqs. (B-1) and (B-3)]. The vapour pressure for amorphous water ice,
with Pa−H2O in Pa, is

logPa−H2O = 3.286 − 2391

T
+ 4 log T − 0.0005065 · T 1.4 (B-8)

B.2 Specific Heat

Hexagonal Water Ice:

cc−H2O = 7.5 · T + 90 [Jkg−1K−1] (B-9)

Klinger (1980).

B.3 Thermal Conductivity

Crystalline Water Ice:

κc−H2O = 567/T [Wm−1K−1] (B-10)

as determined by Klinger (1980).
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B.4 Phase Transitions

Amorphous to Crystalline Water Ice:
The phase transition from amorphous to crystalline water ice is highly
exothermic, with a heat release during the transformation of 1620 J g-
mol−1 (Ghormley, 1968). An activation law, determined experimentally
by Schmitt et al. (1989), gives the crystallization time tcr as a function of
temperature

tcr = 9.54 × 10−14
· e5370/T [s] (B-11)

The energy released by the phase transition from amorphous to crystalline
ice, can be written as

Qtr =
1620 cdotNa−H2O

tcr
[Jm−3s−1] (B-12)

where Na−H2O is the number of g-moles of amorphous ice in the unit volume.



Glossary

Scientific terms used in research discussed and described in this book are
defined as follows:

Adzumi equation: see Slip Flow.
Albedo: Ratio of outgoing solar radiation reflected by an object to the
incoming solar radiation incident upon it.
Asteroid: Rocky, metallic, 100 m – 1000 km-sized objects, orbiting the
Sun, mostly in the Asteroid Main Belt between the orbits of Mars and
Jupiter; consist of pristine solar material; most likely bodies that never co-
alesced into planets.
Bulk Composition: Chemical composition of an object averaged over its
whole volume.
Chemical Fractionation: see differentiation.
CHON Particle: Polycondensate of carbon, hydrogen, oxygen, nitrogen,
and sulphur compounds.
Coma: Continually renewing and escaping atmosphere of gas and dust of
a comet when it is close to the Sun.
Differentiation: Physico-chemical separation of materials in a body dur-
ing sublimation (vapourisation), allowing chemically distinct zones (layers),
e.g. a dust mantle.
Dust Mantle: Accumulation of dust and regolith on the surface of a comet
nucleus.
Dust Particle: Aggregate of dust particles.
Dust Tail: Collection of micrometre and submicrometre-sized dust parti-
cles that are moved into a tail-like formation by solar radiation pressure.
Enstatite: MgSiO3; rocky material belonging to the pyroxene group.
Ion Tail: See Plasma Tail.
Jet-like Feature: Collimated beam of gas or gas and dust in the coma.
Magnetite: Fe3O4; member of the spinel group.
Meteor: A meteoroid as it enters the atmosphere at speeds of 15 – 70
km/s.
Meteorite: Solid object striking a planet’s surface, categorized as stony,
iron, and stony-iron; mainly of asteroidal origin; a few from Mars or Moon.
Meteoroid: Interplanetary debris, from asteroids and comets.
Nucleus: Solar System body composed of ice and dust, the source of all
cometary activity; formed in the outer Solar System beyond the asteroid
belt.
Obliquity: Tilt of the spin axis from the perpendicular from the orbit
plane.
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Olivine: (Mg, Fe)2SiO4; rocky silicate mineral.
Phase Transition: Transition of matter from one state with specific phys-
ical and chemical properties to another, e.g. transition of a solid from an
amorphous to a crystalline structure.
Planetesimal: 1 m to 100 km-sized body that is a building block of plan-
ets.
Plasma Tail: Collection of ions that are moved into a tail-like formation
by interaction with the solar wind.
Porosity: Fraction of a material volume that consists of open spaces.
Pyroxene: (Fe, Mg, Ca)SiO3; group of ferromagnesian silicates with a sin-
gle chain of silicon-oxygen tetrahedral.
Refractory Material: Any chemical material that vapourises at higher
temperatures; see Volatile Material.
Regolith: Layer of loose, pulverized debris (unconsolidated dust) created
on the surface of an airless or nearly airless body by evaporation of ices or
by meteoritic impacts.
Resonances: Gravitational relationship with a planet that forces the orbit
of an asteroid or comet nucleus to change, usually toward larger eccentricity.
Simple resonances have integer ratios, such 2:1 and 3:2, between the orbit
of the asteroid or comet nucleus and the planet’s orbit.
Reynolds Number: A measure of turbulence.
Slip Flow: Flow regime intermediate to Knudsen and Poiseuille flow.
Sodium Tail: Collection of neutral sodium atoms that are moved into a
tail-like formation by solar radiation pressure.
Tail: See dust tail, plasma tail, sodium tail.
Tidal Stress: Differential gravitational force per unit area acting on a body
by the Sun, a planet, or a moon.
Trail: Large cometary dust particles in comet orbit.
Volatile Material: Any chemical material that vapourises at relatively
low temperatures (e.g. H2O, CO2, CO, CH4, NH3).
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Biermann, L., Huebner, W. F., Lüst, Rh., Aphelion clustering of ‘new’

comets: Star tracks through Oort’s cloud, Proc. Natl. Acad. Sci. USA

80, 5151, 1983. [8.2]
Binzel, R. P., Xu, S., Bus, S. J., Bowell, E., Small main-belt asteroid

lightcurve survey, Icarus 99, 225, 1992. [2.3]
Bird, M. K., Janardhan, P., Wilson, T. L., Huchtmeier, W. K., Gensheimer,

P., Lemme, C., K-band radio observations of Comet Hale-Bopp: Detec-
tions of ammonia and (possibly) water, Earth, Moon, Planets 78, 21,
1998.

Biver, N., Rauer, H., Despois, D., Moreno, R., Paubert, G., Bockelée-
Morvan, D., Colom, P., Crovisier, J., Gérard, E., Jorda, L., Substantial
outgassing of CO from Comet Hale-Bopp at large heliocentric distance,
Nature 380, 137, 1996. [10.3]

Biver, N., Bockelée-Morvan, D., Colom, P., Crovisier, J., Davies, J. K.,
Dent, W. R. F., Despois, D., Gérard, E., Lellouch, E., Rauer, H., Moreno,



229

R., Paubert, G., Evolution of the outgassing of Comet Hale-Bopp (C/1995
O1) from radio observations, Science 275, 1915, 1997. [2.1, 10.1]

Blake, D., Allamadola, L. J., Sandford, S., Hudgins, D., Freund, F.,
Clathrate hydrate formation in amorphous cometary ice analogs in vacuo,
Science 245, 58, 1991.

Bockelée-Morvan, D., Crovisier, J., Formaldehyde in comets. II - Excitation
of the rotational lines, Astron. Astrophys. 264, 282, 1992. [2.3]

Bockelée-Morvan, D., Rickman, H., C/1995 O1 (Hale-Bopp): Gas produc-
tion curves and their interpretation, Earth Moon Planets 79, 55, 1998.
[4.5, 10.1]

Boehnhardt, H., Comet splitting - Observations and model scenarios, Earth,

Moon, Planets 89, 91, 2002. [3.6]
Boogert, A. C. A, Ehrenfreund, P., Interstellar ices. In Astrophysics of Dust.

(eds. A. N. Witt, G. C. Clayton, and B. T. Draine), ASP Conference Series
309, p. 547, 2004. [12.3]

Bouziani, N., Fanale, F. P., Physical chemistry of a heterogeneous medium:
Transport processes in comet nuclei, Astrophys. J. 499, 463, 1998.

Brailsford, A., Major, K. G., The thermal conductivity of aggregates of
several phases, including porous materials, Brit. J. Appl. Phys. 15, 313,
1964.

Brin, G. D., Mendis, D. A., Dust release and mantle development in comets,
Astrophys. J. 229, 402, 1979. [3.5, 4.5]

Britt, D. T., The surface processes of Comet 19/P Borrelly, Am. Astron.

Soc. 34, 2703, 2002.
Brucato, J. R., Castorina, A. C., Palumbo, M. E., Strazzulla, G., Satorre,

M. A., Ion irradiation and extended CO emission in cometary comae,
Planet. Space Sci. 45, 835, 1997.

Burns, J., Safronov, V., Asteroid nutation angles, Mon. Not. Roy. Astron.

Soc. 165, 403, 1973. [9.5]
Cameron, A. G. W., Schneck, P. B., Density of matter assembled from

randomly incident particles, Icarus 4, 396, 1965. [3.5]
Campins, H., Telesco, C. M., Osip, D. J., Rieke, G. H., Rieke, M. J., Schulz,

B., The color temperature of (2060) Chiron: A warm and small nucleus,
Astron. J. 108, 2318, 1994. [10.3]

Capria, M. T., Capaccioni, F., Coradini, A., De Sanctis, M. C., Espinasse,
S., Federico, C., Orosei, R., A P/Wirtanen evolution model, Planet. Space

Sci. 44, 987, 1996. [4.7, 10.1, 11.3]
Capria, M. T., Coradini, A., De Sanctis, M. C., Orosei, R., CO emission

mechanisms in C/1995 O1 (Hale-Bopp), Astron. Astrophys. 357, 359,
2000a. [10.1]

Capria, M. T., Coradini, A., De Sanctis, M. C., Orosei, R., Chiron activity



230 Bibliography

and thermal evolution, Astron. J. 119, 3112, 2000b. [10.3]
Capria, M. T., Coradini, A., De Sanctis, M. C., Blecka, M. I., P/Wirtanen

thermal evolution: Effects due to the presence of an organic component
in the refractory material, Planet. Space Sci. 49, 907, 2001. [4.7, 10.1,
10.2, 11.3]

Capria, M. T., Coradini, A., De Sanctis, M. C., A model of the activity of
Comet Wild 2, Adv. Space Res. 29, 709, 2002. [10.3]

Capria, M. T., Coradini, A., De Sanctis, M. C., C1995 O1 Hale-Bopp: Short
and long distance activity from a theoretical model, Earth, Moon, Planet

90, 1, 2003. [10.1]
Carman, P. C., Flow of Gases Through Porous Media, Butterwoths Scientific

Publications, London, 1956.
Carslaw, H. S., Jaeger, J. C. Conduction of Heat in Solids, Oxford University

Press, 1986. [6.2]
Carusi, A., Kresak, L., Valsecchi, G. B. Perturbations by Jupiter of a chain

of objects moving in the orbit of Comet Oterma, Astron. Astrophys. 99,
262, 1981. [8.3]

Carusi, A., Kresák, L., Perozzi, E., Valsecchi, G. B., Long Term Evolution

of Short Period Comets, Adam Hilger, Bristol, 1985. [8.2]
Carusi, A., Valsecchi, G., Dynamical evolution of short-period comets, in

Interplanetary Matter, (eds. Z. Ceplecha and P. Pecina), 21, 1987. [1, 8.3]
Carusi, A., Valsecchi, G. B., Dynamics of comets, in Chaos, Resonance, and

Collective Dynamical Phenomena in the Solar System, Proceedings of the
152nd Symposium of the IAU, (eds. S. Ferraz-Mello), Kluwer Academic
Publishers, 255, 1992. [8.3]

Chen, J., Jewitt, D. C., On the rate at which comets split, Icarus 108, 265,
1994. [9.5]

Cheng, P., Hsu, C.-T., The effective stagnant thermal conductivity of porous
media with periodic structures, J. Porous Media 2, 19, 1999. [4.9]
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126, 137, 155, 157, 191

Ice

amorphous, 2, 6, 8, 16, 18, 21,
24, 25, 31, 33, 34, 53, 57–
59, 64, 65, 69, 76, 84, 86,
89–94, 97, 98, 116, 141,
144, 145, 147, 149, 153,
163, 166, 167, 169–171, 173,
176, 182–187, 192, 196–
200, 202, 205, 207–212, 223,
224

trapped gas, 6, 8, 21, 24, 25,
34, 58, 59, 64, 67, 69, 147,
153, 166, 167, 173, 182,
185–187, 192, 193, 195, 196,
198, 201, 208–210, 212

crystalline, 2, 8, 18, 21, 25,
32–34, 53, 57, 59, 63–65,
69, 76, 84, 86, 89–93, 98,
116, 141, 147, 149, 153,
163, 167, 170, 173, 176,
182, 183, 185, 192, 196–
199, 202, 207, 208, 210,
223, 224

density, see Density

mantle, 16, 18
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phase transition, see Crystal-
lization

sublimation, 1, 2, 5–7, 19, 22,
26, 31, 32, 34, 35, 48, 50,
51, 58, 61, 68, 71, 72, 79,
81–83, 89–91, 111–116, 118,
123, 124, 130, 131, 143,
147, 152, 163, 170–172, 174,
176, 181, 184, 185, 187,
188, 192, 197, 201, 203,
221

thermal conductivity, see Ther-
mal conductivity –crystalline
ice

Ice composition, see Composition
– Ices

Implicit method, see Numerical meth-
ods

Inclination of spin axis, 50, 139,
148, 155, 159, 160

Infrared radiation, 22, 65, 152
Ion tail, see Plasma tail

Jet-like feature, 32, 162, 188, 225

Knudsen number, 39, 74
Kozeny’s equation, 41
Kreutz group, 9, 147, 148
Kuiper belt, 2, 4, 111, 139–143,

145, 175, 176, 184, 210

Latent heat, see Enthalpy
Layer

boundary, xviii, 8, 41, 45, 62,
63, 93, 105, 106

crystalline, 89, 92, 197
dust, 22, 53, 128, 130, 132,

178, 201, 203
enriched, 26, 201
ice, 25, 50, 53, 84, 180, 184,

203
surface, 2, 6, 7, 24, 27, 32, 48,

53, 62, 71, 87, 92, 106,

107, 132, 145, 152, 162,
171, 176, 182, 197, 203

Magnetite, 225
Mantle, see Dust mantle, see Ice

– mantle
Mass fraction, 11, 12, 33, 58, 64,

93, 128, 166, 173, 187, 196,
197, 200–202

Mass release rate, 32, 64
Mean free path, 34, 39, 41, 42, 45,

51, 61, 69, 118
Meteor, 20, 197, 225
Meteorite, 12, 21, 145, 225
Meteoroid, 225

Nucleus
composition, see Composition

– bulk nucleus
size, 2, 3, 9, 63, 65

Numerical methods
Crank-Nicholson, 101, 103, 119
Douglas-Jones, 119
explicit, 101, 103, 111, 119
implicit, 101–103, 109, 110, 112,

119
predictor-corrector, 103, 112,

119

Obliquity, 159, 160, 162, 225
Olivine, 226
Oort cloud, 4, 5, 23, 34, 138–144,

184, 209, 210
Organic material, see Dust
Outburst, 53, 54, 56, 89, 91, 98,

147, 149, 167, 184–188, 208,
210

Permeability, 35, 40, 41, 109
Phase transition, see Crystalliza-

tion, 2, 33, 34, 56, 59, 60,
84, 118, 149, 173, 186, 198,
224, 226
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Planetesimal, 4, 23, 141
Plasma tail, see Tail – Plasma
Pore

radius, 18, 28, 59, 61, 64, 66,
71, 72, 120, 130, 166

size, 16, 18, 35, 39, 41, 50, 53,
54, 59, 64, 66, 69, 72, 74,
76, 77, 87, 90, 118, 120,
166, 167, 183, 186, 211

sizes, 28
thermal conductivity, 28, 74–

76, 116
Porosity, 7, 17, 32, 33, 35–37, 39,

50–53, 56, 58, 59, 61, 64,
65, 72, 74–77, 86, 87, 116,
118, 121, 130–132, 143, 144,
146, 152, 164, 166, 167,
183, 186, 191, 192, 209,
211, 226

Pressure
atmospheric, 28
equilibrium, 15
gradient, 6, 53, 90, 116, 118,

198
hydrostatic, 54
partial, 6, 62, 66, 118
radiation, 226
saturated vapour, 32, 67, 92,

111–113, 120, 128, 192
vapour, 27, 28, 32, 45, 50, 53,

54, 59, 60, 62, 67, 80, 86,
128, 198, 211, 221–223

Pyroxene, 225, 226

Radiation, see Infrared radiation
Radiative conductivity, 76, 213
Radio-nuclides, 59
Rate of crystallization, see Crys-

tallization – rate
Rate of mass release, see Mass re-

lease rate
Refractory material, see Dust

Regolith, 27, 225, 226
Resonances, 226
Reynolds number, 67
Rosetta mission, 26, 27

Silicates, 1, 10–12, 18, 66, 178–
180, 226

Sintering, 15–17, 26, 65
Sodium tail, see Tail – Sodium
Solar constant, 120
Specific heat

bulk, 142
CO, 121
dust, 121
ice, 34, 121, 223

Specific surface, 35, 37, 38, 41

Spin period, 8, 15, 16, 63, 83, 86,
87, 106, 108, 109, 120, 121,
135, 136, 151–153, 155, 159,
161–164, 174–176, 189, 191,
193, 197, 201, 203, 211

Splitting, 53, 54, 56, 98, 149, 161,
185, 186

Strain hardening, 56
Stress

pressure induced, 53, 54, 56,
90, 145, 149

thermal, 83, 145, 149
Sungrazer, 147–149
Surface temperature, 32, 79, 80,

82, 83, 87, 89, 90, 95, 104–
107, 122, 123, 126, 129,
131, 132, 135–137, 151, 155,
158, 162, 163, 167, 175,
176, 179, 180, 182, 184,
188, 201, 203, 207

Surface to volume ratio, 39

Tail, xvii, 1, 65, 210, 226
dust, 1, 2, 225, 226
Plasma, 1, 2, 225, 226
Sodium, 226
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Tensile strength, 17, 18, 54, 64,
177

Thermal conductivity
amorphous ice, 17, 34, 65, 66,

144, 224
bulk, 16–18, 25, 27, 28, 32,

60, 64, 65, 73–77, 92, 102,
116, 131, 137, 143, 144,
152, 177, 179, 180, 203,
211, 223

crystalline ice, 17, 28, 65, 116,
121, 184, 223

dust, 16–18, 26, 28, 116, 121,
176, 178

mixtures, 78
Russel’s formula, 75, 178

Thermal diffusivity, 94
Thermal speed, 80
Thermal wave, 152, 162, 173
Tidal stress, 149, 226
Tisserand invariant, 139
Tortuosity, 38, 40, 61, 66, 118, 121
Trail, xvii
Trapping factor, 179

Vapour pressure, see Pressure –
vapour

Velocity
dust, 68–70
gas, 41, 42, 45, 69, 70, 112,

118, 176
sound, 34
thermal, 69

Maxwell distribution, 41–45,
80

Volatile ice, 6, 7, 21, 22, 26, 32,
58, 59, 118, 143, 152, 173,
176, 192, 198, 206


