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Preface to the Paper Edition

The preparation of the Cluster mission included efforts and initiatives to develop meth-
ods and tools for the analysis of multipoint measurements, as documented in several work-
shop proceedings. But it was apparent that there was a need to considerably expand and
improve on previous work, and then collect it in a Handbook that would present the anal-
ysis techniques in an elementary fashion and would include a careful assessment of accu-
racies and limitations, preferably demonstrated by applications to real or simulated data.
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January 1997. The second meeting took place two days after the loss of the Cluster mis-
sion that resulted from the failure of the Ariane 501 launcher. Even though this event put
into jeopardy the chances to actually obtain the appropriate multipoint measurements, the
working group went ahead, particularly since it had decided earlier to include the descrip-
tion of advanced single-point analysis methods that had not been properly documented
before. The April 1997 decision for a Cluster II recovery mission, to be launched in the
year 2000, has provided new motivation for the work on analysis techniques.

At the first meeting, the group defined its program and tentatively agreed on a set of
chapters and their authors. Authorship was not restricted to members of the working group.
It was realised right at the beginning that substantial efforts were needed to test some of the
methods and/or establish their validity and accuracy. This work was carried out between
the meetings. Progress was reviewed, and the program finalised, at the second meeting.
At the third meeting, drafts of the chapters were discussed and the remaining work and
schedule defined.

All chapters in this book were written in LATEX and all figures, over 150, were provided
as encapsulated PostScript files. This permitted not only a uniform appearance throughout
the whole book, but also enabled extensive cross-referencing between the chapters and a
comprehensive index of keywords.

In July 1997, when all manuscripts had been received and properly formatted by the
production editor, P. W. Daly, an editorial committee, consisting of G. Chanteur, P. W.
Daly, M. W. Dunlop, C. C. Harvey, G. Paschmann, and S. J. Schwartz, reviewed the chap-
ters, and asked the authors for revisions. All chapters were then sent to outside referees.
After another round of revisions, the book was finally submitted electronically to the ESA
Publication Branch at ESTEC in April 1998.

The working group members and authors invested a very substantial amount of time
and work into this project. We would like to thank them for this effort, and for the coop-
erative spirit in which the goal was achieved. We thank the editorial committee for careful
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production editor and B. Battrick, of ESA’s Publication Branch, guaranteed a speedy and
professional production and delivery. Finally, the entire working group would like to thank
the ISSI directors, J. Geiss and B. Hultqvist, and their staff for their generous support and
warm hospitality that made this project possible and enjoyable.

Götz Paschmann
Garching, Germany

Malcolm W. Dunlop
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Preface to the Electronic Edition

Soon after the appearance of the first (paper) edition of this book, P. W. Daly began
to experiment with an electronic version in PDF with navigation aids and internal links
for cross-references. Coloured figures which were printed in black and white in the book
could finally be properly reproduced.

The editors and authors then decided that an electronic edition would also provide an
opportunity for correcting errors, making additional comments, and/or otherwise extend-
ing the original material based on new work.

To accomplish this, we decided to make use ofendnotes, numbered by chapter and
sequence numbers, and collected together in a separate section at the end of the book
(page479). At the corresponding location in the text itself, a marginal marker appears⇒0.0
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Götz Paschmann
Bern, Switzerland

Patrick W. Daly
Katlenburg-Lindau, Germany



Introduction

The Earth’s magnetosphere is the bubble in which we live, buffeted by the solar output⇒0.1
in the form of a collisionless, supersonic solar wind. Large and small variations in the
solar wind give rise to dynamic, often dramatic responses of the magnetosphere due to,
for example, magnetic reconnection at the dayside magnetopause (which locally ruptures
the bubble) and reconnection in the geomagnetic tail (which is responsible for major mag-
netic storms, aurora, and related phenomena). These transient processes, together with the
motion and internal structure of thin boundaries (bow shock, magnetopause, plasma sheet
current layer), embody fundamental physical mechanisms representative of many astro-
physical applications and are the mediators of “space weather”. Their variability implies
that they involve three-dimensional, time-dependent structures on a range of scales.

Single spacecraft measure the time series of physical parameters as seen at the space-
craft position. As such, these measurements cannot unambiguously separate spatial and
temporal variability. The study of the structure and evolution of key physical processes
therefore requires a multi-point approach. Two-spacecraft missions, such as ISEE-1 and -2
or AMPTE-IRM and -UKS, were an improvement, but still allowed only one-dimensional
(spatial) resolution. In many cases this dimension did not correspond to the most impor-
tant dimension of the phenomenon. Use of dual spacecraft, therefore, has been restricted
largely to studies of special events. Four spacecraft, with adjustable separations, such as to
be implemented for the Cluster mission, are the minimum needed to uniquely address the
issue of resolving a three-dimensional structure, at least to lowest order in the gradients.

The term “adjustable”, of course, hides to some extent the problem that, even with
multiple spacecraft, the spatial sampling must be well matched to the spatial scales of
importance. Suitable separation distances for such co-orbiting clusters of spacecraft are
in the range between hundred km and tens of thousands of km, depending on the event
sampled. These scales are very much smaller than the typical separations of spacecraft
within the ISTP fleet of spacecraft which are intended for global investigations and re-
quire very different analysis techniques than those developed for a phased array of space-
craft, flying in formation. Coordinated measurements between spacecraft in ISTP stud-
ies require favourable conjunctions across often different regions of the magnetosphere,
whereas closely spaced clusters probe small-scale structures within the same region, or
across narrow boundaries.

Analysis of data from a closely-spaced cluster of spacecraft can be approached on sev-
eral levels. On the lowest level, one would base the selection of events for further analysis
on low-resolution summary data from one of the spacecraft. Folding in knowledge of the
spatial configuration of the spacecraft array, relative to some (model) boundary normal or
some dominant spatial direction, such as the magnetic field, can help test suitability for
a given analysis objective (by comparing characteristic scales, anisotropy, or time depen-
dence).

At the next level, simple inspection or analysis of high-resolution data from one, and
eventually all, of the spacecraft, allows choice of events that meet specific selection cri-
teria. At this level, it is also possible to check on whether the results at the different
locations are mutually consistent with the nature of the selected event that was assumed in
the applied analysis method. For example, whether they are consistent with assumptions of
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2 INTRODUCTION

stationarity or two-dimensionality, or particular spectral response. Having arrived at such
a level of description, one could then decide whether the situation warrants application of
truly multipoint techniques.

In accordance with this hierarchy of analysis levels, the book not only describes true
multipoint techniques, but includes detailed descriptions of methods established for single-
point measurements.

The book begins with a tutorial on Spectral Analysis (Chapter1) because it must be
realised that for any reasonable number of spacecraft in a cluster, the time domain is very
much better covered than the spatial domain. For the comparison of multi-instrument and
multipoint time series, time synchronisation is an important element. Therefore Chapter2
(Time Series Resampling Methods) deals with the methods available for resampling of the
data that are measured with different time resolution and the limitations that are involved.

Chapter3 (Multi-Spacecraft Filtering: General Framework) describes a powerful tech-
nique to determine thek vectors of a wave field from measurements of magnetic and elec-
tric fields at four points. Chapter4 (Multi-Spacecraft Filtering: Plasma Mode Recognition)
extends the scope of the analysis to infer the wave modes that are present, based upon fields
and plasma measurements. Both chapters use synthetic data to test the techniques.

Chapters5 (Measurement of Plasma Velocity Distributions) and6 (Moments of the
Plasma Velocity Distributions) are tutorials. They were included because the methods and
limitations of plasma measurements and their expression in terms of moments are often not
fully appreciated. Chapter7 (Multi-Spacecraft Analysis of Plasma Kinetics) describes the
use of particle distribution functions in inferring plasma kinetic effects, including remote
sensing of boundaries.

Chapters8–11 deal with the determination of the orientation and motion of plasma
boundaries which is one of the main capabilities of multipoint studies. Chapter8 (Vari-
ance Analysis) describes the estimators for the normal directions of current sheets based
on variance analysis of magnetic and electric field data from a single spacecraft. Chap-
ter9 (DeHoffmann-Teller Analysis) deals with the determination of the coordinate system
where the electric field vanishes, and describes the utility of such a system. Chapters8 and
9 use the same satellite data to demonstrate the capability and limitations of the techniques.
Chapter10 (Shock and Discontinuity Parameters) is a general review of the methodology
for the determination of shock and discontinuity parameters, primarily from single-point
data. Chapter11 (Multi-Spacecraft Discontinuity Analysis: Orientation and Motion) fo-
cuses on methods using multipoint magnetic field measurements.

Chapters12 (Spatial Gradients and the Volumetric Tensor) and13 (Tetrahedron Geo-
metric Factors) describe various schemes to derive a quantitative measure of the configu-
ration of the polyhedron formed by a cluster of co-orbiting spacecraft and its deformation
along an orbit. Such measures are essential for pre-selecting data intervals for further
analysis.

Chapters14–17 describe the methods and accuracy with which spatial derivatives,
such as the gradient, curl or divergence of some field, can be determined from multipoint
measurements. These chapters are therefore fundamental for the prime purpose of multi-
point missions. Chapter14 (Spatial Interpolation for Four Spacecraft: Theory) describes
the basic concepts. Chapter15 (Spatial Interpolation for Four Spacecraft: Application
to Magnetic Gradients) applies the technique to model magnetic fields. Chapter16 (Ac-
curacy of Current Density Determinations) focuses on the ability to infer currents from
∇ × B. Chapter17 (Accuracy of Plasma Moment Derivatives) deals with the accuracy
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that can be expected for spatial and time derivatives of plasma velocity moments.
Chapter18, finally, is a review of numerical simulations related to plasma kinetic ef-

fects that are useful for guiding the analysis and interpretation of the measurements. This
chapter thus falls into the category of mission-oriented theory that has been developed in
support of NASA’s ISTP missions, but also for Cluster, through the European Network for
the Numerical Simulation of Space Plasmas.

Each chapter contains its own bibliography, which provides references to background
material on the development of the subject and further clarification. Literature citations
in the text have been deliberately minimised in order not to distract from the essentially
tutorial nature of the book.

Although style and scope of the chapters differ, every effort has been made to ensure
a reasonably uniform notation. Nevertheless, the authors have been allowed sufficient
flexibility to avoid casting well-known equations into a form unfamiliar to experienced
users.

In summary, the book is a collection of material on analysis techniques pertaining to
multi-spacecraft data. The foundations of the methods are clearly provided, but only some
of them have been tested with real or simulated data, and only a few are cast in the form of
readily applicable tools. Moreover, the coverage is by no means complete; a noteworthy
example is the lack of a chapter on multipoint analysis of fully-developed plasma turbu-
lence. Nevertheless, it is hoped that the publication of this book will encourage further⇒0.2
developments which could be incorporated in a future issue.
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4 INTRODUCTION

Notation Conventions

The conventions used in this book are as follows:

• Greek subscriptsα, β, . . . apply to spacecraft; Latin subscriptsi, j, . . . to cartesian
coordinates.

• Vectors are indicated by boldface symbols, asB, v, ω. For purposes of matrix
multiplication, these are considered to becolumn vectors; the corresponding row
vectors areBT , vT ,ωT .

• Unit vectors are written aŝn, b̂.

• Matrices and tensors are represented by sans serif characters, e.g.M, Π; their trans-
posed forms areMT ,ΠT and their hermitian conjugates areM†,Π†.

• Multiplication of vectors is marked with the standard operators for the dot (a · b)
and cross (a × b) products.

• Matrix multiplication has no explicit operator; in this context, vectors are treated as
column matrices, e.g.:

aTS b =

∑
ij

aiSijbj

Thus the dyadicabT represents the 3× 3 tensor whoseij component isaibj , while
the productaT b is equivalent toa · b =

∑
i

aibi .
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1.1 Introduction

Large amounts of data, like one or more time series from some spacecraft carried
instruments, have to be reduced and presented in understandable quantities. As physical
theories and models often are formulated in terms of frequency rather than time, it is
often useful to transform the data from the time domain into the frequency domain. The
transformation to frequency domain and application of statistics on the result is known as
spectral analysis.

The literature on spectral analysis is voluminous. In most cases, it is written by experts
in signal processing, which means that there are many texts available outlining the funda-
mental mathematics and elaborating the fine points. However, this is not the only back-
ground needed for a space physicist who is put to the task of actually analysing spacecraft
plasma data. Simple questions on normalisation, physical interpretation, and how to ac-
tually use the methods in practical situations are sometimes forgotten in spectral analysis
texts. This chapter aims at conveying some information of that sort, offering a comple-
ment to the textbooks rather than a substitute for them. The discussion is illustrated with
idealised examples as well as real satellite data.

In order not to expand the chapter into a book in itself, we concentrate on the appli-
cation of basic Fourier and wavelet methods, not treating interesting topics in time series
analysis like stationarity tests, filtering, correlation functions, and nonlinear analysis meth-
ods. Higher order methods like bispectral analysis are also neglected. Fundamentals of
such items are covered by many of the references to this chapter, and methods particu-
larly suited for multipoint measurements are of course found throughout this book. Other
introductions with multi-spacecraft applications in mind can be found in the paper by
Glassmeier and Motschmann[1995] and in other papers in the same publication.

The disposition of the chapter is as follows. First, we introduce the basic concepts
in Section1.2, where we also discuss time-frequency methods for the analysis of non-
stationary signals. The practical implementation of classical Fourier techniques is treated
in Section1.3, while the implementation of Morlet wavelet analysis is discussed in Sec-
tion 1.4. In Section1.5, we turn to the simultaneous analysis of two or more signals by
the cross spectrum technique, particularly relevant for the analysis of multipoint measure-
ments. Finally, we touch upon the use of parametric spectral methods in Section1.6.

5
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1.2 Basic Concepts

1.2.1 Fourier Series

Given any process, represented as a functionu(t) of time t , we can only study it for
some finite time spant0 < t < t0 + T . Fourier’s theorem states that if the signal is finite
and piece-wise continuous, it can be written as

u(t) =

∞∑
n=−∞

ũ[n] exp(−2π ifnt) (1.1)

where
fn = n/T (1.2)

and the complex Fourier coefficientsũ[n] are given by

ũ[n] =
1

T

∫ t0+T

t0

u(t) exp(2π ifnt) dt (1.3)

The transformation1.3 replaces a continuous infinity of valuesu(t) on a finite interval
0 ≤ t < T by an infinite series of values̃u[n] for all integersn. Each term in the Fourier
sum1.1 corresponds to an oscillation at a frequencyfn = n/T . As such oscillations are
the eigenmodes of small-amplitude perturbations in most physical systems, this kind of
transformation is an obvious means for understanding the physics behind some signal.

One may note that the coefficientsũ[n] and ũ[−n] corresponds to oscillations with
the same value of|fn|, which is the quantity determining the time scale of the oscillation.
Hence, the sum of the two terms forn and−n in equation1.1will describe the part of the
signal corresponding to a certain time scale 1/|fn|, so for a real signal, this sum must be
real. Thus,

ũ[−n] = ũ∗
[n] (1.4)

where the star denotes complex conjugation. For a real signal, the two terms labelled by
±n may be considered to represent the same frequency|fn|. While theũ[n] coefficients
are sometimes called Fourier amplitudes, the sum of the two±n terms in equation1.1
evaluated using equation1.4shows that the amplitude of the sinusoidal wave of frequency
|fn| > 0 in equation1.1 in fact is 2|ũ[n]|.

1.2.2 Parseval’s Relation and Power Spectral Density (PSD)

Central to the physical interpretation of the Fourier series is Parseval’s relation

1

T

∫ t0+T

t0

u2(t) dt =

∞∑
n=−∞

|ũ[n]|2 (1.5)

which in the case of a real signal, where equation1.4applies, becomes

1

T

∫ t0+T

t0

u2(t) dt = ũ2
[0] + 2

∞∑
n=1

|ũ[n]|2 (1.6)
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The left-hand side is an average of what we may call the average signal energy or signal
power1. This nomenclature is not without foundation: for instance, ifu(t) is a compo-
nent of the electric field, magnetic field, or plasma velocity, this signal energy is related
to the contribution to the physical energy density (SI unit J/m3) in the plasma from this
field component by a factor ofε0/2, 1/(2µ0), or ρ/2, respectively, whereρ denotes the
mass density. Parseval’s relation opens up the possibility of interpreting each of the terms
in the sum to the right in equation1.6 as the contribution to the signal energy from the
corresponding frequencyfn.

The terms in the sum at the right of equation1.6 depend on the length of the time
interval T . If this interval is doubled to 2T by adding the same data set again, i.e. by
takingu(t+T ) = u(t), 0 ≤ t < T , the left-hand side of1.6will stay constant, while there
will be twice as many terms as before in the right-hand sum, the frequency spacing

1f = 1/T (1.7)

decreasing by half whenT is doubled. On the average, the value of the terms|ũ[n]|2 in
the sum in1.6 therefore must decrease by a factor of 2. Hence, the coefficients|ũ[n]|2

depends on signal length, and they are therefore not suitable for describing the physical
process itself. To describe the distribution of signal energy density in frequency space, we
instead introduce a functionSu known as thepower spectral density (PSD)by

Su[n] = 2T |ũ[n]|2 (1.8)

for all non-negative integersn. Parseval’s relation1.6then takes the form

1

T

∫ T

0
u2(t) dt = Su[0]

1f

2
+

∞∑
n=1

Su[n]1f (1.9)

HavingSu defined in this way, its value at a particular frequency will not change if chang-
ing the record lengthT in the way outlined above. It is thus possible to picture the discrete
set of PSD values as samplesSu[n] = Su(fn) of a continuous functionSu(f ). In this
picture, the Parseval relation1.9 is the trapezoidal approximation to the integral relation

1

T

∫ T

0
u2(t) dt =

∫
∞

0
Su(f )df (1.10)

Our definition of the PSD has the virtue of having an immediate physical interpretation:
Su(fn)1f is the contribution to the signal energy from the frequency interval1f around
fn. It can only be used for real signals, since negative frequencies are ignored.

1.2.3 Phase

As the PSD (equation1.9) is based on the squared magnitude of the complex Fourier
coefficientsũ[n], it obviously throws away half of the information in the signal. The other
half lies in the phase spectrumϕ[n], defined by

ũ[n] = |ũ[n]| exp(iϕ[n]), (1.11)

1Signal processing texts sometimes distinguish between the energy and the power of a signal: see the discus-
sion byChampeney[1973], chapter 4.
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with ϕ[−n] = −ϕ[n] andϕ[0] = 0 due to equation1.4 The absolute value of the phase
depends on exactly when we start sampling the signal, so there is little physical information
in one single phase value by itself. On the other hand, there is a lot of information to be
gained by studies of the relative phase of two signals, as is further discussed in Section1.5.

If we know the phase spectrum as well as the PSD, no information has been lost and
the signal itself can be reconstructed by using equations1.11and1.8. Constructing time
series compatible with some given PSD is sometimes useful in numerical modelling and
simulations of space plasma situations. The phase may be selected at random, or by some
assumption motivated by the model. One should note that the random phase assumption
may result in data with significantly different statistics in the time domain than had the
original signal. The physics represented by the two signals can therefore be quite different.
Methods for treating such problems exist [seeTheiler et al., 1992, and references therein].

1.2.4 Discrete Fourier Transform (DFT)

Our principal interest is in data from instruments providing a sampled rather than con-
tinuous output: this replaces the continuous functionu(t) above by a discrete set ofN
measurements

u[j ] = u(tj ) = u(t0 + j 1t) (1.12)

where1t is the sampling spacing, whose inverse is the sampling frequencyfs, andj =

0, 1, 2, ..., N − 1. From equation1.2, we get

fn =
n

T
=

n

N 1t
=
n

N
fs (1.13)

By replacing the integrals in the Section1.2.1above by sums, where dt is replaced by1t ,
we define the discrete Fourier transform (DFT)

ũ[n] =
1

N

N−1∑
j=0

u[j ] exp(2π i n j/N) (1.14)

and its inverse

u(tj ) = u[j ] =

N/2−1∑
n=−N/2

ũ[n] exp(−2π i n j/N) (1.15)

where we have assumedN to be even (generalisation to oddN is straightforward). The
indexn here runs from−N/2 toN/2− 1, but it is customary to let it run from 0 toN − 1
instead, by defining̃u[n+N] = ũ[n]. This is possible since the only effect of replacingn
by n + N in the exponential in1.15is a multiplication by exp(2π iNj/N) = 1. We thus
write the inverse DFT as

u(tj ) = u[j ] =

N−1∑
n=0

ũ[n] exp(−2π i n j/N) (1.16)

For a real signal, equation1.4 told us that the negative frequency components carried no
extra information, and this is the case forn ≥ N/2 as well:

ũ[N − n] = ũ∗
[n] (1.17)
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For the DFT of a real signal, Parseval’s relation takes the form

1

N

N−1∑
j=0

u2
[j ] =

N−1∑
n=0

|ũ[n]|2 =
1

2
Su[0]

fs

N
+

N
2 −1∑
n=1

Su[n]
fs

N
+

1

2
Su[N/2]

fs

N
(1.18)

where the PSD estimate is

Su[n] =
2N

fs
|ũ[n]|2, n = 0, 1, 2, ..., N/2 (1.19)

If the signal is measured in some unit X and the frequency unit is hertz (Hz), the unit of
the DFT as defined by1.14also will be X, while the PSD will be in units of X2/Hz. This
is appropriate, as we may picture the Parseval relation1.18 as an approximation of the
integral relation1.10.

1.2.5 Normalisation

The definitions1.14and1.16of the DFT and its inverse are not the only possible. For
instance, the choice of in which of the exponentials in equations1.14and1.16we place
the minus sign is quite arbitrary, but for a real time series, this does not change the physical
results. The convention adopted here is the familiar one for a physicist, as harmonically
oscillating properties normally are represented by functions of the form exp(−iωt) in the
physics literature. On the other hand, works in signal processing usually use the opposite
sign in the exponentials.

More important is that the factor of 1/N we have placed in1.14is sometimes placed
in front of the sum in1.16instead, or even, for greater symmetry, split into two factors of
1/

√
N in front of each of the sums in1.14and1.16. Other factors may also be introduced:

see Table1.1for a sample of different conventions found in the literature and in some soft-
ware packages. For a physicist, it is usually natural to think of the Fourier decomposition
as a means of separating oscillations at various frequencies, which means that the inverse
Fourier transform should be just a sum of the Fourier coefficients multiplied by complex
exponentials, as in equation1.16.

As a further complication, there is little agreement in the literature on how to define
the PSD in terms of the Fourier coefficients, i.e., how to write equation1.19. One reason
for this is that many works on spectral analysis are written by mathematicians or experts
in signal processing, for whom explicit appearance of sampling frequency in the PSD def-
inition or the confinement to real signals are undesirable. From the point of view of a
practising space plasma physicist, a normalisation of the PSD such that Parseval’s relation
is of the form1.18is most often (but not always) the natural choice. As the conventions
vary between different algorithms and software packages, it is wise to check the normal-
isation in the particular routine one is using by straightforward evaluation of both sides
of equation1.18. When publishing spectra, a good service to the reader is to tell what
normalisation convention has been used, for example by showing the form of Parseval’s
relation.

These issues of normalisation may seem dry and uninteresting, but are in fact quite
important: somebody will look at the power spectra you publish, try to estimate wave am-
plitudes in a frequency band or field energy or something similar, and get wrong answers
if she/he has misunderstood your normalisation. Trivial as it may seem, the normalisation
of spectra is remarkably often a source of confusion.
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Table 1.1: Samples of DFT definitions used in the literature and some software packages.
Normalisation conventions in Fourier analysis

Fourier transform:̃u[n] = A
∑N−1
j=0 u[j ] exp(2πB ijn/N)

Inverse transform:u[j ] = C
∑N−1
n=0 ũ[n] exp(2πDijn/N)

A B C D

This work 1/N + 1 -

IDL 1/N - 1 +

Mathematica 1/
√
N + 1/

√
N -

Matlab 1 - 1/N +

Bendat and Piersol[1971] 1 - 1/N +

Brockwell and Davis[1987] 1/
√
N - 1/

√
N +

Brook and Wynne[1988] 1/N - 1 +

Kay [1988] 1 - 1/N +

Marple [1987] T - 1/(T N) +

Press et al.[1992] 1 + 1/N -

Strang and Nguyen[1996] 1 - 1/N +

Welch[1967] 1/N - 1 +

1.2.6 Time-Frequency Analysis

In their most straightforward application, the Fourier methods described above trans-
form a functionu(t) into a functionũ(f ). Hence, one time series is transformed into
one spectrum. This type of transform is sensible if the process one is studying is sta-
tionary. However, the space plasma physicist often concentrates on dynamical situations
rather than truly stationary phenomena. In addition, the interest is often directed toward
boundary layers or other inhomogeneous regions, where the record of data will be non-
stationary, due to the motion of the spacecraft through the inhomogeneous medium, even
if it results from processes stationary at any single point in the plasma. As an example,
we may take a spacecraft crossing a magnetopause: the characteristic frequencies and the
waves present are different inside and outside the magnetosphere, and in addition there are
wave phenomena associated with the magnetopause itself.

In such cases, a more useful representation of the signal will result if we apply the
concept of two time scales: one fast time scale, to be represented in the frequency domain,
and one slow time scale, for which we keep the time domain representation. We then split
the signal record ofN samples intoM shorter intervals, each of lengthL, and calculate
the PSD for each of these. This technique is known as the short-time Fourier transform
(STFT) or the windowed Fourier transform (WFT), as the selection of a particular part of
the time series can be seen as a multiplication with a rectangular window function

wk[j ] =

 0, j < kL

1, kL ≤ j < (k + 1)L
0, j > (k + 1)L

(1.20)
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Figure 1.1: Time-frequency analysis. (a) One second of the time series of the signal in
equation1.21, sampled at 512 samples/s. (b) 512-point PSD of the signal in (a). (c) 64-
point PSD of the part of the signal between the dashed lines above. (d) 64-point PSDs of
8 subintervals of the signal above. Dark is high and light is low values of log PSD.

Generally, the technique of representing fast variations in the frequency domain and slow
variations in the time domain is known as time-frequency analysis. Data analysed in this
way are normally presented as colour or grey-scale coded panels, which often are known
as dynamic spectrograms. Examples using real data can be found in Figure1.10on page
30.

Another example, based on synthetic data, is shown in Figure1.1. The synthetic signal
in panel (a) is represented byN = 512 samples of

u(t) = B sin 2πf (t)t + B sin 2πf0t (1.21)

where 0< t < 1 s,B = 1 nT,f0 = 150 Hz, andf (t) rises linearly from zero att = 0 to
fs/8 at t = 1 s. This signal includes a non-stationary part (the first term in equation1.21)
as well as a stationary part (the second term). Panel (b) shows the PSD calculated from
equation1.19. The stationary part is well represented by a narrow spectral peak, while
the energy of the non-stationary part is spread out in a frequency band extending up to
aboutfs/8 (the dashed vertical line) without further information. Panels (c) and (d) show
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Figure 1.2: Some possible divisions of the time-frequency plane into 16 equal-sized rect-
angles. (a) Time domain representation. (b) Fourier representation. (c) Time-frequency
Fourier representation (WFT). (d) Octave band analysis (wavelet transform). The mean-
ing of the shading is explained in the text on page28 just after equation1.43. For an
explanation of the dashed rectangles, see page32, Section1.4.6.

the effect of dividing the original record intoM = 8 intervals of lengthL = 64 samples
(0.125 s). In (c), we have plotted the PSD (as defined by1.19) based on theL = 64 points
between the dashed lines in panel (a). Finally, in (d) we see a time-frequency plot, where
the PSD is represented by a logarithmic grey scale.

Obviously, the time-frequency analysis has several merits. In panel (d) of Figure1.1
we can clearly see the linear trend in the frequency of the low frequency signal, and the
stationary character of the high-frequency part. Also, in panel (c), the low frequency
signal is represented by a peak with a maximum value of the same order as the peak value
for the stationary high-frequency signal, which is reasonable. The low-frequency peak is
of course broader, as the frequency of this signal varies from 32 Hz to 40 Hz during the
analysed time interval. On the other hand, the representation of the stationary signal at
150 Hz is better in (b) than in (c), in the sense that its energy is more concentrated in a
narrow spectral peak.

This illustrates the basic trade-off situation in time-frequency analysis: we can get
better resolution in time only at the expense of resolution in frequency. Having a time
series ofN points sampled at frequencyfs, we get a frequency resolution1f = fs/N if
we calculate the Fourier transform of the full record. In that case, the time resolution is
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equal to the length of the record,1t = N/fs , so that1f 1t = 1. Dividing intoM records
increases the time resolution by a factor ofM, while the frequency resolution goes down
by the same factor, so that we still have1f 1t = 1. In general,

1f 1t ≥ 1 (1.22)

where the inequality results when averaging is introduced (Section1.3.4). As our def-
initions of1f and1t are not in terms of standard deviation as in quantum mechanics
[Landau and Lifshitz, 1977, p. 47], one should not exactly identify1.22with the Heisen-
berg uncertainty relation, although the two are related.

The relation1.22 may be illustrated as in Figure1.2, where we divide the time-
frequency plane into 16 rectangles of unit area in four different ways. Panel (a) represents
the untransformed time series,2 and panel (b) the DFT of the full signal. Panel (c) is an
example of a time-frequency Fourier analysis.

We could also think of less symmetric ways of dividing the time-frequency plane of
Figure1.2. Panel (d) shows a particularly useful example, known as octave band analysis.
Here, the time resolution is different for different frequencies, giving better resolution in
time for higher frequency components. This decreases the frequency resolution at high fre-
quencies, but the relative resolution1f/f is kept constant. We could express this as hav-
ing constant resolution in logf . Implementing this kind of division of the time-frequency
plane leads to what is known as wavelet analysis, to which we return in Section1.4.

Which division of the time-frequency plane in Figure1.2 is best? The answer clearly
depends on the properties of the signal, and the questions we put to it. If the signal, or at
least the component of it we are interested in studying, can be assumed to result from a
truly stationary process, the resolution is better placed in the frequency than in time, as in
panel (b). If, in addition, the signal can be assumed to be composed of a set of discrete
frequencies, there may even be reason to consider parametric spectral models, which we
briefly touch upon in Section1.6. A Fourier implementation of time-frequency analysis
(panel (c)) is useful for a situation with one slow time scale, represented in the time do-
main, modulating fast oscillations, represented in the frequency domain. An example of
a situation where such a description is useful is a magnetospheric satellite flying through
a density cavity, where the slow time scale is set by the size of the cavity divided by the
spacecraft speed, while the waves present the fast variations. Finally, the wavelet division
of the time-frequency plane in panel (d) is well suited for turbulent situations, with a more
or less continuous hierarchy of time scales.

Wavelet analysis can be extended to include other unsymmetric partitions of the time-
frequency plane than the one in Figure1.2d. We touch briefly upon this in Section1.4.6
(page32).

As well as depending on the signal properties, the method to use is to some extent
dependent on our interpretation of the signal, which in turn may depend on other data,
our experience, or our prejudice. Consider the time series of synthetic data in panel (a) of
Figure1.3. The time-frequency analysis in panel (b) suggests a description in terms of a
modulated wave at 300 Hz. On the other hand, the single Fourier spectrum of all points
in panels (c) and (d) suggests a description as a superposition of two sinusoidal waves at
297 Hz and 303 Hz. Mathematically, these descriptions are of course equivalent. However,

2Formally, panel (a) should be interpreted asM = 16 DFTs, each based onL = 2 data points, from a total
record ofN = 32 samples, since theN-point PSD only gives information atN/2 frequencies.
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Figure 1.3: A modulated sine wave (a), with some spectral representations: (b) Fourier
time-frequency analysis, (c) Fourier spectrum, (d) detail of Fourier spectrum.

one or the other may be more physically meaningful in a given situation. For example, if
some other measurement shows that a likely source of the wave is an electron beam whose
energy flux pulsates with a frequency corresponding to the observed modulation frequency,
a description in terms of modulations, as in panel (b), is appropriate. On the other hand,
if we have reason to believe in the presence of two distinct localised and stable sources
with slightly different characteristics, the description offered by panels (c) and (d) is more
natural.

In the 1990s, wavelet methods (Section1.4) have became popular. Wavelets constitute
a major advance in the spectral analysis, opening new approaches to signal handling, but
there is no reason to throw the traditional Fourier based methods overboard. As outlined
above, and as will further be discussed in Section1.4.2, there are applications where a
division of the time-frequency plane as in panel (c) of Figure1.2 is more appropriate than
the wavelet division in panel (d). In other circumstances, the wavelet division is the more
advantageous.
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1.3 Fourier Techniques

This section considers how to practically use Fourier methods for PSD estimation.
Ideas and concepts are described, while detailed algorithms are left for textbooks like
Jenkins and Watts[1968], Bendat and Piersol[1971], and Kay [1988]. For the reader
interested in clear and concise treatments on a level between this section and the textbooks,
the old but concise paper byWelch[1967] and the practically oriented text byPress et al.
[1992] are recommended.

1.3.1 Fast Fourier Transform (FFT)

The fast Fourier transform (FFT) is an algorithm for efficient implementation of the
DFT 1.14and its inverse1.16. This algorithm is the only implementation of the DFT that
you are ever likely to see or use, as it is far more efficient than for example a direct summa-
tion of the series in equation1.14. The FFT algorithm is described in most textbooks on
signal processing [e.g.Bendat and Piersol, 1971] or mathematical computer methods [e.g.
Press et al., 1992], and there you will find out that while a direct implementation of equa-
tion 1.14requires a number of calculations proportional toN2, the clever FFT algorithm
only needs on the order ofN log N calculations for doing the same job.

The FFT algorithm is included in virtually all software packages intended for data
analysis, like Matlab or IDL, so you should never have to actually write the code yourself
or even understand it in detail. However, one should be aware that the computational
efficiency of the FFT is fully exploited only when the number of data points is an integer
power of two (N = 2M ).

1.3.2 Detrending

The finite time series from a measurement is often to be regarded as a finite observa-
tion of a process, stationary or non-stationary, that was going on before the start of our
observations and that will continue afterwards. Hence, it is very likely that our data con-
tains components with periods longer than the length of the data record. Such components
in the signal are calledtrends. As the trends represents time scales longer than those a
spectral analysis of our data record can resolve, it is desirable to remove them from the
data prior to spectral estimation. If not removed, trends may distort the low-frequency end
of the estimated spectrum.

Detrending may often be done by fitting (by least-squares methods or otherwise) a lin-
ear or perhaps quadratic function to the data, and thereafter subtract this function. Some-
times, more advanced fits like sinusoidals may be called for.

An example of a signal with trends is shown in Figure1.4. Panel (a) shows 3 seconds of
measurements of a spin-plane component of the electric field by a magnetospheric satellite
spinning around its axis with a period of 6 seconds. One trend is obvious: there is a
sinusoidal variation at the spin frequency, of which we see half a period. This signal is
due to spin modulation of the electric field induced by the spacecraft motion through the
geomagnetic field, and is indicated by the dashed line. Removing this, we get a time series
as in panel (b). Considering the part of the time series between the vertical lines in panel
(b), we find another trend as well, due to a field variation at a time-scale longer than the
length of this interval. Panel (c) shows an enlargement of this part of the total time series,
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Figure 1.4: Measurement of an electric field component by the wave instrument on the
Freja satellite. Zero time corresponds to UT 005416, April 12, 1994. The signal has been
low-pass filtered at 1.3 kHz before sampling at 4000 samples/s.

before any of the two trends have been removed. Panel (d) shows the same signal after
removal of a linear trend by subtracting a least-squares fit. Finally, panel (e) displays the
power spectra of the original signal from panel (c) (dashed) and of the detrended signal
from panel (d) (solid), calculated according to equation1.19with a 512 point DFT. It is
clear that the linear trend carries energies to all frequencies, thereby drowning details in
the signal we really are interested in. For example, the peak in the solid curve around
30 Hz cannot be discerned in the dashed curve, where it is completely drowned by the
spectral energy from the linear trend.

Removing a trend is a major manipulation of the data. Hence, caution is needed, so
that the detrending does not do more harm than good. A few non-physical outliers in the
data could wreak havoc in a fitting algorithm, and thus cause the detrending to actually
add a spurious component in the data. Before removing a trend, its physical origin should
be understood. Visual inspection of the time series before and after detrending is a very
good idea.

1.3.3 Windowing

In Section1.2.6, we introduced the rectangular window function1.20. The abrupt
behaviour of the rectangular window at the edges causes it to leak quite a lot of energy
from any main spectral peak to other frequencies. This can be understood by considering
that when applying a data window to the time series, we will analyse the signalwk[j ] u[j ]
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Figure 1.5: 128 point PSDs of a sinusoid atf = fs/5 calculated using different data
windows. The frequency is in units of the sampling frequencyfs. The PSD values are
normalised so that the total integrated power for 0< f < fs/2 is unity.

rather than the presumably infinite record ofu[j ] itself. As a multiplication in the time
domain is a convolution in the frequency domain, the effect of applying a window will be
to convolve the “true” PSD with the PSD of the window. As the Fourier transform of a
step function is spread out over all frequencies, this implies that part of the signal energy
is moved from any frequency to all others. We illustrate this by an idealised example in
Figure1.5a. The 128 point PSD of a signal consisting of only a pure sinusoid atf = fs/5
is calculated (using a rectangular window1.20) and normalised so that the total integrated
PSD in 0 < f < fs/2 is unity. It can be seen that signal energy leaks to the entire
frequency interval. The detailed behaviour depends on the frequency of the signal: in the
extreme example of an integer number of wave periods fitting into the data interval, there
is no leakage at all, as the signal frequency exactly equals one of the Fourier frequencies
1.13in this case. For a real signal, this is of course a zero-probability event, and a leakage
as in Figure1.5a will generally occur.

As a remedy for the frequency leakage behaviour, a variety of other window functions
have been designed, a few of which are shown in Figure1.6. As can be seen from the
idealised example in Figure1.5, these windows all decrease the leakage of energy to fre-
quencies far away, at the cost of increased width of the main peak. That this price has to
be paid is clear from the uncertainty relation1.22: the window concentrates the signal in
time, and hence must gives a widened spectral peak.
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Figure 1.6: (a) Some often used data windows: triangular (dotted), Hamming (solid) and
Gaussian (K = L/5, dashed). (b) Time series of magnetic field data from the Freja wave
instrument. (c) PSD calculations using Hamming (solid curve) and rectangular (dashed)
windows. (d) and (e) Ratios of PSDs calculated with different windows.

The simplest of these windows is the triangular (or Bartlett) window, given by

w[j ] = 1 −

∣∣∣∣1 −
2j

L− 1

∣∣∣∣ (1.23)

inside the interval of interest (which is the same as in equation1.20above) and zero out-
side. As is seen in Figure1.5(b), it has a considerably better behaviour than the rectangular
window in terms of energy spread. Even better in this respect and very widely used are the
Hamming window

w[j ] = 0.54− 0.46 cos

(
2πj

L− 1

)
(1.24)

and the Hann (often called Hanning) window (not shown)

w[j ] = 0.5 − 0.5 cos

(
2πj

L− 1

)
(1.25)

Both are zero outside theL-point interval of interest. The Gaussian window

w[j ] = exp

(
−
(j −

L−1
2 )2

2K2

)
(1.26)
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does not go exactly to zero, but may in practice be cut off at some distance from the centre.
For an infinite time series, this window is optimal in terms of low leakage to frequencies,
which makes it theoretically favoured [Rönnmark, 1990]. It differs from the others in that
its widthK is an adjustable parameter (chosen toL/5 in our examples). We will return to
the Gaussian window when discussing Morlet wavelet analysis in Section1.4.1.

The detailed properties of these and other windows have been studied by for example
Harris [1978]. However, for most applications to data sampled in space, there is little
point in putting much effort into the choice of data windows. In practice, the difference
between spectra obtained by use of Hamming, Hann and Gaussian windows will be small:
even the triangular window is tolerable for many purposes. This is illustrated by an analy-
sis of magnetic field data from the Freja satellite shown in Figure1.6(b). The PSDs of this
time series (using averaging of 4 spectra, see Section1.3.4) calculated with rectangular
and Hamming windows are shown in panel (c). It can be seen that the Hamming window
can resolve the minimum near 0.5 kHz much better than can the rectangular window. This
difference is illustrated in panel (d), where the ratio of the PSDs in panel (c) is plotted.
Finally, in panel (e) we plot the corresponding ratio for the Hamming and triangular win-
dows, and find a much smaller difference. The important point is to use some reasonable
window other than the rectangular, and preferably not the triangular.

In general, when multiplying the signal by window coefficients, which all are≤ 1,
signal energy is lost. The exact amount of energy lost will depend on the signal: obviously,
a record consisting of a single narrow spike in the middle of the interval, surrounded by
zeroes, will lose no energy at all as the window functions all have the value one at the
centre, while a record consisting of a spike at one of the end points and all other points
being zero will be almost completely lost. By considering Parseval’s relation1.19, we find
that the statistically expected decrease in the PSD value due to windowing should be the
mean square value of the window,

Wss =
1

N

N−1∑
j=0

w[j ]2 (1.27)

In order to compensate the PSD for the energy loss in the windowing, it should be divided
by theWss value for the window at hand.

1.3.4 Averaging and Stationarity

In most texts on signal analysis [e.g.Kay, 1988; Welch, 1967], it is shown that when
applying1.19 with rectangular window to a time series resulting from a stationary ran-
dom process, we get standard deviations in the PSD estimate equal to the PSD values
themselves, so that the expected error is 100%. This situation is improved (and compli-
cated) by the use of data windows other than the rectangular window (see, for instance,
Welch[1967], Jenkins and Watts[1968], or Brockwell and Davis[1987]), but is still not
satisfactory.

We emphasise the assumptions made above: (1) the time series is one particular realisa-
tion of a random process whose parameters we want to estimate, and (2) these parameters
are constant or slowly varying, so that the process is almost stationary. It is only in these
circumstances the question of standard deviation enters the problem. If we interpret our
data as a unique observation of a deterministic non-stationary process whose details we
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want to explore, there is no problem in the fact that consecutive spectra may show large
variation—it simply reflects the changing physical situation. We will return to this point
below, after briefly having considered the stationary case.

If we actually have an almost stationary random process, our first attempt to decrease
the variance in the PSD estimates may be to increase the record lengthL. However, the
effect of increasing the number of points in the DFT is only to get a PSD evaluation at
more frequencies, not to improve the estimate at any single frequency, so this approach
only gives us more points with the same bad variance. Increasing the record length is still
wise, but we should not put all the samples into the DFT at once. Instead, we divide the
total record ofL samples intoP shorter pieces of data, each of lengthK. After detrending
and windowing eachK-point interval, we compute itsK-point PSD. Finally, we take the
average of theP PSDs as our spectral estimate. Averaging reduces the variance with a
factor of 1/P , so in the case of rectangular windows, the normalised standard error will
go down from the 100% mentioned above to

ε = 1/
√
P (1.28)

Some data analysis packets include means for calculating the confidence interval of the
PSD estimate of a given time series, using methods described by e.g.Jenkins and Watts
[1968]. If such means are not utilised, one could use the rule of thumb that spectral features
below the 1/

√
P level should not be trusted to result from a stationary process.

Averaging can also be performed in the frequency domain rather than in time [e.g.
Bendat and Piersol, 1971]. In that case, one calculates the PSD of allL data points, and
then replace theL/2 PSD values one gets byL/(2P) values, each being the average of
P neighbouring frequency components in the original PSD. The effect on the standard
deviation of the PSD estimate is similar to the averaging of spectra in the time domain.

By reducing the amount of information in the original signal by a factor of 1/P , we
increase the quality and comprehensibility of the remaining data. The loss of information
in the averaging is described by the uncertainty relation1.22, which for averaged spectra
becomes

1f 1t ≥ P (1.29)

Averaging is useful for PSD estimates, but not for estimates of the complex DFT1.19or
the phase spectrum1.11, as the absolute value of the phase angle is completely dependent
on exactly when the data interval starts.

While averaging is useful for reducing noise from statistical fluctuations in a signal
from a random process, it is not always justified for a deterministic signal. The idea of
improving the PSD calculation is linked to the concept of our signal as a sample signal
from a random process. In this view, the PSD is a statistical property of the signal, and we
want to estimate it with as little noise as possible. This is often a very reasonable way of
looking at the signal, but is not the only possible. For averaging to be physically justified,
the signal must be assumed stationary over the time interval from which we construct the
PSDs which we average. However, we are sometimes interested in the spectral properties
of a non-stationary signal. For example, some sort of wave packet may be observed when
passing a spacecraft. There is only this wave packet, so there is no ensemble to average
over. Still, its spectral properties can be very interesting. It is more natural to look at
this wave packet as a deterministic signal whose physical properties we can investigate
in detail than to consider it a sample from a random process whose statistical parameters
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Figure 1.7: Example of use of overlapping time intervals for averaging of spectra. Eight
overlapping triangular windows (solid triangles) of lengthK are applied to the data, the
PSD of each corresponding time interval is calculated, and the average is constructed.
This is then taken as the power spectrum for the data period denoted “This data segment”,
which is time tagged by its midpoint. We then proceed to the next segment, whose first
triangular windows are shown dashed.

we want to estimate. With this view, “irregularities” in the spectrum are not regarded as
“noise” but as physical signals to be explained. A good discussion about conscious and
tacit assumptions on stationarity in spectral analysis of space plasma waves is given by
Rönnmark[1990].

For the analysis of deterministic data with a strong component of high frequency ran-
dom noise superimposed, averaging may be useful. If the deterministic signal is stationary
under the length of the analysis, averaging can reduce the effect of added noise.

Most textbooks on spectral analysis take the statistical, random process approach [e.g.
Bendat and Piersol, 1971; Brockwell and Davis, 1987; Kay, 1988]. A basic assumption
in these works is that the signal is a sample of a stationary random process. In contrast,
stationarity is not emphasised in modern texts on wavelet analysis. This is partly motivated
by the ability of wavelets, localised in time as well as frequency, to model non-stationary
phenomena (see Section1.4).

1.3.5 Overlapping Intervals

In the discussion of averaging in Section1.3.4 above, we took a time series ofL
points, divided it into segments ofK points each, and applied a data window to each
segment. Windowing implies giving the data points that are multiplied by the flanks of the
data window a low statistical weight in the final result. It is therefore reasonable to use
overlapping windows, as illustrated in Figure1.7. An overlap of 50% is a natural choice,
particularly for the triangular window. Except for the first data points of the first segment
and the last points of the last segment, each data point will be used in two data windows,
and hence in two PSD estimates before averaging. If the weighting of the point isw1
in one of the windows, it will in the case of triangular windows be 1− w1 in the other
window, giving a total statistical weight of 1 for all data points.

In the case of triangular windows and 50% overlaps, the normalised standard deviation
in the PSD will not be 1/P as suggested by equation1.28, but [Welch, 1967]

ε′
≈ 1.2/P (1.30)
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The other commonly used windows1.24–1.26give ε values of the same order for 50%
overlap. The factor of 1.2 may seem discouraging, but one should note that theP in
equation1.30is not the same as in1.28, since overlapping makes it possible to squeeze in
more windows in a certain amount of time. For a given record which is separated intoP

non-overlapping subintervals of lengthK, we can squeeze inP ′
= 2P − 1 windows of

lengthK if we allow a 50% overlap. Hence,P in 1.30should be replaced by 2P − 1 if
we want to compare the performance of 50% overlapping triangular and non-overlapping
rectangular windows on the same data record. Already forP = 2, givingP ′

= 3, we find
that the ratioε′/ε goes down to 0.8. ForP = 5 (P ′

= 9), this ratio is 0.67. Hence, the
use of overlapping windowed data increases the quality of the output in some sense, at the
expense of more computation.

One may note that overlapping will never do any harm except for increasing the com-
putation time. In signal processing literature, there is sometimes skepticism against the
use of overlapping, which is justified if you want to construct computationally efficient
routines. For the practising physicist, who is eager to extract as good information as pos-
sible from his/her data, it is often advisable to sacrifice some computational efficiency for
optimal use of the data.

We have here discussed overlapping of intervals for which the PSDs are averaged.
Another possibility in WFT analysis is to allow overlap of two consecutive data intervals
for which averaged PSDs are calculated. By letting this overlap be almost complete, i.e.
just skipping one data point between total PSD estimates, one can give the time-frequency
analysis an apparent time resolution similar to the time resolution of the original time se-
ries. This gives a smoother appearance of a time-frequency plot, which would remove the
square pattern from a display like Figure1.3(b). No effective time resolution is gained,
as this is governed by the uncertainty relation1.29. If using this smoothing method, one
should be aware that there may be different weighting of different data points unless the
overlapping is done cleverly. We can see this from Figure1.7, where this kind of smooth-
ing would correspond to letting “previous segment” and the “next segment” move in to-
ward the midpoint. This could result in some data points being used in two PSD calcula-
tions, others in three, and others in four PSD calculations.

1.3.6 Zero-Padding

Let us assume that we have a time series record ofN samples, which we increase to
length 2N by addingN zeroes. What happens to the Fourier transform? From the DFT
definition1.14, it is obvious that we get twice as many Fourier coefficientsũ[n] as before.
Also, it can be seen that coefficient numbern in the lengthN expansion must be equal to
coefficient number 2n in the new length 2N expansion, asu[j ] is zero forj > N . This
illustrates that zero-padding, which is the process of lengthening a time series by adding
zeroes at its end, makes no essential change to the shape of a spectrum [Marple, 1987].
At first, it may seem that zero-padding increases the frequency resolution, as the number
of Fourier coefficients increase. However, the amount of information on the real physical
signal is obviously the same with or without zero-padding, so the increased frequency res-
olution must be spurious. For the data from a given time interval, the frequency resolution
will always be limited by equation1.22.

An illustration of the spurious increase in frequency resolution is given in Figure1.8.
The power spectrum of a test signal consisting of two equal-amplitude sinusoids at fre-
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Figure 1.8: Effect of zero-padding. PSDs of a test signal consisting of two sinusoids at
frequencies 0.075 and 0.125, in units of the sampling frequency. Dashed lines with crosses
(in both panels): 32 data points, 32 zeroes padded. Solid lines with circles (in both panels):
no zero-padding, (a) 32 data points, (b) 64 data points.

quencies 0.075 and 0.125 in units of the sampling frequency is calculated from 32 points
without zero-padding (solid line in (a)), from 64 points without zero-padding (solid curve
in (b)), and from 32 data points with 32 zeroes padded (dashed line in both panels). In (a),
we can see that the PSDs of the signals with and without zero-padding coincides at the fre-
quencies where both are evaluated. In (b), the PSD of the zero-padded signal is evaluated
at the same frequencies as the 64-point signal, but it cannot resolve the two spectral peaks.

In general, if we pad a signal record ofN data points withM zeroes, the Fourier
coefficients of the resulting record are given by substitutingM+N forN in equation1.14,
whereu[n] = 0 forN < j < N +M. Parseval’s relation then takes the form

1

N +M

N−1∑
j=0

u2
[j ] =

N+M−1∑
n=0

|ũ[n]|2 (1.31)

However, we do not want the padded zeroes to change the physics of the situation as
expressed by the PSD estimate. By considering Parseval’s relation, we find that the PSD
expression1.19should be multiplied by a factor(N +M)2/M2, so that

Su[n] = 2
(N +M)2

N
|ũ[n]|2/fs (1.32)

is the proper expression for the PSD from a zero-padded signal, evaluated at frequencies

fn =
n

N +M
fs, n = 0, 1, . . . , N +M − 1 (1.33)

If combined with windowing, zero-padding should obviously be applied after the win-
dowing. Otherwise, we would not get the smoothness at the ends of the non-zero part
of the time series which is one of the aims with windowing. Also, the correction factor
1.27for the power loss in the windowing process would be erroneous if the non-zero data
occupied only part of the extent of the window. When combined with extra overlapping
discussed in Section1.3.5above, it results in smooth time-frequency spectra without the
sharply defined squares of Figure1.3.
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Since zero-padding does not provide any new information, just a smoothing of the
spectrum, it is not very useful in most cases. However, in cases where the length of the
time series to be transformed by an FFT algorithm is not an integer power of two, zero-
padding up to the next such number may actually speed up the FFT calculation.

Zero-padding is not the only way of “cheating” by evaluating the signal at more fre-
quencies than the data really allow. Another variant is by what may possibly be called
“continuous Fourier transform”, where one evaluates the DFT defined by1.14at arbitrary
real values ofn < N/2, not just integers. This scheme is rarely used in Fourier analysis,
although it is common in wavelet applications (Section1.4.3).

1.3.7 Welch Method for Time-Dependent PSD Estimation

Applying the techniques above, we get an algorithm for estimation of the time-de-
pendent PSD. Having all the building blocks at hand, we summarise the resulting method
below. This technique is due to and very well described byWelch[1967].

1. Divide the total time series

u[j ], j = 0, 1, . . . , N − 1

of N samples intoM shorter intervals

um[j ], j = p, p + 1, . . . , p + L− 1, m = 0, 1, . . . ,M − 1

of L samples each. The time resolution of the time-frequency analysis will beL/fs.
If there is an overlap ofr points, we havep = mL− r.

2. Divide each of the intervals of lengthL into P segments

uml[j ], j = q, q + 1, . . . , q +K − 1, l = 0, 1, . . . , P − 1

of lengthK. If these intervals overlap bys points,q = p+ l (K−s). A good choice
is s = K/2.

3. Multiply each data segment term by term by a window functionw[j − q], j =

q, q + 1, . . . , q +K − 1.

4. Calculate the DFT

ũml[n] =
1

N

q+K+Z−1∑
j=q

w[j − q] u[j ] exp(2π in(j − q)/K), n = 0, 1, . . . , K/2,

of the windowed time series, preferably using the FFT algorithm.

5. Calculate the PSD estimate, corrected for the windowing:

Sml[n] =
2K

fsWss
|ũml[n]|

2
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6. Average over theP short segments to get a PSD estimate with better variance:

Sm[n] =
2KP

fsWss

P−1∑
l=0

|ũml[n]|
2

7. Sm[n] is our resulting time dependent spectrum, evaluated at frequencies

fn =
n

K
fs

The midpoints of the time intervals are

tm = t0 + (m+ 1/2)
L− r

fs

This scheme is frequently used in applications of spectral analysis, and is conveniently
implemented in many software packages.

If desired for some reason, zero-padding could be put in after step3, in which case
a correction for the padding should be included in step5. If the overlapsr ands are put
equal, all data points except those at the very ends of the total time series will be used
equally much in the analysis.

1.4 Wavelet Techniques

Wavelet analysis is a very rich field of techniques useful for many different applica-
tions, for example data analysis, theoretical electromagnetics, and data compression, as
can be seen in any of the many texts on the subject [e.g.Daubechies, 1990; Kaiser, 1994;
Strang and Nguyen, 1996]. We will here take a narrow-minded approach, only considering
wavelet methods as an alternative to the Fourier methods for spectral estimations. Discus-
sions of this aspect of wavelets can be found in the literature on applications to space data
[e.g.Holter, 1995; Lagoutte et al., 1992].

1.4.1 Morlet Wavelets

In Section1.2.6, we found that the time-frequency plane may in principle be parti-
tioned in many different ways. We now turn to the question of how to actually implement
a partition of the type shown in panel (d) of Figure1.2. The answer lies in wavelet anal-
ysis, which is unlike the traditional Fourier techniques in that it intrinsically relies on a
time-frequency approach. The basic idea of wavelet analysis is to expand a signal in basis
functions which are localised in time as well as frequency, so that they have the character
of wave packets. This places wavelet methods somewhere between the Fourier techniques,
where the basis functions exp(−2π if t) are sharp in frequency but completely spread out
in time, and the pure time series representation, which offers perfect localisation in time
but includes all frequencies3.

3In practice, the basis functions of Fourier analysis are in fact localised in time by the data window, and
the time series is localised in frequency by its finite sampling rate. However, all Fourier basis functions (all
frequencies) are localised in the same time interval, which is not the case in wavelet analysis.
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Figure 1.9: The Morlet mother wavelet, defined by equation1.34, with ω0 = 2π . (a) Real
part. (b) Imaginary part.

From a physical viewpoint, localisation in time as well as in frequency is an attractive
perspective for the analysis of non-stationary signals. In particular, a basis consisting of
localised packets of sinusoidal waves is appealing, as sinusoidal waves are the eigenmodes
of a plasma. For the envelope of the wave packet, a Gaussian is a natural choice. As is
well known from quantum mechanics, a Gaussian wave packet optimises localisation in
both time and frequency as it is the only wave packet for which we get a ‘=’ rather than a
‘≥’ in the uncertainty principleδf δt ≥ 1 [Landau and Lifshitz, 1977, p. 48]. This leads
us naturally to the Morlet wavelet

h(t) = exp(−t2/2) exp(−i ω0 t) (1.34)

As ω0 is a free parameter, equation1.34defines a family of functions. The value ofω0
determines the number of oscillations in a wave packet, and has to be sufficiently large for
1.34to be useful as a wavelet, due to problems with non-vanishing mean value of the real
part. Forω0 = 2π , which we will use here for reasons to be seen later (equation1.36),
this error is negligible in practice. In space plasma applications, our choiceω0 = 2π
has sometimes been used [e.g.Dudok de Wit et al., 1995], althoughω0 = 5 seems more
common [e.g.Holter, 1995; Lagoutte et al., 1992], probably because it is close to the value
π

√
2/ ln 2 ≈ 5.34 originally used byMorlet et al.[1982]. For Morlet’sω0, the amplitude

decreases to half its maximum in one period of the wave.
Many other wavelet families than the Morlets are possible, and several classes can be

found in any text on wavelet methods. For our purpose, which is the study of spectral
properties of non-stationary time series, we take the view that the Morlet wavelet, with its
clear physical interpretation as a modulated sinusoidal oscillation and good properties of
localisation in frequency as well as in time, is the natural choice.

By stretching and translation of a wavelet like1.34, called a mother wavelet, we can get
a whole set of wavelets of the same shape, known as daughter wavelets. It is customary
to denote the stretching and translation by two parametersa and τ known as scale (or
dilation) and translation, respectively. The daughter waveletshaτ (t) are then written as

haτ (t) =
1

√
a
h

(
t − τ

a

)
(1.35)

The concept of scale is used here instead of the concept of frequency, which most often is
associated with sinusoidal functions. However, for the specific case of the Morlet wavelets,
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which are based on sinusoidal functions, it is reasonable to replace the scalea by the
frequencyf = 1/a, so we write the daughter wavelets as

hf τ (t) =
√
f h(f (t − τ)) =

√
f exp

(
−
f 2(t − τ )2

2

)
exp(−2π i f (t − τ)) (1.36)

This explains our choiceω0 = 2π : the Morlet wavelets become Gaussian envelopes of a
carrier wave with frequencyf .

The transformation above ensures that all daughter wavelets will look like their mother
wavelet. Irrespective off andτ , equally many periods of the oscillation will fit into the
packet.

We can now define the Morlet wavelet transform (MWT) of the signalu(t) by

C(τ, f ) =

∫
u(t) h∗

f τ (t) dt (1.37)

In principle, the limits of integration should be±∞. However, as the waveletshf τ (t)
are localised in time, little error is introduced by integrating over a finite time interval.
Finally, by going from integrals to sums in a fashion similar to how we introduced the
discrete Fourier transform in Section1.2.4, we make possible the practical evaluation of
wavelet coefficients.

1.4.2 Wavelets and Fourier Methods

The Morlet wavelets1.36can be written on the form

hf τ (t) = Awτ (t, f ) exp(−2π if t) (1.38)

where

wτ (t, f ) = exp

(
−
f 2(t − τ)2

2

)
(1.39)

and
A =

√
f exp(2π if τ) (1.40)

Hence, the Morlet wavelet transform1.37may be written as

C(τ, f ) = A∗

∫
wτ (t, f ) u(t) exp(2π if t) dt (1.41)

When we discussed the use of window functions for Fourier methods in Section1.3.3, we
only considered sampled time series. However, for a continuous signalu(t) to which we
have applied a window function centred att = τ , denotedWτ (t), the Fourier integral1.3
is

ũτ (f ) =
1

T

∫
Wτ (t) u(t) exp(2π if t) dt (1.42)

Now assume the window function is a Gaussian. Apart from the factors in front of the
integrals, the only difference between equations1.41 and1.42 then is that the window
functionwτ (t, f ) in 1.41 depends on frequency as well as on time, while the window
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Wτ (t) in 1.42 is the same for all frequencies. However, for any frequencyf0, we can
always choose the Gaussian window so thatWτ (t) = wτ (t, f0). At this frequency, it is
possible to interpret the Morlet wavelet transform as a Fourier transform with a Gaussian
window.

This result is useful for our understanding of wavelet methods. It enables us to apply
many results and methods of Fourier analysis also to the wavelet transforms. We list a few
of them here:

1. PSD estimation. The similarity of equations1.41and1.42indicates how to obtain
a PSD estimate with physically meaningful normalisation with wavelet methods
(equation1.43).

2. Phase. We can also construct a wavelet phase spectrum corresponding to the Fourier
phase spectrum1.11.

3. Detrending. Frequency components below the lowest resolvable will affect the
wavelet methods as well as the Fourier methods, so detrending (Section1.3.2) may
be useful.

4. Windowing is obviously inherent in the wavelet transform.

5. Averaging. For a random signal, the wavelet based PSD will also show statisti-
cal fluctuations, which in principle may be quenched by averaging in time, at the
expense of temporal resolution4 (Section1.3.4).

6. Zero-padding is not a useful technique for wavelet analysis, since the zeroes cannot
be padded after the windowing (Section1.3.6) in a wavelet transform, where the
window is implicit in the basis wavelet itself.

For the PSD, by comparing the Morlet wavelet transform1.41 to the Gaussian win-
dow Fourier transform1.42, using the definition1.8 of the power spectral density and
correcting for the window (envelope) by the factorWss defined by1.27, we conclude that
the PSD definition for the MWT which gives PSD values equal to what we find for the
corresponding Gaussian windowed DFT estimate is

SMWT
u (t, f ) =

2
√
π

|C(t, f )|2 (1.43)

With this definition, the PSD values derived from Fourier analysis and wavelet transforms
are comparable, in the sense that the PSD estimates for the shaded squares in panels (c)
and (d) of Figure1.2are equal.

1.4.3 Continuous Wavelet Transform (CWT)

The wavelet transform is based on wave packets where the relation between frequency
and packet width is constant. Hence, it naturally provides a means to implement the oc-
tave band analysis suggested by the division of the time-frequency plane in panel (d) of

4This somewhat unconventional viewpoint is further discussed below in Section1.4.4.
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Figure1.2. As thet-f plane cannot be divided into more rectangles than half the num-
ber of samples in the time series, evaluation of one wavelet coefficient for each of these
rectangles should give a complete description of the PSD.

In practical applications of wavelet transforms to spectral problems, one often evalu-
ates more wavelet coefficients than is actually needed. This is known as doing a continu-
ous wavelet transform (CWT), where the word continuous signifies that we evaluate1.37
at freely chosenf andt . However, one should note that the time-frequency resolution of
the CWT will be as depicted in panel (d) of Figure1.2, even though the CWT may be
evaluated at many points. We cannot get around the restrictions of the uncertainty relation
1.22. ⇒1.1

In the same way, one may also define a continuous Fourier transform, which simply
amounts to extending the definition1.14 to non-integer values ofn = f/fs, and letting
the data windows overlap arbitrarily much. For an inverse transform back to the time
domain, the non-integer values ofn are of course entirely superfluous: no new information
is gained by evaluating the DFT or the MWT for more time-frequency locations thanN/2,
and hence these extra coefficients never enter in an inverse transform. In fact, this sort
of continuous Fourier transform is never used in practice, as it cannot be implemented
with the FFT scheme. If one desires a smoother evaluation of the PSD, zero padding
(Section1.3.6) is used instead.

1.4.4 Comparing WFT and MWT: an Example

An example of a comparison of wavelet and Fourier methods for PSD calculation is
shown in Figure1.10. Panel (a) shows a time series of the electric field sampled at 32 000
samples/s by the wave instrument on the Freja satellite. The data shows lower hybrid
waves of a bursty or modulated character [Eriksson et al., 1994]. Panels (b)–(e) display
different time-frequency spectral representations of the signal in (a). The total number of
samples isN = 13000. The methods used for the spectral estimation all have different
time resolution, and only the time interval for which all yield results is shown. For all the
spectra, the number of displayed bins in the time-frequency plane are much higher than
the numberN/2 which defines the real information content in the spectra (Section1.2.6),
giving a smoother variation in time and/or frequency.

Panel (b) shows a Fourier time-frequency analysis based on averages of eight 64-point
DFTs overlapping by 50%. The effective time resolution therefore is 512 samples or
16 ms, but the PSDs shown are separated only by one sample, giving a smoother time
variation in the plot. As discussed in Section1.3.4, the use of the averaging method is
motivated if we interpret the signal as an almost stationary random process, whose slowly
varying statistical parameters we want to estimate. The result of the averaging is to reduce
the variations between consecutive spectra, and the spectrum is very clean. On the other
hand, the resolution in the time-frequency plane goes down by a factor of eight as indicated
by equation1.29, and little trace of the bursty nature of the time series in panel (a) is
retained.

In panel (c), we show a Fourier-based PSD estimate with the same time resolution (512
samples) as in (a). Here, no averaging has been used, and the effect of random fluctuations
is therefore stronger. This results in larger variations within spectra, as is seen by the
many horizontal structures in the plot. The frequency resolution in (c) is much better than
in (b), and splittings of the spectral peak around 4 kHz can be clearly seen. On the other
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Figure 1.10: A time series (a) with time-frequency spectra obtained by different methods:
(b) Averaged DFT analysis, 64 points, 8 averages. (c) High frequency-resolution DFT
analysis, 512 points. (d) High time-resolution DFT analysis, 64 points. (e) Morlet wavelet
analysis.
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hand, little time variation can be discerned. The modulated nature of the time series is
represented by frequency splittings rather than as time variations, as discussed in the text
on page13and exemplified in Figure1.3.

Panel (d) displays the result of a 64-point Fourier analysis without averaging. Hence,
the frequency resolution is as for panel (b), while the time resolution is much better. Varia-
tions of the amplitude of the time series are now reflected in the time domain, as variations
of the PSD with time. While the structures in (c) were almost horizontal, they are here
fairly isotropic.

Finally, panel (e) shows the PSD based on Morlet wavelet analysis. The modulational
pattern of the signal is represented as time variations of the PSD, as in panel (d). The
structures to be seen in this plot are horizontal at the lowest frequencies (few kHz), and
vertical at higher frequencies (above 5 kHz). This behaviour reflects that in the wavelet
analysis, the time-frequency plane is partitioned as in panel (d) of Figure1.2. This results
in characteristic flame-like patterns in the plot: like the flames in a fire, the horizontal scale
sizes are smaller at the top than in the base. These flame patterns is analogous to the large
variance in PSD estimates by DFT methods, discussed in Section1.3.4. They may very
well reflect the random variations of a stationary process, in which case it may be justified
to remove them by averaging in time. This is not normally discussed in wavelet texts, as
one of the fundamental virtues of wavelet analysis is their usefulness for studying non-
stationary phenomena. However, as such flames will turn up even if analysing a stationary
process like Gaussian random noise, one should be careful not to put too much physical
meaning in their appearance, and sometimes one may consider averaging in time.

All the Fourier-based plots (b, c, d) more or less clearly show a narrow spectral line
near 12 kHz. This component cannot be seen in the wavelet plot (e). The reason for this
is obvious from a glance at Figure1.2. The partitioning of the time-frequency plane in
wavelet analysis is such that all spectral details in the upper half plane (abovefs/4) are
completely lost. In this particular case, the origin of the 12 kHz line is purely instrumental,
so little harm is done by using the wavelet analysis here, but this is certainly not the general
case.

Even though the plots in Figure1.10show continuous transforms evaluated at many
more points thanN/2, we see that the partitions of thet-f plane (c) and (d) in Figure1.2
are inherent to the Fourier and wavelet methods, respectively, looking at the structuring of
spectral detail. Evaluating the PSDs at very many points cannot hide these fundamental
aspects of the methods, since there is no extra information gained by displaying more than
N/2 points in thet-f plane. There is no way to fool relation1.22.

1.4.5 Implementations of the Wavelet Transform

For some wavelet families, there are very efficient computation schemes. For others,
including the Morlet wavelets, there are no algorithms as fast as the FFT routine of Fourier
analysis. Discussions on algorithms can be found in standard texts, but fortunately these
are already implemented in many commercial software packages, including the commonly
used IDL and Matlab (as a separate toolbox), so you should not have to write them all
yourself. Normalisation can be a problem when using such routines, since it is not always
simple to deduce from the documentation what normalisation conventions are used, but
the correspondence between Fourier and wavelet methods discussed in Section1.4.2can
be used to derive formulas like1.43and for checking normalisation.
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1.4.6 Wavelet Packet Analysis

As the wavelet analysis discussed above is based on wavelets with a similar number of
wave periods in the wave packet for all carrier frequencies, it is naturally associated with
the time-frequency partitioning shown in Figure1.2d on page12. However, it may very
well be that the signal consists of a few transient pulses at long time scales, combined with
stable narrow-band emissions at high frequencies. In that case, a partitioning correspond-
ing to turning Figure1.2d upside down could be advantageous. One could also think of
a signal whose natural representation is in some completely unsymmetric division of the
t-f plane, like what we get if we interchange the dashed rectangular areas in panels (c)
and (d) of Figure1.2. In terms of a Morlet wavelet framework, this would correspond to
using basis wavelets1.36with varying values ofω0, i.e. with a varying number of wave
periods fitting into a wave packet.

Schemes for wavelet analysis along these lines are known as wavelet packet analysis
[e.g.Strang and Nguyen, 1996]. This includes automatic search for a best basis, in which
as much signal energy as possible is concentrated into as fewt-f -boxes as possible. This
has mainly found applications for purposes like image compression, but clearly holds an
interesting potential for analysis of space plasma time series. A brief treatment of appli-
cations to geophysics, with references to theoretical work, is included in the review article
by Kumar and Foufoula-Georgiou[1997].

1.5 Spectral Analysis of Multiple Signals

1.5.1 Cross-Spectral Analysis

Cross-spectral analysis of two time series is a means for looking at the relations be-
tween individual spectral components of two data records, usually sampled simultane-
ously. We define the cross-spectral density (CSD) of the two time seriesu[j ] andv[j ],
with DFTs ũ[n] andṽ[n], respectively, by

Guv[n] =
2N

fs
ũ∗

[n] ṽ[n] (1.44)

where∗ indicates complex conjugation. With this normalisation, the PSD becomes a spe-
cial case of the cross-spectral density,

Su[n] = Guu[n] (1.45)

In this chapter, we have confined ourselves to the case whenu andv are signals of
the same kind sampled at different locations, for example by different satellites. Cross-
spectral methods are also very useful for the analysis of several different signals sampled
at one location in space. One then forms a spectral matrix consisting of the cross-spectra
of the signals, whose diagonal elements are the PSDs of the signals. This matrix can then
be used for the study of wave properties like wave normal directions and field polarisation.
A nice example is the classical study byMeans[1972], and one may note that the STAFF
instrument on the Cluster mission implements on-board spectral matrix analysis of five
field components [Cornilleau-Wehrlin et al., 1997]. The multi-spacecraft filtering tech-
nique presented in Chapter3 is a further development, where signals from each of several
measurement locations are included.
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Unlike the PSD, the cross-spectral density1.44 of real signals will in general be
complex-valued. One introduces the coincident spectral densityCuv and the quadrature
spectral densityQuv as the real and imaginary parts ofGuv, respectively:

Guv[n] = Cuv[n] + iQuv[n] (1.46)

The phase of the cross-spectral density is defined by

Guv[n] = |Guv[n]| exp(iϕuv[n]) (1.47)

so that

tanϕuv[n] =
Quv[n]

Cuv[n]
(1.48)

By considering the definition1.11of the phase spectrum of a single signal, it follows that

Guv[n] = |Guv[n]| exp(iϕuv[n]) = |ũ[n]| |ṽ[n]| exp(i{ϕv[n] − ϕu[n]}) (1.49)

Therefore, the phase of the cross-spectrum is the phase difference between the two signals.
To see the physics of the coincident and quadrature spectral densities defined by1.46

above, we note thatCuv = |Guv| cosϕuv andQuv = |Guv| sinϕuv. ThusCuv andQuv

represent the in-phase and out-of-phase contributions from the two signals to the total
CSD. A simple example is the case wherev is the voltage variation (in volts) in some sys-
tem andu is the current in the same system (in ampères). In this case,Cuv andQuv are the
spectra of effective and reactive power, respectively, in watts per hertz5. The impedance
spectrum isZ[n] = Guv[n]/Sv[n] (in ohms), where the real partR[n] = Cuv[n]/Sv[n] is
the resistance spectrum, while the imaginary partX[n] = Quv[n]/Sv[n] is the reactance
spectrum, with contributions from the inductive and capacitive reactance spectra.

The implementation of cross-spectral methods by Fourier methods is straightforward.
In addition, high-level data processing packages like IDL and Matlab include functions
for phase spectra, coherence and other cross-spectral quantities. The application of cross-
spectral analysis to space plasma data will be exemplified in Section1.5.3. Before that,
we must have a look at how to implement the definitions of the cross-spectral quantities
and interpret the results.

1.5.2 Averaging and Coherence

From the definitions above, it is clear that as soon as we have the Fourier transforms
of two signals, we can calculate a phase spectrum. However, just doing so and using the
result to find for example a wavelength spectrum is not always a good idea. First, if we just
consider the phase spectrum, there is obviously no information on signal strength in it, so
frequencies with a clear signal are treated in the same way as frequencies only containing
instrumental noise. Therefore, it is necessary to compare the phase spectrum to the CSD
magnitude or to the PSDs of the signals, to see that there really is significant signal strength
at the frequencies we are considering.

Second, how do we know that there really is any relation between the two signals at
the frequency we are considering? The definitions above allow us the possibility of always

5Conventionally volt-amp̀eres per hertz for the reactive power.
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calculating the phase spectrum, irrespective of any causal relation between the signals. In
the case of a stationary process, one can define a coherence spectrum,

γ 2
uv[n] =

|Guv[n]|
2

Su[n] Sv[n]
(1.50)

which is useful in this context. At first this may seem strange: from the definition ofGuv
1.44and the relationSu = Guu 1.45, one may conclude thatγ 2

uv[n] ≡ 1, regardless of
the signalsu andv. This is certainly true, unless the spectral estimatesGuv, Su, andSv
are calculated using the averaging method of Section1.3.4. If averaging is included in the
calculation of the spectral densities, the value ofγ 2

uv can end up anywhere between zero
and one. As the denominator in1.50is positive, the coherence is essentially determined
by the constancy of the phase of the numerator, i.e. by the stability of the phase spectrum
ϕuv[n]. If, for a certain frequencyfn, the phase spectrum changes rapidly between the
segments included in the averaging process, the averagedGuv for this frequency can take
any complex value. In the case of random phase fluctuations and sufficiently many av-
erages, the value of the coherence will come close to zero. The coherence function1.50
therefore indicates the stability of the phase spectrum estimate. A low value of the coher-
ence at some frequency implies that the phenomenon behind the phase spectrum estimate
at this frequency cannot be considered correlated between the two measurement points and
stationary in time. Hence, a usual prescription for cross-phase methods is to include aver-
aging in the calculation and only use points which turn out to show values ofγ 2

uv higher
than some threshold value.

It is important to note that the coherence concept is meaningful only for stationary
signals. Still, the phase concept may be useful also for non-stationary signals, for example
a wave packet seen only briefly in the spacecraft frame. If we have some reason to believe
that there is a relation between two signalsu andv, it is perfectly legitimate to examine
their cross-spectrum even if the observation time is so short that no averaging and hence no
coherence estimate can be done. This is the situation we encountered on page20, where
we discussed averaging. If we interpret our signals as produced by a stationary random
process, averaging is useful, and the coherence spectrum is appropriate for determining
the quality of the phase spectrum. On the other hand, if we interpret the signals as a
unique record of some non-stationary phenomenon, averaging and hence the coherence
function are irrelevant concepts. In this case, one must resort to other means for judging
the reliability of the phase spectrum. Checking the signal intensity from the PSD or CSD
is an obvious approach. It may also help to inspect the phase spectrum itself: if it is
fairly smooth, its interpretation is safer than if it is wildly and randomly fluctuating with
changing frequency.

For non-stationary signals, it may also be a good idea to use wavelet rather than
Fourier methods as a basis for the cross-spectral analysis. We return to this question in
Section1.5.4.

1.5.3 Cross-Spectral Analysis: an Example

As a simple example of the use of cross-spectral analysis in space applications, we
show an analysis of Langmuir probe current data from the Freja wave instrument in Fig-
ure 1.11. Panel (a) shows the relative variations of the currentδI/I collected by two
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Figure 1.11: Langmuir probe data from the Freja wave instrument illustrating the use of
cross-spectral analysis. All spectra calculated using averaging of five 256-point DFTs
with 128 point overlap. (a) Time series of probe current fluctuations from two probes,
sampled at 4 ksamples/s. (b) Power spectra of the P5 (solid) and P6 (dashed) signals. (c)
Relative phase spectrum. (d) Magnitude of cross-spectral density. (e) Coherence spectrum.
(f) Relative phase spectrum coded by CSD magnitude. Circles:|CSD| > 10−7 Hz−1.
Crosses: 10−8 Hz−1 < |CSD| < 10−7 Hz−1. Dots: |CSD| < 10−7 Hz−1. (g) Relative
phase spectrum coded by coherence. Circles:γ 2 > 0.75. Crosses: 0.5 < γ 2 < 0.75.
Dots:γ 2 < 0.5.
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positively biased spherical probes P5 and P6 mounted on 5.6 meter booms at opposite
sides of the spacecraft. The curves have been shifted along the ordinate in order to sepa-
rate them. These two time series thus constitute a multipoint measurement in space. The
two curves are obviously very similar.

Figure1.11(b) shows the power spectra of the twoδI/I signals. As expected, they are
very similar, both showing a decay with increasing frequency. The phase and amplitude
of the CSD are shown in panels (c) and (d), respectively, and the coherence as defined
by 1.50 is plotted in panel (e). As the spectra in (b) are similar to each other, it is not
surprising that (d) looks about the same as well. The coherence spectrum in (e) shows a
decay with frequency reminiscent of the power spectra, although there are some coherence
peaks at higher frequencies. Panels (f) and (g) show the phase spectrum again, this time
with different symbols used for plotting values corresponding to different ranges of CSD
andγ 2 (see caption).

For multipoint measurements, an important feature of the phase difference is that it
provides information on wavelengths. Consider a wave field varying as exp(i[k x − ω t]).
Measurements at two points separated by a distanced will have a phase difference

ϕ = k d (1.51)

which can be revealed by a cross-spectral analysis. Knowing the separation distance, the
wave numberk and hence the wavelength of the wave would be known. In the case of
Figure1.11, the points with high CSD and coherence at low frequencies in panels (f) and
(g) lines up around a lineϕ = a f = a′ ω, wherea ≈ 440◦/kHz ≈ 7.7 · 10−3 rad/Hz
which givesa′

≈ 2.4·10−3 s. Comparing this to the predicted phase difference1.51using
the known probe separationd = 11.2 m, we find that this corresponds to a phase velocity

vφ =
ω

k
=
d

a′
≈ 4.6 km/s (1.52)

along the line of probe separation in the reference frame of the spacecraft. In this case,
the satellite speed was 6.1 km/s and the angle between the probe separation distance and
the spacecraft velocity was 40◦, so the observed behaviour simply reflects the satellite
flying through essentially stationary structures in the plasma. However, the principle for
the calculations would be the same also for travelling waves, and the method have been
used for several successful measurements of wavelengths in space. For further examples
and discussions we refer to the review byLaBelle and Kintner[1989], to the application
papers by for exampleHolmgren and Kintner[1990] or Vago et al.[1992], and to the
interesting extension of this method to the estimation of frequency-wavenumber spectra
by Beall et al.[1982].

1.5.4 Cross-Wavelet Analysis

Cross-spectral analysis does not have to be based on Fourier methods. The Morlet
wavelet analysis discussed in Section1.4 is also possible to use for phase spectrum esti-
mations, which can be advantageous for non-stationary processes. This approach has quite
recently been applied to frequency-wavenumber spectral estimation in space plasma data
by Dudok de Wit et al.[1995] andPinçon et al.[1997].

The advantage of wavelet methods is in fact more pronounced for the study of phase
spectra than for the PSD estimations we discussed in Section1.4. The reason for this is
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that while the PSD is a positive definite additive quantity for which averaging is useful,
the phase spectrum can have all signs, and the average of a changing phase has no physi-
cal meaning. The phase estimates we get from a Fourier implementation of cross-spectral
analysis is based upon some fixed time interval, equal for all frequencies. Hence, these es-
timates are based on a few wave periods for a low frequency wave, but many wave periods
for an oscillation at higher frequencies. We thus intrinsically put higher demands on the
phase stability of waves at higher frequencies as compared to low-frequency fluctuations.
For PSD estimates, this is no fundamental problem. Estimating the power of a changing
signal simply gives the mean power in the time interval in question.

To illustrate this, we consider the idealised example in Figure1.12. One artificial data
record (dashed) consists of unit amplitude sinusoids at 0.1 Hz with some added noise, sam-
pled at 1 sample/s. The other record (solid) is similar, but with a 180◦ phase shift halfway
through the interval. The total interval of 192 points is divided into five overlapping 64
point sections, which are Hamming windowed before DFT analysis. The averaged PSDs
over these five sections are shown in panel (b). The fact that one of the signals is not
stationary and changes its phase during the interval does not change its PSD (solid curve)
very much, although there is some broadening. Panels (c) and (d) show the phase and the
amplitude of the CSD, and panel (e) the coherence spectrum. It is seen that the coherence
at the signal frequency 0.1 Hz is very low, as it must be due to the changing phase of one
of the signals. Finally, panels (f) and (g) show the phase spectra based only on the first and
last 64 points of data, respectively. These tells us the true story: the phase at 0.1 Hz is 0 at
the beginning of the record and 180◦ at the end.

If the signal to be analysed by cross-spectral methods is non-stationary but still narrow
in its frequency content, a Fourier approach may work well. One then divides the time
series into records of a length corresponding to a few periods of the dominant component,
and can then keep track of the changing phase. However, if the non-stationary signal con-
tains a wide range of frequencies, a Fourier based cross-spectral method is unlikely to pro-
vide useful phase information over all the frequency spectrum. A wavelet implementation,
using wavelet coefficients1.37 instead of the DFT in the definition of the cross-spectral
density1.44is then likely a better choice. This unavoidably means losing spectral detail at
high frequencies, as the wavelet decomposition of course gives less frequency resolution
at high frequencies than does its Fourier counterpart.

1.6 Parametric Methods

The fundamental idea of these methods, which have names like AR (autoregressive),
MA (moving average), and ARMA, are to estimate the power spectrum of signal by esti-
mating the parameters of a model for the time series of the signal. Parametric methods are
akin to the Fourier techniques in the sense that their division of the time-frequency plane
is similar, but otherwise quite different in spirit. These methods may very well dominate
in modern textbooks on spectral analysis [e.g.Brockwell and Davis, 1987; Kay, 1988;
Marple, 1987], and sometimes one will hear that these methods gives “better” spectral es-
timates than classical Fourier methods. It is important to realise that this is true only if the
process we are studying really is of the kind assumed in the parametric model. To illustrate
this point we will briefly discuss one of the best known and most used approaches, the AR
method of spectral estimation, which for a Gaussian random process is equivalent to the
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Figure 1.12: Synthetic signals with non-stationary relative phase, and cross-spectral anal-
ysis of these. autoregressive spectral methods. (a) Time series. (b) PSDs of the time series.
(c) Phase spectrum based on the full record. (d) CSD of the full time series. (e) Coher-
ence spectrum. (f) and (g) Phase spectra based on first and last thirds of the data record,
respectively.
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maximum entropy method (MEM) [Ables, 1974].
An AR model of orderp models the time series as autoregressive, which means that

the sampleu[j ] is a linear function of the preceding samples:

u[j ] =

p∑
k=0

a[k] u[j − k] + η[j ] (1.53)

whereη[j ] represents uncorrelated noise. An AR model therefore is appropriate for a
linear dynamical system. As linear systems are completely described by a set of eigen-
modes with well defined frequencies, AR spectral estimation is good at representing spec-
tra where the energy is concentrated in sharp peaks. Hence, if we have a situation where
we have reason to expect well-defined eigenfrequencies, an AR algorithm is a good choice.
For the type of problems facing the physicist studying processes in a turbulent space
plasma, this is a rare case. Consider the example in Figure1.13. A model PSD with a
broad maximum superposed on a 1/f spectrum,

S(f ) =
1

f
+ 30 exp

(
−

(
f − 0.2

0.05

)2
)

(1.54)

was used for creating the time series in panel (a) as described in Section1.2.3with random
phase spectrumφ[n]. In panel (b), two sinusoids with amplitude 5 and frequencies 0.10
and 0.31 have been added. Panels (c) and (d) shows the model spectrumS(f ) (dashed)
together with the spectral estimates by the Welch method (averaged and windowed DFT)
and an AR method withp = 10. The Fourier estimate is the ragged curve which lies al-
most on the dashed model curve, while the smoother AR estimate mostly lies below. The
advantage of the AR method is that it represents the two sinusoids in Panel (d) as narrow
lines. However, if we are interested in anything else than these discrete frequencies, the
Fourier method estimate clearly is better. The AR estimator tries to represent all spec-
tral features by narrow peaks, including the broad peak around frequency 0.2 and the 1/f

spectrum at low frequencies. When studying plasma processes in space, we are generally
interested in the full spectrum, and the AR method is therefore usually not optimal. The
same can be said for the application of other parametric spectral methods, although there
of course are exceptions. An example where parametric methods indeed are appropriate is
the search for signatures of solar eigenoscillations in the solar wind plasma byThomson
et al. [1995]. The solar oscillations are small-amplitude eigenmodes of a system not much
perturbed by its environment, like a ringing bell, and hence it is reasonable to expect that
the signatures of these oscillations can be described as an AR process. The eigenfrequen-
cies carry information on the sun, and estimating them as exactly as possible is a task not
suited for the Fourier and wavelet methods we emphasise in this chapter.

1.7 Final Comments

When doing spectral analysis of time series data from several spacecraft, two funda-
mental approaches suggest themselves. The first is to apply spectral analysis to the time
series from each spacecraft separately, and then compare the spectral data. This is ap-
propriate for the study of how processes on a much shorter length scale are modulated
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Figure 1.13: Synthetic signal and spectra calculated with Fourier and autoregressive spec-
tral methods. (a) Signal constructed from the spectrum1.54. (b) Two sinusoids at frequen-
cies 0.10 and 0.31 added. (c) True spectrum of the signal in (a) (dashed), AR estimate
(solid, sharply peaked) and DFT estimate (solid, following the dashed line). (d) As (c) but
for the signal in (b).

at larger scales. The alternative approach, of an intrinsical multipoint nature, is to do
spectral analysis of time series from two or more spacecraft together. The cross-spectral
techniques described above in Section1.5 belong to this class of methods, suitable for
studying physical phenomena whose shortest spatial scale is on the order of the spacecraft
separation distance. For another prime example of such a method, we refer the reader to
thek-filtering technique described in Chapter3 of this book.
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Rönnmark, K., Quantitative methods for waves in space plasmas,Space Sci. Rev., 54,
1–73, 1990.

Strang, G. and Nguyen, T.,Wavelets and filter banks, Wellesley-Cambridge Press, Welles-



42 1. SPECTRAL ANALYSIS

ley, MA., 1996.
Theiler, J., Eubank, S., Longtin, A., Galdrikan, B., and Farmer, J. D., Testing for nonlin-

earity in time series: the method of surrogate data,Physica D, 58, 77–94, 1992.
Thomson, D. J., Maclennan, C. G., and Lanzerotti, L. J., Propagation of solar oscillations

through the interplanetary medium,Nature, 376, 139–144, 1995.
Vago, J. L., Kintner, P. M., Chesney, S. W., Arnoldy, R. L., Lynch, K. A., Moore, T. E.,

and Pollock, C. J., Transverse ion acceleration by localized lower hybrid waves in the
topside auroral ionosphere,J. Geophys. Res., 97, 16 935–16 957, 1992.

Welch, P. D., The use of fast Fourier transform for the estimation of power spectra: A
method based on time averaging over short, modified periodograms,IEEE Trans. Audio.
Electroacoust., AU-15, 70–73, 1967.



Reprinted fromAnalysis Methods for Multi-Spacecraft Data
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2.1 Introduction

Space plasma physics data is almost entirely in the form of time series, and its analysis
involves the manipulation of these time series. The sampling of each data set is synchro-
nised with either some onboard clock, or the local spacecraft spin clock: and no two of
these clocks will be synchronised. The comparison of non-synchronised time series data
is thus fundamental to space physics. This is especially true for Cluster, as the purpose of
this mission is to compare data from four different spacecraft.

If two time series are plotted one next to the other for visual comparison, then there
is no problem. But as soon as they are correlated in any other way, it is essential that
they be time-synchronous. For example, it may be thought useful to produce a scatter
plot of observablex against observabley; but this clearly makes sense only ifx andy are
sampled simultaneously. In reality, the sampling ofx andy will generally fall into one of
the following categories, withx andy sampled:

1. At different times with respect to a common clock, so that there is a constant offset
in the time of sampling.

2. At different rates, but synchronised to the same clock. Then one sampling rate will
be a rational fraction of the other.

3. In synchronisation with different clocks (e.g., on different spacecraft), so that there
is no time synchronisation at all. The time difference between the successive sam-
ples ofx andy grows regularly, without limit.

4. Both sampled at different rates, and synchronised to different clocks.

Clearly it is pointless to produce a scatter plot if the time offset falls into any the latter three
categories. Even for category 1, the quality of the scatter plot may be seriously degraded.

Time synchronisation of segments of two (or more) time series is even more important
prior to numerical comparison, such as cross-correlation or the calculation of the cross-
spectrum. This also applies to the determination of spatial gradients, the primary objective⇒2.1
of the Cluster mission (see Chapters12 through13of this book).

The adjustment of a segment of time-series data set to produce a segment of data which
is scientifically equivalentbut with data sample timing strictly simultaneous with that of
another data set is called “resampling”. In this chapter we set out the basic terminology,
the scientific issues, and the functions which are associated with resampling.
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Data acquisition • • • •
τ τ τ ττ τ τ τ

• •
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Data gap

Time tags • • • • • • • •
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T1 T2 T3 T4 T5 T6 T7 T8

Figure 2.1: The various time tag-related parameters. In this illustration,τ = 1T/2 so that,
unless the input signal was filtered before being sampled, the sampling factor iss =

1
4.

This chapter was originally motivated by the work done by the authors respectively
for the data analysis system used by the Cluster Wave Experiment Consortium, and for
the UK Science Analysis System. The authors are not aware of any specific treatment of
the topics in this Chapter, but good general texts can be found amongst the references to
Chapter1. Note that resampling is discussed in a different context in Chapter9, page233.

2.2 Definitions

Most of the general terms used in this chapter are commonplace, but it is nevertheless
useful to begin by recording a number of time-related concepts and definitions, some of
which are illustrated in Figure2.1.

1. Data Set, also called a time series data object. This is a set of values for a quantity
X associated with timeT , i.e., the set(Ti, Xi), plus the metadata relating to both
X andT . In other words, it includes all the information essential to be able to use
the data. Note that the time tags do not necessarily have to be specified for each
separate datum, it is enough to provide a method of obtaining the time tag of each
individual datum.

In this paper we are concerned mainly with the time-series aspects of the data set;
but the metadata will be mentioned briefly in Section2.7.

2. Datum. theXi ’s represent values of a particular data quantity, which could be a
scalar, vector, array or other form/collection of values. In this chapter, we shall
represent all such quantities by a singleXi , without any explicit naming of the com-
ponents thereof. Some operations, e.g., frame rotation, require specific types of data
object. Each datum has associated with it metadata, including units, reference frame
(for vectors and tensors), etc.

3. Time Tag. The timesTi are known as time tags. EachTi tags a particular value
Xi with a unique time to which that value is associated. The time tag could be the
start, the middle, or the end of the interval over which measurement was performed
to produceXi . The tagging convention used in this chapter (and for Cluster) is that
Ti is the middle of the interval. The format and units of theTi must be established.
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Note that at present there is no recognised unique standard convention for either
time tagging or for the time format.

4. Sample Interval. The interval 21T is defined as thenominal interval between
successive time tags. It is nominal in the sense that a single value is assumed to
apply across the entire time covered by the time series. This sample interval is
required in order to distinguish genuine data gaps (see Section2.6.6) from regularly
but sparsely sampled data. (For Cluster Prime and Summary Parameters,1T is held
in the CDF variable “Half-Interval”.)

Some data sets may have irregularly spaced data samples. Then each data sample
must be individually time-stamped. Treatment of such data objects is discussed in
Section2.6.7.

5. Sample Duration.

The sample duration 2τ defines the duration over which the measurement was made
to determine the value ofX. Thus, the datumXi relates to measurements made
during the time interval

Ti − τ ≤ t ≤ Ti + τ

The half-sample durationτ may be related to either the half-interval1T of the time
tags or an averaging/integration interval used in determining/measuringXi . Note in
particular thatτ can be less than1T as illustrated in Figure2.1, e.g., if the quantity
is not continuously sampled, or greater than1T , e.g., when a sliding boxcar average
is performed. Also, the averaging may correspond to strictly linear integration as
when counting particles, or may follow some other law, as when filters are placed
before an analogue to digital converter.

6. Data Gap. A data gap is a time interval within which a time-tag and datum is
expected, but for which there is no entry in the time series. The data gap extends
over the interval defined by

Ti +1T < t < Ti+1 −1T

7. Sampling Factor. The sampling factors is the ratio of the Nyquist frequency to
the highest spectral frequency component present in the data. Its importance is
explained in Section2.5. It is a “rule-of-thumb” parameter which nevertheless is
very useful to describe the information content of the data:s < 1 (under-sampling)
highlights that particular care is required when interpreting the data, while a value
s > 1 (over-sampling) defines the effective upper frequency limit of any time-series
analysis (Fourier transformation, correlation or wavelet analysis, etc.), which may
be usefully performed.

The value of the sampling factor is determined by considerations which may be
experimental (pre-digitiser anti-alias filtering), intrinsic to the data set (e.g., orbit
data), or due to data processing (numerical filtering). In particular, the sampling
factor may be changed when data sets are resampled; this described in Section2.6.5.
Its importance for data analysis is explained in Section2.8.1.
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2.3 Time-Domain Operations

In this section we describe briefly the different time-domain operations which can be
performed on a data set. Some of these operations are described in greater detail later.

Note that in all these operations vector (and higher dimensional object) propertiesmust
be preserved, either by applying any algorithm simultaneously to all components, or else
by decomposing and then recomposing the separate components.

1. Resampling. Resampling of a data set consists formally of interpolating a time
series(Ti, Xi) onto a set of time tags(tj ) whose sample interval is 21t to produce a
set of values forX at timestj . We will call tj thetargettime tags. The interpolation
is performed using one of many possible algorithms, some of which are described
in the next section. Thus

(tj )

(Ti, Xi)

}
→ (tj , χj ) (2.1)

where theχj ’s are the interpolated values of theXi ’s.

As already mentioned, resampling of data is generally required when data comes
from different sources. In particular, it is required:

• To compare any two data sets which are sampled at different frequencies, and
in particular to compare high resolution data with summary data.

• To compare data from the different spacecraft, because their sampling is not
synchronised.

• To compare spin-synchronous and clock-synchronous data from one space-
craft.

• To compare satellite data with ground-based data and with data from other
spacecraft.

2. Joining. The joining of two data sets is the operation of resampling one data set
onto the time tags of the other data set, then presenting the two data sets together
using a common set of time tags. By repeating this process, several data sets may
be joined onto a common timeline.

Joining is the operation required for correlative data analysis.

3. Merging. When two data sets are merged both time lines are retained, and are
simply put into a common format on a single file. Joining is different, because it
places all the variables onto a single time line. Merging and joining are equivalent
for two data sets already on the same time line.

4. Concatenation. This is the production of a single data set from two separate and
consecutive data sets. Whereas joining concerns data from different sources ac-
quired during the same time interval, concatenation concerns data from the same
source for different, contiguous, time intervals. Concatenation is required:

• To produce files which are continuous over different segments of the source
data files: typical examples are continuity over midnight, or over the end of a
year.
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In this chapter we are primarily concerned with resampling and joining. Merging
and concatenation are more straight-forward (and may employ resampling if required),
although the treatment of the metadata may require care to ensure its applicability over the
entire dataset.

2.4 Algorithms

The following basic techniques for joining data sets can be identified. Proper imple-
mentation requires consideration of the sampling factor, and is deferred until Section2.6.

1. Fuzzy join Provided that|Ti− tj | ≤ 1Ttol where1Ttol is the tolerance allowed, this
selects the value ofTi closest totj , and setsχj = Xi . Typically1Ttol = τ+1t , i.e.,
the interval over which the measurement is valid must overlap the output time tag
interval. That isTi±τ must overlaptj ±1t . Suitable recovery needs to be provided
if this criterion is not satisfied, probably by treating it as a data gap (see below).
Note that if the original time series measurements are valid for only a portion of the
original time tag interval, i.e., 2τ < Ti+1 − Ti , this fuzzy algorithm can fail to find
a validχj even if there is no data gap in the original time series. Another logical
choice for1Ttol is therefore1Ttol = 1T + 1t , which fails only at genuine data
gaps.

2. Linear interpolation This algorithm interpolates linearly the data corresponding to
the two nearest time-tagsTi . Thus, findi such that

Ti ≤ tj ≤ Ti+1 (2.2)

then

χj = Xi +

(
tj − Ti

Ti+1 − Ti

)
(Xi+1 −Xi) (2.3)

3. (Cubic) Spline Interpolation As above, but use a spline algorithm.

4. Boxcar AveragingDefine a “boxcar” of width 21Tbox. Then

χj = 〈Xi〉box (2.4)

where〈. . .〉box denotes an average over alli’s satisfying

tj −1Tbox ≤ Ti ≤ tj +1Tbox (2.5)

This algorithm is useful if the original time series has higher time resolution than
the desired time tags. For reasons explained in Section2.6.2, the relation

1Tbox ≥ 21t

must be satisfied, preferably close to the condition of equality so as to optimise the
sampling factors.
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5. Weighted averageLinear interpolation is performed using a least-squares fit to the
number of data points appropriate to the sampling interval of the new data set. The
advantage over boxcar averaging is that this method allows account to be taken
of the time at which the pre-averaged data points were acquired. This can make
the averaged data resemble more closely data acquired, for example, from a sensor
sampled using an analogue anti-alias filter. An analogue filter will generally produce
an output which is an average with more weight attached to the input signal near the
end of the sample duration than near the start. Weighted averaging allows a similar
effect to be simulated when averaging high resolution data ready for comparison
with lower resolution analogue-filtered data.

Methods2 and3 are used for increasing the time resolution of the data, and4 and5
for reducing it. Except for the fuzzy join which is so simple that it can only be accepted or
be rejected, all these methods may be applicable, according to the circumstances. Exami-
nation of the scientific aspects of resampling in the following section shows that:

1. When the data sample interval is increased by a large factor, boxcar averaging is⇒2.2
suitable provided that adjacent boxcars overlap in time by at least 50%.

2. When the data sample interval is reduced, linear interpolation is suitable. ⇒2.2

3. When the data points are essentially shifted in time (for example, to synchronise
two data sets with nearly the same sample period), the situation is more delicate.
Linear interpolation of one of the data sets using only the two data points with
time-tags nearest to the target time-tag leads to modulation of the spectrum of the
resampled signal at the beat period. Use of a Bartlett window avoids this problem,
but nevertheless changes the spectrum of the signal at frequencies approaching the
Nyquist frequency.

These different procedures are described further in Section2.6.

2.5 Aliasing, Filtering and the Nyquist Frequency

The dictionary defines “sample” as “a small portion to show the quality of the whole”.
When a time series is sampled, the resulting series of data samples clearly contains less
information than the original, and it is important to understand what information has been
lost during sampling, and how it has been lost. Of fundamental importance in this respect
is theNyquist frequency, which is defined as half the sampling frequency,fN = fs/2 =

1/(41T ), of the corresponding data set.
At the risk of repeating what is well-known, consider two signalsx1(t) = cos 2π(fN−

f )t andx2(t) = cos 2π(fN+f )t , both sampled instantaneously at timestn = 2n1T . The
samples at timetn are identical,x1(tn) = x2(tn) = (−)n cos 4πnf1T . Thus any spectral
component with frequencyf betweenfN and 2fN is “folded back” into the spectrum to
appear at frequencyfN − f . Similarly, frequencies in the range 2nfN < f < (2n+ 1)fN
are shifted, and between(2n + 1)fN < f < (2n + 2)fN are shifted and folded, into
the range 0< f < fN . The effect is illustrated in Figure2.2, which is for an input
waveform which is a continuous function of time, as in the case of an analogue signal
prior to digitisation.
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Figure 2.2: This figure shows how frequencies above the Nyquist frequencyfN (dashed)
appear shifted and/or folded back to within the frequency range 0≤ f ≤ fN (solid
curves). For the purpose of illustration we have used a Gaussian power spectral distribution
of width

√
2fN , for which exactly 50% of the overall spectral power is aliased.

This shifting of higher frequencies so that they appear at frequencies below the Nyquist
frequency is the well-known phenomenon of aliasing. It is the process by which the in-
formation content is reduced: all frequency components above the Nyquist frequency are
shifted, and possibly folded back, to lie one on top of the other. This not only reduces the
information content: it also makes the data well-nigh totally useless for spectral analysis
(but see Section2.8.1). Therefore, before being sampled, the data must be filtered to atten-
uate all but one of the frequency intervalsnfN to (n+1)fN until all significant out-of-band
signals are reduced to a negligible level. Normally the valuen = 0 is chosen, but this is
not essential; it is, however, the only case considered here. Filtering above the Nyquist
frequency should eliminate the dashed curve in the example of Figure2.2to leave only the
uppermost continuous curve. A real filter will not have a precise cutoff, but a characteristic
roll-off over a finite range of frequency; this roll-off should be chosen to obtain adequate
rejection at frequencies above the Nyquist frequency.

Aliasing occurs whenever the sampling frequency is reduced, that is, whenever the
interval between successive data samples is increased. In particular, it is associated with:

• the sampling of an analogue signal necessary to transform a physical sensor output
into digital form, and

• the resampling of digital signals, which is the subject of this chapter.

To minimise the effects of aliasing, the data should be filteredbefore the sampling fre-
quency is reducedso as to remove any frequency component above the Nyquist frequency
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fN of the resampled data. This anti-aliasing filter will be analogue prior to digitisation, or
digital prior to resampling.

2.5.1 The Sampling Factor

We define thesampling factors to be the ratio of the Nyquist frequency to the cutoff
of the anti-aliasing filter used before the data was sampled or resampled. This filter will
be either analogue or digital, depending upon whether the input data is analogue or digital.
As mentioned in Section2.2, s is approximately the ratio of the Nyquist frequency to the
highest frequency present in the data.

The sampling factor is only a “rule-of-thumb” indicator of the data quality; it indicates
the “information density”, but it does not describe the characteristics of the anti-aliasing
filter. Some filters, such as analogue filters, or the Gaussian digital filter (page55) do not
have a well-defined cutoff. Note that more than one anti-aliasing filter may be involved:
for example, one for the analogue-to-digital conversion, and a second one for subsequent
numerical filtering; but in this case the second filter, provided that its filter factorq (see
below) is sufficiently large, will dominate in the determination ofs. The sampling factor
is an essential guide to what can, and what can not, be done with the data, as will be
explained in Section2.8.1. As a general rule digital data should be produced with a value
of s as close to unity as possible. But the primary purpose of resampling of data is to
facilitate comparison with other data, and so it may well change the value ofs.

2.5.2 Analogue to Digital Conversion

Although it is not really the subject of this chapter, it is instructive to consider ana-
logue to digital conversion. Some experiments, for example wave experiments, can use
analogue anti-aliasing filters to smooth the data before it is digitised; thus the problem can
be completely mastered. For other experiments, such as particle experiments, this is not
so easy. Very often the best that can be achieved is linear integration, or boxcar averaging,
over an interval of time 2τ . In the frequency domain, the effect of this convolution in the
time domain is to multiply the spectrum by

F(f ) =
1

2τ

∫ τ

−τ

e2π if tdt =
sin(2πf τ)

2πf τ

The first zero of this function occurs at frequencyf0 = 1/2τ . The conditionf0 ≤ fN
already requiresτ ≥ 21T , which is often impracticable; and even when possible, the
resulting protection against aliasing is rather mediocre due to the sidebands ofF(f ). As-
suming a white spectrum for the measured signal, the fractional contribution of aliased
signals to the total power of the fluctuations is:∫

∞

1/(41T )
F 2(f )df

/∫
∞

0
F 2(f ) df =

2

π

∫
∞

1/(41T )
F 2(f ) df

(using
∫

∞

0 F 2(f )df = π/2). Values of this ratio for different values ofτ/1T are given
in Table2.1.

The values ofs are only approximate, because the definition ofs is somewhat impre-
cise. In Table2.1we have assumed that the “highest” frequency present isf0 = 1/2τ , the
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ratio τ/1T 1/2 3/4 1 2 3 4 5
aliased power 53.3% 35.3% 22.6% 9.5% 6.6% 4.6% 3.6%

sampling factor 1/4 3/8 1/2 1 3/2 2 5/2

Table 2.1: Characteristics of a boxcar window. For different values ofτ/1T are tabulated
the sampling factors, and the total aliased (out-of-band) power for a white noise input
signal.

first zero ofF(f ). This is plainly incorrect; forτ = 21T , we haves = 1, but nevertheless
9.5% of the power is from aliased out-of-band signals.

2.5.3 Resampling and the Reduction Factor

The same phenomenon of aliasing occurs when the sample rate of a digital signal is re-
duced. For example, if the sampling frequency (number of samples per second) is reduced
fromFs tofs , the new Nyquist frequency isfN = fs/2 and any spectral information in the
original signal betweenfN andFN (including undesirable signals present due to earlier
aliasing, for example, during analogue to digital conversion) is aliased into the frequency
range belowfN . As before, frequencies between 2nfN and (2n+1)fN are shifted, and
frequencies between (2n+1)fN and (2n+2)fN are folded and shifted, into the frequency
range 0 tofN .

For a digital signal the power spectral density is not defined at frequencies above the
Nyquist frequency. The figure equivalent to Figure2.2 for a digital input would show
the input power spectral density (the dotted line) to be identically zero above the Nyquist
frequencyFN of the input signal. The ratio of the input to output Nyquist frequencies is
precisely the ratio of the input to output sampling frequencies,FN/fN = Fs/fs = r. We
call the ratior the reduction factor. In terms of the sample interval,r = 1t/1T . Thus,
the volume (number of data points) of the data set is multiplied by a factor of 1/r.

2.5.4 Filtering and the Filter Factor

Clearly whenr > 1 numerical anti-alias filtering of the input data setXi is required to
remove spectral components at frequencies above the Nyquist frequencyfN = 1/(41t)
of the time tagstj . We define thefilter factor q as the ratio of the Nyquist frequencyFN
of the data which is being filtered to the cutoff frequency of the numerical filter. Filtering
therefore increases the initial (before resampling) sampling factorS to some new valueqS.
The sampling factors is preserved during the overall operation of filtering and resampling
if q = r; this condition is not always satisfied.

Filtering is performed by convolution with a numerical window. Ideally the window
should provide a filter with:

• minimal power in the sidelobes above the Nyquist frequency, to reduce aliasing; and

• a rapid cutoff close to the Nyquist frequency, to avoid attenuation of signals within
the passband.
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These are conflicting requirements, and so the actual filter must be chosen case by case.
Several windows are suggested in Section1.3.3(equations1.23through1.26), and their
characteristics and efficacy are illustrated in Figures1.5 and1.6. The characteristics of
the discrete boxcar and Bartlett windows are discussed respectively in Section2.6.2and
Appendix2.A.

2.6 The Art of Joining Data Sets

Joining consists of resampling a data set with interval 21T , onto a set of time tags
with interval 21t . The time tags may either be associated with another data set, or be
completely independent and generated, for example, synchronously with Universal Time.
By taking the sets one after another, several data sets may be joined onto the same timeline.

The data set to be resampled will normally be the one with higher time resolution,
1T < 1t , so that joining reduces its time resolution (makes1T larger), that is, the
reduction factor (Section2.5.3) r > 1. It is not generally useful to increase the time
resolution (reduce1T ) of normal science data: this leads to a large sampling factors,
because physically meaningful information cannot be created by interpolation. But there
may nevertheless be an occasional need to interpolate, for example, when joining several
data sets of high resolution and only a few of lower resolution.

In either case care must be exercised:

• When1t > 1T , the sample interval of the resampled data set is increased, and
averaging must be performed to prevent under-sampling.

• When1t < 1T , the sample interval of the resampled data set is reduced, which
necessarily means that this data becomes over-sampled.

In the following sections we describe algorithms to join the primary data set

. . . tj−1, xj−1, tj , xj , tj+1, xj+1, . . .

and the secondary data set

. . . Tm−1, Xm−1, Tm, Xm, Tm+1, Xm+1, . . .

by resampling the secondary data set so that the resampled data point. . . tj , χj . . . coin-
cides in time with the primary data point. . . tj , xj . . . . We call tj the “target” time for
resampling at timetj . We assume that the timestj andTj refer to the centres of their
respective sampling intervals.

We now review each of the techniques mentioned in Section2.4 in the light of the
considerations of Section2.5.

2.6.1 Fuzzy Join

There is no filtering, so the filter factor isq = 1. Therefore this method must not be
used if the reduction factor isr > 1, as the data would be under-sampled (s < 1) and
relatively useless. On the other hand, ifr < 1, the data values obtained will be less good
that those obtained by interpolation.
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2.6.2 Averaging

When1T � 1t simple interpolation between the two data pointsTi andTi+1 closest
to the target time-tagtj would result in an under-sampled and hence unusable secondary
data set (see Section2.5.3). The resampling algorithm must include numerical filtering.

Anti-alias filtering and resampling are two different operations which are described
by two different parameters, the filter factorq and the reduction factorr. In terms of the
sampling factorS of the secondary data, the sampling factor of the averaged data is

s =
q

r
S (2.6)

The parametersq and r are not necessarily the same;q should normally be chosen to
optimises, that is, obtains ' 1. In other words,q should be as small as possible while
still satisfying

q ≥
r

S
(2.7)

When the input data is over-sampled (S > 1), q may well be less thanr as, for example,
when resampling orbital trajectory data.

Exceptionally, it may be acceptable for equation2.7not to be satisfied if the reduction
factor q is so large that, on physical grounds, the value ofS may be considered to be
irrelevant; then, the sampling factor iss = q/r. Caution must nevertheless be exercised
during subsequent data analysis, as explained in Section2.8.1.

Normally filtering and resampling are performed simultaneously by a single algorithm.
Whatever the value ofq, the spectrum of the resampled data will reflect the characteristics
of the numerical filter as described byq and the nature (boxcar, Bartlett, etc.) of the
filter employed, particularly at frequencies approaching the Nyquist frequency. Whenq

is of the order of unity, the spectrum of the resampled data will also be influenced by the
characteristics of earlier anti-alias filtering, performed prior to resampling.

The Boxcar Window

The boxcar window with filter factorq has a width of approximately 2q data points.
The reasoning is analogous to that of Section2.5.2. The analytic signal of frequencyf
sampled at intervals 21T has the discrete representationXk = e4π if k1T . The convolution
of this with theN -point boxcar window extending fromX` toX`+N−1 is

F(f ) =
1

N

`+N−1∑
k=`

e4π if (`+k)1T
=

sin(2πfN1T )

N sin(2πf1T )
e4π if (`+N−1

2 )1T (2.8)

where e4π if (`+N−1
2 )1T is the phase of the signal at the centre of the window. The first zero

of F occurs whenf = 1/(2N1T ), while the Nyquist frequency is 1/(41T ); hence the
filter factor isq = N/2. Thus to obtain a filter of factorq, the boxcar window is simply

wk =
1

N
for 1 ≤ k ≤ N with N = 1 + int(2q) (2.9)

where int(2q) is the integral part of 2q; note thatq is generally not an integer, and +1 is
added to ensure thatN≥2q.
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Filtering and resampling can be performed simultaneously by simply placing the box-
car to select the required number of data points of the secondary data set closest to the
target time-tagtj of the primary data set. Thus to obtain a filter factorq, for every data
point tj , xj of the primary set we identify two data points of the secondary set,` andn,
such that

tj − 21T < T` +1T int(2q) ≤ tj
and tj ≤ Tn −1T int(2q) < tj + 21T

(2.10)

Thus equation2.9 is satisfied by theN points closest totj . The calculation of the average
is straightforward:

X′

j =
1

n− `+ 1

n∑
i=`

Xi (2.11)

Note that (equation2.10)

Tn − T` ≥ 4q1T =
4q

r
1t =

2q

r
× the sample interval of the primary data set.

Adjacent boxcarsmust overlapby at least 50%. If they are simply contiguous the filter
factor will be q = r/2, the output sampling factor will bes = qS/r = S/2, and the
resampled data will be contaminated by aliased signals. The only possible exception is for
over-sampled input data withS>2, for whichq may be less thanr provided thatq ≥ r/S

(equation2.7).
Boxcar averaging yields more than−20 dB rejection at the maximum of its first side-

lobe, and an in-band attenuation of−3.9 dB atfN/2, and−0.9 dB atfN/4. It is en-
tirely adequate when a large filter factorq is required. Then there are a large number of
points within the window, which can be positioned with respect to the target time with
reasonable precision. Compared to other windows, the boxcar window reduces both the
computational requirements and the problems associated with end effects.

Problems arise, however, when the reduction factorr is small. Each time the target
time tj increments by 21T (one sample interval of the secondary data set), the phase
increments (equation2.8) by 4πf1T , as expected. But astj advances, this phase increase
occurs discontinuously: both̀ andn increment each timetj reaches the value1T +

(T` + Tn)/2 (equation2.10). Simultaneously the phase of the filtered signal jumps by
4πf1T . For frequenciesf approaching the Nyquist frequencyfN = 1/(41t), the phase
discontinuity of the resampled data isπ1T/1t = π/r (Section2.5.3).

Equation2.10could be changed so that` andn do not increment simultaneously: then
smaller phase discontinuities are obtained (as small as 50 % of the above values), but they
occur more frequently. Furthermore,N would alternate between two possible values, with
consequent changes of the filter transfer function.

In summary, when the reduction factorr is close unity, the phase error of the resampled
datum approaches to±90◦, a value which can be reduced to±45◦ if periodic changes in
the transfer function can be tolerated. We conclude that for a reduction factorr of the order
of unity, linear interpolation, and especially the Bartlett window, offer better solutions, as
discussed in Section2.6.3.
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The Gaussian Window

The discrete equivalent of the Gaussian filter is the (N+1)-point filter defined in terms
of the binomial coefficients

wr =
NCr / 2N for 0 ≤ r ≤ N

the factor 2N being to normalise the window,
∑N
r=0wr = 1. (It may be truncated on

the wings, in which case the normalisation changes slightly.) This filter is not normally
recommended; although it has no sidelobes, for this very same reason it is continuous
acrossfN and the overriding anti-aliasing requirement of negligible response abovefN
implies negligible in-band response immediately belowfN , plus a rather gentle cutoff.

The other filters presented in Section1.3.3do have sharp cutoffs; to optimise the infor-
mation content and obtains = 1, the first cutoff should be placed at the Nyquist frequency
of the primary data set.

The Bartlett Window

The triangular shape of the Bartlett window allows both the width and the position
relative of the window relative to the target time-tag to be specified with some precision.
In principle, this window is only slightly more complicated than the boxcar window; but,
in practice, indexing and normalisation make it appear much more complicated. We have
relegated the details to Appendix2.A, where it is shown that the width of the window is
approximately 4q.

At all frequencies this window has approximately twice the attenuation (in dB) of the
boxcar window. It has more than−40 dB rejection of the first sidelobe,−7.9 dB attenua-
tion atfN/2, and−1.8 dB atfN/4. It is questionable whether this performance is worth
the extra computation incurred by use of this window forr � 1: twice as many points in
the window, and each point having to be multiplied by a different window coefficientwr .
If a symmetric window (equations2.21and2.22, or 2.23and2.24, depending upon the
value ofq) is used, the phase error is at most 45◦. But if the more general non-symmetric
window of equation2.15is used, the phase errors are negligible; but the window coeffi-
cients must be evaluated for each resampled datumtj , χj .

2.6.3 Synchronisation

When comparing two signals sampled at nearly, but not exactly, the same rate, “beat-
ing” will occur with a period

21T1t/(1T −1t) (2.12)

In particular, it will occur when comparing parameters measured by identical instruments
on different spacecraft of the Cluster mission. Resampling is required to synchronise the
data sets.

When resampling is performed withr ' 1, the Nyquist frequency does not change ap-
preciably, there is no aliasing, and no filtering is required. The simple linear interpolation
algorithm of equations2.2and2.3eliminates the phase problem associated with the algo-
rithm of equation2.11. Nevertheless, there remains an amplitude problem, as will now be
shown.



56 2. TIME SERIESRESAMPLING

Whentj ' Ti (or Ti+1), the resampling algorithm2.3yieldsχj ' Xi (orXi+1), and
resampling has little effect on the data. But whentj ' (Ti + Ti+1)/2) it approximates the
boxcar averaging described by equation2.8, with N=2: the data is filtered with a factor
q=1. While this does not affect the spectral cutoff frequency, it does affect the spectrum
within the band with, for example, an attenuation of−3.9 dB atfN/2 (section2.6.2).
As time advances there is a beating between the sampling periods 21t and 21T of the
primary and secondary time-tags, so that the spectrum of the resampled data is modulated
with the period of equation2.12. It is possible to reduce this effect by using the sliding
Bartlett window withq=1, that is, the 4-point window described by equations2.15through
2.20of Appendix2.A. This causes attenuation within the band which is greater than for
algorithm2.3, but constant (no beating).

This discussion indicates that the effects of resampling must not be overlooked as one
approaches the Nyquist frequency, especially if data from one spacecraft is resampled, but
not that from another. For symmetry of processing, it may be better to resample both data
sets onto a common independent timeline, for example, one related in a simple way to
Universal Time.

2.6.4 Interpolation

When1T � 1t , the dataXi must be interpolated, using algorithms2 or 3 (of Sec-
tion 2.4).

Linear interpolation is the only type of interpolation which may be safely applied to
science data. Higher order interpolation may be applied only to data which is over-sampled
(sampling factor greater than unity). Even then, its application to science data is danger-
ous: experimental errors and noise in the original data set introduce completely spurious
information into the resampled data. In any case, it is impossible to correlate two (or
more) science data sets with a precision in time better than twice the length of the largest
sampling interval of the data sets being correlated (Nyquist’s theorem).

Interpolation increases the sampling factor, which becomess × p wherep is an in-
terpolation factorequal to the number of interpolated points per interval of the original
data. Note that the interpolation and reduction factors are reciprocal quantities,p = 1/r.
Interpolation involves no filtering,q = 1, so that interpolated data necessarily hass > 1;
the data is over-sampled (see Section2.8.1).

Interpolation of higher order than cubic is almost certainly neither required nor desir-
able. It may be performed only on data which is over-sampled and which has negligible (or
adequately little) experimental noise, and is thus known to contain no spectral information
at frequencies above the Nyquist frequency: for example, orbit data. Nevertheless, stan-
dard over-sampled data products will normally be provided with sufficient time resolution
for linear interpolation to be entirely adequate.

2.6.5 Determination of the Sampling Factor

Resampling will generally change the sampling factor associated with the data. The
resultant sampling factors depends upon the sampling factorS of the secondary (input)
data, and upon the filtering and reduction (or interpolation) performed, as described byq

andr (or p = 1/r). The sampling factors of the resampled data is determined in one of
three ways.
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1. The initial data and the resampling performed. Provided thatS ≥ 1, the expres-
sion2.6

s =
q

r
S

determiness in terms of the sampling factorS of the initial secondary data and the
filtering and/or interpolation to which it has been subjected. If the original data is
over-sampled,S > 1, the ratioq/r may be chosen to brings closer to unity and thus
optimise the information content of the resampled data.

2. Leave unchanged. If the secondary sampling factorS is less than unity, then it is
best to leave it unchanged. Resampling neither increases nor reduces the effects of
aliasing already present in the data.

3. The resampling process alone. When the filter and reduction factorsq andr are
both very large,s may be considered to be determined bys = q/r. The justification
is that the numerical filtering extends to frequencies so much higher than the Nyquist
frequencyFN of the secondary data set that all previously aliased power has been
reduced to a negligible level, as explained in Section2.8.1.

2.6.6 Data Gaps

The handling of data gaps is a problem. Correlative data analysis cannot be performed
across a data gap but often, inside a data gap of one instrument, another instrument yields
very interesting data which should not be lost when joining. Therefore any joining process
must search, trap and deal with data gaps.

A data gap may be identified when

Ti+1 > Ti + 21T +1Tgap

where1Tgap is a parameter which may be specified, but whose default value is1Tgap =

1T . Once a gap is encountered, there are several options for the interpolation algorithm
to deal with it:

1. Apply the chosen join algorithm to fill the gap (i.e., ignore the fact that it is a gap).
This will not help for fuzzy joining which is outside1Ttol (see joining algorithm1).
Similarly it will not help for boxcar averaging if the gap is too wide, i.e.,Ti +1T +

1Tbox < tj andTi+1 −1T −1Tbox > tj . This can happen for gap widths 21Tgap
as small as the boxcar width 21Tbox and will certainly occur if the gap is more than
twice this wide. In these cases, the algorithm has already failed, or will fail, to find
a suitable value.

2. Apply adifferentalgorithm to fill in the gap, e.g., linearly interpolate across the gap
where in contiguous data a spline is used.

3. Remove (or fill with “missing” values) the entries(tj , χj ) for tj lying within a gap
in theTi ’s.
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4. Apply the above differently for small and large gaps by setting a threshold1Tmaxgap.
For example, linearly interpolate across small gaps and remove entries correspond-
ing to large ones. Typically1Tmaxgapmight be related to one of the time tag half-
interval1T , the measurement half-sample durationτ (if different), or the output
time tag interval1t .

In specifying data gap handling, there is the possibility of looping (i.e., choosing an
alternative algorithm if the first one fails, then another, and so on). This is an implemen-
tation decision, but it is probably wise to avoid this possibility, so as to obtain a time data
series of known homogenous quality.

2.6.7 Irregularly Spaced Data

The same general considerations apply to irregularly spaced data, although concepts
such as the Nyquist frequency and the sampling factors are conceptually rather vague.
Note that the algorithms of Sections2.6.2, 2.6.3and2.6.4apply equally well to irregularly
spaced time series data.

2.7 Metadata and Status Data

Mention must be made of the other information which forms an essential part of the
data set, as mentioned in Section2.2. With the gradual move towards an object oriented
approach to data analysis, this metadata is required by client applications and must, there-
fore, be handled in the appropriate way when two data sets are joined.

There are two types of information, which are distinguished by the use which is made
of them.

Metadata is information which is intimately attached to the physical data (units, coordi-
nate system, possibly limit values). For example, it is imperative that any algorithm
to calculate the Alfv́en velocity know the units used for the two physical parameters
involved, the density and the magnetic field.

The metadata changes so slowly that resampling is not required. But it must be
joined when physical data is joined; how this is done is an implementation issue.

Status data is information which is more separated from the instrument data to which
it refers, and is unlikely to be required by client applications using the instrument
physical data. The instrument status (active/passive, or solar wind/magnetosphere)
is a typical example. Such information may be used by other experiments to deter-
mine the suitability of the data for comparison with their own observations. It has
an inherent time granularity, which is somewhat arbitrary.

The way in which status data is handled during joining is very dependent upon the
architecture of the software implementation, and it is probably premature to discuss
this further at this time.
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2.8 Discussion

Any two data sets which are sampled at a different frequency will eventually become
seriously out of step unless action is taken. The two data sets must be synchronous (i.e.,
any relative time offset must be constant) before any cross-correlation is attempted. De-
pending on the nature of the analysis, it may or may not be necessary for the sampling
to be simultaneous; but, in practice, any action taken to ensure synchronisation can easily
provide simultaneity.

Resampling and/or numerical filtering is also required for the determination of spatial
gradients, where the time-series filtering is folded into the spatial filtering. This issue is
discussed further in Chapter15, Section15.5.1.

The synchronisation of the timelines is achieved by resampling one or both data sets,
so that they have identical, though perhaps shifted, timelines. Joining is similar, except
that the two data sets share a common timeline.

The effects of averaging or interpolation are indicated by the sampling factors, a rule-
of-thumb parameter which indicates the information content of the data, and which should
be appended to the metadata to reduce the possibility of data being used scientifically to
draw erroneous conclusions. Ideally, this parameter should be passed to application pro-
grams and/or the scientists using them, to avoid fruitless searching for correlation where
none is to be found, i.e., at frequencies abovefN/s, or inadvertent misuse of the data when
s < 1.

Knowledge of the type (boxcar, Bartlett, etc.) of the anti-alias filter used is also es-
sential when using the data for spectral analysis at frequencies approaching the Nyquist
frequency. Neither the in-band attenuation, nor the possibility of (attenuated) aliased sig-
nals being present in the sidebands of the filter, should ever be overlooked.

2.8.1 Scientific Use of the Sampling Factor

The value of the sampling factors is important, and must always be known before
undertaking scientific analysis of the data.

Whens > 1 the data isover-sampled, and it contains no usable spectral information at
frequencies abovefN/s, wherefN is the Nyquist frequency. This information is clearly
of primary scientific importance.

For the example of Table2.1, a sampling factor of14 yields a power from out-of-band
fluctuations which actually exceeds (53.3%) that from the in-band fluctuations if the input
fluctuations have a white spectrum. This data is said to beunder-sampled. Can such data
be used at all for spectral analysis?

Spectral analysis may be possible at frequencies well below the Nyquist frequency
fN = 1/(41T ) by assuming that the spectrum of fluctuations is not white, but decreases
rapidly with increasing frequency; in particular, many naturally occurring power spectra
decrease asf−2, or steeper. But it must never be forgotten that a significant enhancement
of the fluctuations at a particular frequency, for example of a particle flux due to phase
bunching by a large amplitude wave, may be aliased and cause strange effects to appear
even at relatively low frequencies. Subject to this caveat, ifs < 1 it is possible to smooth
under-sampled data using, for example, a sliding boxcar average with a large reduction
factorr, thus reducing the number of data points but not the amount of physically useful
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information. The information which is eliminated is aliased, and therefore considered
physically useless.

There is no way to remove an aliased signal once it is present in the data, and during
data analysis this fact must never be overlooked. Consider filtering with a reduction ratio
r. If the Nyquist frequency of the resampled data isfN , the first aliased signal in the input
which is not eliminated by this filtering would be a signal originally close to(2r–1)fN
(because of the frequency folding around the Nyquist frequencyrfN of the input data). For
a power spectrum varying asf−α, this first aliased signal will be−10α log10(2r − 1) dB
below the signal closefN . Generally speaking, ifs is initially less than unity, its value
should not be changed during resampling unless the reduction factorr is large enough
to render it extremely improbable (note that there always remains some subjectivity) that
any spectral peak near(2r − 1)fN can exceed the nominalf−α spectrum by as much as
−10α log10(2r − 1) dB.

Another example ofs being less than unity but not clearly defined concerns derived
parameters, that is, ones which are not measured directly. A typical example concerns the
moments of a particle distribution. Here the data set parameters (density, flow velocity,
temperature, etc.) are derived from many individual measurements (of the particle flux,
in different directions and/or energy range), collected sequentially during the interval be-
tween successive data set samples; each of these individual measurements has a very small
sampling duration and consequently a small value ofs. The value ofs for the derived data
set parameters is not clear, other than that it is significantly less than unity.

In summary, the sampling parameters is important because:

• If s < 1, the data isunder-sampled. Strictly speaking the data should not be used
at all, because it may be contaminated by aliased signals of higher frequency. In
reality, provided the data is first filtered and resampled, it may be used at frequencies
f � fN provided that the user is well aware of the difficulties described above.

• If s > 1, the data isover-sampled. The data cannot be used for spectral studies at fre-
quencies abovefN/s, where all significant spectral information has been removed
by filtering. The information density is not optimum.

Appendix

2.A The Bartlett Window

Its triangular shape allows both the width and the position of the asymmetric Bartlett
window to be specified with some precision. Consider the discrete Bartlett window with
filter factorq centred on one of the time tagstj of the primary data set; for each secondary
time tagTi lying in the interval,

tj − 2q1t < Ti < tj + 2q1t

The window function to be applied to the corresponding datumXi is

wi ∝ 1 −

∣∣∣∣Ti − tj

2q1t

∣∣∣∣
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normalised so that
∑
wi = 1. More specifically, we identify the values of`, m andn

which satisfy
T`−1 ≤ tj − 2q1t < T`

Tm −1t < tj ≤ Tm +1t

Tn < tj + 2q1t ≤ Tn+1

(2.13)

and introduce the fractional offsetx of the timetj of the centre of the Bartlett window with
respect to the secondary time tagTm,

x =
tj − Tm

21T
which satisfies −

1

2
< x ≤

1

2
(2.14)

Note that astj advances with respect to the time tagsTi , the value of the indexm incre-
ments by unity andx jumps fromx ' +1/2 tox ' −1/2 whenevertj = (Tm + Tm+1)/2.
The discrete window with filter factorq centred on a primary time tag with fractional offset
x is defined by

wm−k =
1

S

(
1 −

k + x

2q

)
for 1 ≤ k ≤ m− `

wm =
1

S

(
1 −

|x|

2q

)
(2.15)

wm+k =
1

S

(
1 −

k − x

2q

)
for 1 ≤ k ≤ n−m

whereS is the normalisation coefficient, chosen so that
n∑
i=`

wi = 1 (2.16)

The sampleswi of the discrete Bartlett window are synchronous with the secondary
data set, but the overall triangular form of the window is centred on timetj of the primary
data set; we calltj the “target” time, it is the time tag of the resampled datum. The sample
wm of maximum amplitude occurs before or aftertj according to whetherx is positive or
negative; and the number of points before and afterwm are respectively

m− ` = int(2q − x)

n−m = int(2q + x) (2.17)

where int(2q+x) denotes the integral part of 2q+x. Figure2.3 shows the behaviour of
the window astj moves relative toTm (i.e., asx varies) for two typical values ofq. The
window has an odd number of points ifm− ` = n−m, that is, from2.17, if either

|x| ≤ frpt(2q) <
1

2
or |x| < 1 − frpt(2q) ≤

1

2
(2.18)

where frpt(2q) denotes the fractional part of 2q.

• When|x| is large enough for neither of equations2.18to be satisfied, the window
has an even number of points. The normalisation coefficientS can be evaluated from
equations2.16and2.15,

S = Se = 2p −
p2

2q
where p = int

(
2q +

1

2

)
(2.19)
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Figure 2.3: The variation of the discrete Bartlett window as the target time “slides” with
respect to the time tagsTi , for two values ofq close toq = 1. The windows are illustrated
for x = 0 (bullets) and forx = 0.3 (crosses). They are not normalised, and the ordinate
scale is arbitrary. Forq = 9/8 (thick lines) whenx = 0 the window has five points, one of
which is “lost” whenx > 1/4. Forq = 7/8 (thin lines) the window has only three points
whenx = 0, but it gains an extra point whenx > 1/4.

and is independent ofx.

• Conversely, when|x| is small enough to satisfy one or both of equations2.18, the
window has an odd number of points. The normalisation coefficientS varies with
x, and may be expressed in terms ofSe of equation2.19, thus

S = Se +
frpt(2q)− |x|

2q
if frpt(2q) <

1

2

S = Se +
1 − frpt(2q)− |x|

2q
if frpt(2q) ≥

1

2
(2.20)

S has its maximum value whenx = 0 and the target time of the centretj of the
window is coincident withTm.

Thus, whatever the value ofq, the window has an odd number of points whenx = 0 and
an even number whenx = 1/2, as required by considerations of symmetry.

Equations2.17and2.18show that when 4q is an integer the window has 4q points
for all values ofx exceptx = frpt(2q). Furthermore, whenx=0 or x=1

2 the points are
distributed symmetrically with respect to the centre of the window, and equations2.15
through2.20 reduce to simple expressions which can also be readily derived from first
principles. Thus when 4q is an even integer the window contains 4q points for all values
of x except one, and is symmetric whenx=1

2,

wr = w4q−1−r =

(
r +

1
2

)/
4q2 for 0 ≤ r ≤ 2q − 1 (2.21)

For the exact valuex=0 the window has only 4q − 1 points, but is still symmetric,

wr = w4q−2−r = (r + 1)
/

4q2 for 0 ≤ r ≤ 2q − 1 (2.22)
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When 4q is an odd integer the window also contains 4q points for all values ofx except
one, and is symmetric whenx=0,

wr = w4q−1−r =

(
r +

1
2

)/(
4q2

+

(
1
2

)2
)

for 0 ≤ r ≤ 2q −
1
2 (2.23)

For thex=1
2 precisely it has only 4q − 1 points,

wr = w4q−2−r = (r + 1)

/(
4q2

−

(
1
2

)2
)

for 0 ≤ r ≤ 2q −
3
2 (2.24)

These windows serve both to illustrate equations2.17and2.18, and being simple (com-
pared with the general expressions2.15through2.20) they can provide (page55) an alter-
native to the boxcar window.

To obtain an expression equivalent to equation2.8, we consider the analytic signal
e2π if t which yields, for the secondary datum sampled at timeTm+k, the value

Xm+k = e4π if (m+k)1T
= eiα(m+k) where α = 4πf1T

When one or other of equations2.18is satisfied, the window has an odd number of points,
and may be expressed by equations2.15with

1 ≤ k ≤ K = int(2q) (2.25)

The convolution of this window withXm+k is

F(f ) =
eiαm

S

{(
1 +

|x|

2q

)
+

K∑
k=1

[(
1 −

k + x

2q

)
e−iαk

+

(
1 −

k − x

2q

)
e+iαk

]}
(2.26)

When neither of equations2.18is satisfied the window has an even number of points. It is
convenient to introduce the flag

p =
1

2

(
1 +

x

|x|

)
which takes the value 0 or 1 depending upon whether the “target” timetj is before or after
Tm. Then equations2.15may be expressed

wm−k+p =
1

Se

(
1 −

k + x

2q

)
wm+k+p−1 =

1

Se

(
1 −

k − x

2q

)
(2.27)

for

1 ≤ k ≤ Ke = int

(
2q +

1

2

)
(2.28)

The convolution of this window withXm+k is

F(f ) =
eiα(m+p)

Se

Ke∑
k=1

[(
1 −

k + x

2q

)
e−iαk

+

(
1 −

k − x

2q

)
e+iα(k−1)

]
(2.29)
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Equations2.25and2.28show that if frpt(2q) < 1
2 thenK = Ke and the odd number of

points forming the window when|x| is small is greater than the even number of points for
larger values of|x|; and conversely in the case frpt(2q) > 1

2, for whichK = Ke − 1.
Equations2.26 and2.29 show that, unlike the boxcar window, the Bartlett window

produces no phase discontinuity as the “target” timetj advances with respect to the time-
tagsTk of the secondary data set. At the limits of validity of condition2.18, that is when
x = ±frpt(2q) or ±(1−frpt(2q)), the number of points in the window changes, never-

theless, because the term
(
1 −

k±x
2q

)
is zero fork = Ke, equations2.26and2.29become

equivalent for this value ofx, and there is no discontinuity. Furthermore, each time equa-
tion 2.13causesm to increment,x jumps simultaneously from+1

2 to −
1
2, causingp to

jump from +1 to 0, and consequently the phase of the multiplicative factor eiα(m+p) in
equation2.29suffers no discontinuity. The phase of the resampled datum increases con-
tinuously astj increases, for all values oftj .

To examine the effects of the Bartlett window upon the spectrum Equations2.26and
2.29may be evaluated.
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3.1 Introduction

Measurements of the electric and magnetic fields in space plasmas commonly show
fluctuations in time and space on all observed scales. Single satellite measurements gen-
erally do not allow disentangling spatial and temporal variations. With two satellites the
ambiguity is removed only for simple motions of essentially one-dimensional structure.
The determination of the shape and dynamics of three-dimensional structures requires a
minimum of four spacecraft arranged in a tetrahedral configuration and equipped with in-
struments measuring fields and flows in three dimensions. Multi-satellite measurements
open fundamental new possibilities to analyse spatial plasma structures in the magneto-
sphere and in the solar wind.

Although the analysis of multipoint data has been an increasingly important activity,
there has been little effort to systematically analysein situ data from multiple spacecraft
except in the context of event studies. In this chapter we describe a multi-spacecraft data
analysis technique allowing the identification of three-dimensional electromagnetic struc-
tures in the wave field. The organisation of the chapter is as follows: in Section3.2 the
technique is presented; in Sections3.3 and3.4 the limitations related respectively to the
field and the experimental constraints are examined. Three applications using synthetic
data are presented in Section3.5.

3.2 Multi-Spacecraft Filtering Technique

3.2.1 Spectral Representation of the Wave Field

Hereafter we consider a multi-spacecraft experiment composed ofN satellites. We
denote asA(t, rα) the column vector consisting of theN field vectors measured at the
satellite positionsrα, α ∈ {1, . . . , N}. A(t, r) is assumed to be composed ofL compo-
nents. If we consider the case of electric and magnetic field measurements, thenL = 6

65
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and we have

A(t, r) =


Ex(t, r)

Ey(t, r)

Ez(t, r)

Bx(t, r)

By(t, r)

Bz(t, r)

 (3.1)

The spectral representation ofA(t, r) in the(ω, k) domain is given by

A(t, r) =

∫
ω

∫
k

A(ω, k) ei(ωt−k·r)dk dω (3.2)

The high time resolution of the experiments generally allows the determination of the spec-
tral amplitude with respect to the angular frequencyA(ω, r) by a Fourier transformation.
Equation3.2becomes

A(ω, r) =

∫
k

A(ω, k)e−ik·r dk (3.3)

The correlation matrix for two measurements is of particular importance for the char-
acterisation of the field. It is constructed as the dyadic product of two measurement vectors
A(t, rα) andA(t, rβ), whererα andrβ refer to spacecraft positions. It is written

MA(ω, rα, rβ) = E
[
A(ω, rα)A

†(ω, rβ)
]

(3.4)

whereE[. . .] stands for the mathematical expectation and indicates an ensemble average
over a large number of distinct realisations of the data set. The superscript † stands for
hermitian adjoint (transpose and complex conjugation). Assuming the field is homoge-
neous in space which means the statistics of the fluctuating field are translation invariant
in space, we have

MA(ω, rαβ) =

∫
k

SA(ω, k)e−ik·rαβ dk rαβ = rα − rβ (3.5)

with SA(ω, k) = E
[
A(ω, k)A†(ω, k)

]
(3.6)

and the trace ofSA(ω, k) is the spectral energy densityP(ω, k) we are looking for.

3.2.2 Notations and Data Preparation

In order to cope with multi-spacecraft measurements, and for the sake of simplicity,
several definitions and notations are required. We defineA(ω) the (NL by 1) single col-
umn vector containing theA(ω, rα) measured by theN spacecraft, namely

A(ω) =


A(ω, r1)

A(ω, r2)
...

A(ω, rN )

 (3.7)
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then the relation betweenA(ω) and the spectral amplitudeA(ω, k) is given by,

A(ω) =

∫
k

H(k)A(ω, k)dk (3.8)

with H(k) =


Ie−ik·r1

Ie−ik·r2

...

Ie−ik·rN

 (3.9)

I is an (L by L) unit matrix and thusH(k) is an (LN by L) matrix. Hereafter we use the
symbol I for all unit matrices whatever their rank. Now we introduce the (LN by LN )
covariance matrixMA(ω). It contains all the correlation matrices that can be estimated
from theN spacecraft experiment and is defined by

MA(ω) = E
[
A(ω)A†(ω)

]
(3.10)

This matrix contains all the measured data, and thus is a known quantity in our context.
Theoretically, the determination ofMA requires the computation of the mathematical ex-
pectation, that is, the averaging of different realisations of the measured field vectorA(ω).
Assuming the process is ergodic, this ensemble average may be replaced by averaging in
time, and one obtains

MA(ω) =
1

Q

Q∑
q=1

Aq(ω)Aq†(ω) (3.11)

To getQ convenient measurementsAq(ω), the time series of measurementsA(t) is di-
vided inQ subintervals. Fourier transformation in each subintervalq yieldsAq(ω). Ac-
cording to the Fourier transformation theory, the length of a subinterval determines the
frequency resolution.

From equation3.5, the two matricesMA andSA are related by

MA(ω) =

∫
k

H(k)SA(ω, k)H†(k) dk (3.12)

The next section describes the multi-spacecraft filtering technique that allows us to obtain
an optimal estimation of the field spectral energy densityP(ω, k) from the matrixMA(ω).

3.2.3 Filter Bank Approach andP(ω, k) Estimation

We shall adopt a filter-bank approach to find the appropriate combination of multi-
spacecraft measurements for an optimum description of the field in the angular frequency
and wave vector domains. Thus, the main objective is the determination of filters, each
one being related to a different(ω, k) pair and characterised by a matrixF(ω, k). For each
(ω, k) the purpose is to design the corresponding filter in such a way that having multi-
spacecraft measurementsA(ω) as input, it provides an optimumA(ω, k) estimation given
by

A(ω, k) = F†(ω, k)A(ω) (3.13)



68 3. FILTERING: GENERAL FRAMEWORK

ConsequentlyF† is an (L byLN ) rectangular matrix. Taking the dyadic product of equa-
tion 3.13with its hermitian adjoint, and then taking the expectation value, we connect the
three matricesSA, MA, andF.

SA(ω, k) = F†(ω, k)MA(ω)F(ω, k) (3.14)

If no additionala priori information is available, a unique determination of the rectangular
matrix F(ω, k) is achieved by requiring that the filter shall absorb all energy contained in
MA except that related with the angular frequencyω and the wave vectork. This require-
ment is satisfied by minimising the trace of the matrixSA(ω, k) with the constraint that
any plane wave whose angular frequency isω and wave vector isk is passed undisturbed
through the filter. Then the filter determination can be formulated as

P(ω, k) = Tr
{
F†(ω, k)MA(ω)F(ω, k)

}
= minimum

with F†(ω, k)H(k)A(ω, k) = A(ω, k)
(3.15)

This problem can be solved using the Lagrange multiplier technique. The detailed deriva-
tion of the spectral energy densityP (ω, k) is presented in the Appendix. We obtain the
following expression

P(ω, k) = Tr

{[
H†(k)M−1

A (ω)H(k)
]−1

}
(3.16)

If no a priori information is available, this expression is an optimum estimator of the field
spectral energy density. It is optimum in the sense that it provides a maximum likelihood
estimate of the frequency wave-vector power spectrum, provided the noise associated with
the field measurements is a multi-dimensional Gaussian process. If any given specific
knowledge about the signal is available, one can take it into account during the determina-
tion of the filter matrixF. This leads to a modification of the filter constraint and therefore
a new expression of the optimum estimator. The derivation ofP(ω, k) estimators, includ-
ing such additionala priori information, is presented in Section3.5 for three different
applications.

Estimators obtained using the filter bank approach generally do not require much com-
putation time. For instance, for the estimator corresponding to equation3.16, once the
MA(ω) matrix has been estimated from the measured waveforms, the computations con-
sist of multiplications and inversions of complex matrices. The largest matrix to invert is
MA(ω) whose rank isL × N . For a multi-spacecraft mission consisting ofN = 4 satel-
lites and withL = 6 (3 electric plus 3 magnetic wave-field components), the rank ofMA

is 24. Thus we are not in the case of a large matrix for which specific algorithms must be
developed.

3.3 Limitations Related to the Field

The existence of the spectral energy density estimator is based on the hypotheses of
time stationarity and space homogeneity of the measured field. Obviously, none of those
hypotheses is completely fulfilled in a real experiment. The conditions under which they
may be considered to be satisfied adequately are discussed below.
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The validity of this estimator is also limited by an additional hypothesis requiring that
the measured field be free of characteristic wavelengths smaller than the minimum inter-
spacecraft distance. Otherwise an aliasing effect develops, which is similar to the one
observed in the case of under-sampling of time series.

3.3.1 Time Stationarity and Space Homogeneity

Actually, an approximate temporal stationarity of the field is sufficient to provide rea-
sonable data statistics. For all practical purposes only time stationarity during time inter-
vals much longer than the maximum period studied in the field is necessary. A well-known
statistical test [Bendat and Piersol, 1971] may be used to check the limited temporal sta-
tionarity of the data.

Strict conditions for homogeneity cannot be met in space, particularly in the vicinity
of geophysical boundaries such as the bow shock or the magnetopause. In our case a
statement of “limited homogeneity” is sufficient. It is fulfilled when the field is translation
invariant over distances much larger than the maximum wavelength studied in the field.
In the frame of a multi-spacecraft experiment, the translation invariance of the field can
only be tested along the direction of the spacecraft trajectory. Data sets measured at close
positions along the orbit may be used to check the invariance of theP(ω, k) solutions
obtained.

3.3.2 Spatial Aliasing

This problem is also discussed in Section14.5.1of Chapter14. The origin of the
spatial aliasing comes from the fact that the spacecraft configuration does not distinguish
two plane waves differing only by their wave vectors in such a way that

1k · rα = 2πnα + φ ∀α ∈ {1, . . . , N} (3.17)

wherenα are signed integers. ForN = 4 it can be shown [Neubauer and Glassmeier,
1990] that1k has the solutions

1k =

l=3∑
l=1

nl 1kl (3.18)

with the1kl given by

1k1 =
2π

V
r31 × r21; 1k2 =

2π

V
r41 × r21; 1k3 =

2π

V
r41 × r31

V = r41 · (r31 × r21) (3.19)

The impossibility of distinguishing these plane waves is referred to as “spatial alias-
ing”. This spatial aliasing would be absent, and consequently theP(ω, k) estimation not
distorted, if the characteristic lengths of the field correspond to wave vectors included
inside the subvolume described by

k =

l=3∑
l=1

el 1kl with − 0.5< el ≤ 0.5 (3.20)
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This restriction corresponds roughly to the hypothesis of a field free of wavelengths smaller
than the minimum inter-spacecraft distance. In the absence of anya priori information re-
lated to the minimum characteristic length of the field, there is no satisfactory way to
identify spatial aliasing from multi-spacecraft data. Indeed, to insure the validity of the
P(ω, k) estimator, the solution would be to remove from the data the part of the field
related to the small wavelengths before performing the analysis. Unfortunately, such a
filtering process would require a large number of measuring points not compatible with
a multi-spacecraft mission. Actually, the motion of the satellites in space can be used to
identify the presence of short wavelength disturbances parallel to the main velocity (for in-
stance one can rely on the consistency of successive analyses or on comparisons between
successive measurements at short distances).

3.4 Limitations Related to the Experimental Constraints

As real data were not available when we wrote this chapter, we used synthetic data
generated by numerical simulation to study the effects of multi-spacecraft experimental
constraints on the spectral energy density estimator. We applied theP (ω, k) estimator to
data sampled synchronously at different satellite positionrα, α ∈ {1, . . . , N}. The satel-
lite positions and the wave vectors were tuned to avoid spatial aliasing. By varying the
parameters of the simulations we were able to examine the effects related to the configura-
tion geometry and to the accuracy in the measurements (distance between spacecraft, time
synchronisation).

3.4.1 The Spacecraft Configuration

An unambiguous determination of three-dimensional structures requires, as a mini-
mum, four spacecraft in a three-dimensional configuration. Using simulated data, several
4-spacecraft configurations were studied. The best solutions are obtained with a tetrahedral
geometry [Pinçon and Lefeuvre, 1991, 1992]. The simulations demonstrate the necessity
of checking for the shape of the spacecraft configuration before interpreting the obtained
solutions. This can be easily done using parameters describing the tetrahedron geometry
(we refer the reader to Chapter13).

3.4.2 Inaccuracy in the Time Synchronisation

The accuracy in the time synchronisation between the measurements performed on the
different spacecraft is of prime importance. For a given frequencyω, a time inaccuracy
δt introduces a phase shiftφ = ω δt in the estimation of the power spectra. Phase shifts
greater than a few degrees can theoretically distort aP (ω, k) estimation. Actually, an
exact threshold in the required time accuracy is not easy to define. It depends on the other
errors in the data, and on the satellite configuration. A series of simulations, not shown
here, has been performed byPinçon and Lefeuvre[1992] to provide guidelines. From
them, it seems reasonable to fix an empirical threshold at 30◦. At and above this value,
the fit with the model becomes very poor. The practical consequence of this is to limit
the validity domain of theP (ω, k) estimator to the low frequency range. For instance,
on board Cluster the electric and magnetic field waveform data will be available with an
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accuracy of about 50µs. For such a value, if we fix the maximum phase shift at 5◦ degree,
the corresponding maximum frequency is equal to 280 Hz.

3.4.3 Inaccuracy in the Inter-Spacecraft Distances

The effect of errors related to the inaccuracy in the inter-spacecraft distances is similar
to the one produced by the time synchronisation inaccuracy. For a given wave vectork

in the measured wave field, a distance inaccuracyδrαβ introduces a phase shiftk · δrαβ
in the estimation of the power spectra. As previously, this effect can only be empirically
evaluated from simulations. It has been shown byPinçon and Lefeuvre[1992] that the
upper limit of the relative error in the distance has to be fixed between 10% and 20%.
Cluster would easily meet this requirement since the relative distance error is expected to
be less than or equal to 10%.

3.5 Examples

The data analysis technique described in this chapter can be used to identify a large
class of three-dimensional structures. To illustrate this point, three different applications
are presented in this section. In the first example we applied theP(ω, k) estimator to
synthetic multi-spacecraft measurements composed of the three magnetic plus the three
electric components. In the second example a similar analysis is performed but now the
data are the three magnetic components. The last example demonstrates that relatively
slight modifications of theP(ω, k) estimator allow us to deal with the detection of surface
waves. For all examples the specific nature of the signal analysed is taken into account.

We used synthetic wave fields consisting of superpositions of plane waves and inco-
herent noise. All plane waves propagate with different wave vectors at one frequencyω.
The satellite positions and the wave vectors are tuned to avoid spatial aliasing. For rea-
sons of presentation, the wave vectors are chosen in the planekz = 0. To avoid a loss
of generality, a wave-field simulation including wave vectors distributed over the whole
three dimensional domain would have been preferable. But presentation of the corre-
spondingP(ω, k) would have required several plots. Moreover, limited trials showed that
thekx andky resolutions of the solutions obtained in thekz = 0 case are similar to thekx
andky resolutions obtained in the three dimensional case by integratingP(ω, k) over all
kz. Hereafter the solutions are represented in the planekz = 0 where the field energy is
concentrated. The crosses indicate the location of thek vectors related to the modes intro-
duced in the simulation. TheP (ω, k) solutions are expected to present significant peaks
at these locations. The actual solutions, obtained from the synthetic multi-spacecraft data,
are represented by contour lines linearly scaled between the maximum and the minimum
value.

3.5.1 P(ω, k) Estimator Related to the Electromagnetic Wave Field

First we determined the optimum filter related to the identification of electromagnetic
plane waves [Pinçon and Lefeuvre, 1991]. We assumed that the signalsA(ω, rα)measured
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by the spacecraft are the 6 electromagnetic components of the wave field.

A(ω, rα) =

[
E(ω, rα)

B(ω, rα)

]
∀α ∈ {1, . . . , N} (3.21)

From the Maxwell-Faraday relation, the electric and magnetic components in the(ω, k)

domain are related throughk andω by k × E(ω, k) = ωB(ω, k). As a consequence we
haveA(ω, k) = C1(ω, k)E(ω, k) with

C1(ω, k) =



1 0 0
0 1 0
0 0 1

0 −kz
ω

ky
ω

kz
ω

0 −kx
ω

−ky
ω

kx
ω

0


(3.22)

Taking into account thea priori information coming from the electromagnetic nature of
the field analysed and the Maxwell-Faraday relation, the new filter constraint is

F†(ω, k)H(k)C1(ω, k) = C1(ω, k) (3.23)

Solving the minimisation we find

P1(ω, k) =

Tr

{
C1(ω, k)

[
C1†(ω, k)H†(k)M−1

A (ω)H(k)C1(ω, k)
]−1

C1†(ω, k)

}
(3.24)

Figure3.1a shows theP1(ω, k) solution obtained with the four satellites arranged in
a tetrahedral geometry. The wave vectors of the nine plane waves used for the simulation
have been chosen in a way to avoid spatial aliasing. These wave vectors are quite well
identified, the discrepancies between the peaks and the crosses are very small.

An illustration of the effects of multi-spacecraft experimental constraints on the
P1(ω, k) solution is given by the Figures3.1b, c, and d. Figure3.1b shows the solu-
tion obtained with the four satellites arranged in a linear geometry parallel to thex axis. In
this case the resolution following they axis is very low and the fit with the model becomes
very poor. Figure3.1c shows the solution obtained with the four spacecraft arranged in a
tetrahedral configuration. To simulate inaccuracy in time synchronisation, random phase
shifts between−30◦ and+30◦ were introduced in the data. Figure3.1d shows the solution
obtained with the four spacecraft arranged in a tetrahedral configuration. The inaccuracy
in the distance measurements is taken into account by imposing a relative error(|δrαβ | /
|rαβ |) equal to 20%.

Figure3.2demonstrates the effects of aliasing on theP1(ω, k) solution obtained with
four satellites arranged in a tetrahedral geometry. The wave field analysed is the one used
to obtain the Figure3.1 with one more electromagnetic plane wave. The corresponding
tenthk vector has been deliberately chosen to introduce aliasing (k

†
10 = [−10, −1, 0]).

As pointed out in Section3.3.2, theP1(ω, k) solution is not valid any more. This is clearly
illustrated by the presence of a spurious peak located atkx = −0.7 andky = −1.2.
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Figure 3.1:P1(ω, k) solutions obtained from four spacecraft for a wave field consisting of
a superposition of nine electromagnetic plane waves. The crosses indicate the location of
the ninek vectors related to the plane waves. The satellite positions and the wave vectors
are tuned to avoid spatial aliasing. The solutions are represented by contour lines linearly
scaled between the maximum and the minimum. Solutions obtained using: a) a tetrahedral
geometry; b) a linear geometry (parallel to thex axis; c) a tetrahedral geometry with
random phase shifts between−30◦ and+30◦ to simulate time synchronisation inaccuracy;
d) a tetrahedral geometry in the case of a 20% inter-spacecraft distance inaccuracy.
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Figure 3.2: P1(ω, k) solutions obtained using a tetrahedral geometry for a wave field
consisting of a superposition of the wave field of Figure 3.1 and one more electromagnetic
plane wave. The additionalk vector has been chosen to introduce aliasing. The solution
presents a spurious peak atkx = −0.7 andky = −1.2.

3.5.2 P(ω, k) Estimator Related to the Magnetic Field

As a second illustration we determined the optimum filter related to the identification
of magnetic plane waves [Motschmann et al., 1996]. We assumed that the signalsA(ω, rα)

measured by the spacecraft are the 3 magnetic components.

A(ω, rα) = B(ω, rα) ∀α ∈ {1, . . . , N} (3.25)

Since the magnetic field is divergence-free, the magnetic components in the(ω, k) do-
main are related tok by k · B(ω, k) = 0. As a consequence we haveB(ω, k) =

C2(ω, k)B(ω, k), where

C2(ω, k) = I +
kk†

|k|2
(3.26)

By taking into account the divergence-free nature of the measured wave field, the con-
straint can be rewritten as

F†(ω, k)H(k)C2(ω, k) = I (3.27)

With this new constraint the minimisation described by equation3.15yields

P2(ω, k) = Tr

{[
C2†(ω, k)H†(k)M−1

A (ω)H(k)C2(ω, k)
]−1

}
(3.28)

The result of the application ofP2(ω, k) to synthetic data is shown in Figure3.3. We
assumed a tetrahedron-like configuration, a perfect time synchronisation and no error in
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Figure 3.3:P2(ω, k) solution for the planekz = 0 obtained using a tetrahedral geome-
try. The wave field consists of a superposition of seven plane waves. [Reproduced from
Motschmann et al., 1996.]

the inter-spacecraft distances. TheP2(ω, k) estimator has no problem finding the seven
magnetic plane waves used in the simulation.

3.5.3 Electromagnetic Surface Wave Detector (SWD)

The last example is somewhat different from the two previous. Instead of a plane
wave detector, we determined a filter allowing the identification of electromagnetic surface
waves. We assumed that the signals measured by the spacecraft are the six electromagnetic
components of the wave field.

A(ω, rα) =

[
E(ω, rα)

B(ω, rα)

]
∀α ∈ {1, . . . , N} (3.29)

A link with the previousP1(ω, k) estimator can be found by noting that an electromag-
netic surface wave can be described as an electromagnetic plane wave with complex wave
vector(k = kr + iki). The spatial inhomogeneity associated with the surface waves is
included in the filter by choosing one of the satellite position as a reference and rewriting
theH matrix as

H3(k) =

 I exp(−ikr · r1) exp(ki · (r1 − r1))
...

I exp(−ikr · rN ) exp(ki · (rN − r1))

 (3.30)
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Figure 3.4: SWD(ω, k) solution for the complex plane (kx, iky, kz = 0) obtained using a
triangular geometry; see text. [Reproduced fromPinçon, 1995.]

This way theH3 matrix contains not only the relative phase information at all space-
craft positions, but also a model of the inhomogeneity between spacecraft. The previous
hypothesis of spatial homogeneity is here replaced by the hypothesis of spatial inhomo-
geneity exclusively related to surface waves. Using the Maxwell-Faraday relation we still
can relate the electric and magnetic components in the(ω, k) domain throughk andω. We
haveA(ω, k) = C3(ω, k)E(ω, k) with C3 similar toC1 butk is complex. The optimum
(ω, k)-filter is obtained by demanding that it absorbs all energy contained inMA(ω) except
that corresponding to a surface wave characterised by the frequencyω and the complex
wave vectork.

SWD(ω, k) = Tr
{
F†(ω, k)MA(ω)F(ω, k)

}
= minimum

with F†(ω, k)H3(k)C3(ω, k) = C3(ω, k)
(3.31)

Solving the minimisation problem we find

SWD(ω, k) =

Tr

{
C3(ω, k)

[
C3†(ω, k)H3†(k)M−1

A (ω)H3(k)C3(ω, k)
]−1

C3†(ω, k)

}
(3.32)

Figure 3.4 shows the SWD solution obtained using data generated by a 2-D MHD
code. The simulated spacecraft are arranged in a triangular configuration, they are mov-
ing through the simulation domain with a constant velocity. We assumed a perfect time
synchronisation and no errors in the inter-spacecraft distances. The simulated wave field
is composed of two MHD electromagnetic surface waves with the same frequency and
different complex vectors. The solution is represented in the complex plane (kx real,ky
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imaginary,kz = 0) where the energy of the simulated field is concentrated. The two
surface waves of the simulation are clearly identified by the surface wave detector.

3.6 Summary

The multi-spacecraft data filtering technique described in this chapter allows the identi-
fication of three-dimensional structures in the wave field. The two important cases of plane
waves- and surface waves-identification are examined. The characterisation is achieved
through an estimation of the wave field spectral energy density in the angular frequency
and wave vector domains. Using synthetic data we have validated the usefulness of this
approach.

The list of applications presented in this chapter is not exhaustive. For instance it is
also possible using this technique to develop a large scale current detector from magnetic
field measurement. Having in mind a precise objective, and relevant multi-spacecraft data
being available, the filter bank approach can be used to design filters specifically adapted
to the problem. The performance of the estimators derived using the multi-spacecraft
filtering technique is strongly related to the amount ofa priori information included in the
filter design. Not much can be said about this point, each case being a particular case.

The main limitation is related to the characteristic field lengths which have to be
larger than the mean inter-spacecraft distance to avoid aliasing effects. To obtain a three-
dimensional characterisation, simultaneous measurements on a minimum of four points
in a tetrahedral configuration are required. Other limitations are related to the hypothesis
of space homogeneity and the accuracy with which the multi-spacecraft configuration is
defined in space and time.

The multi-spacecraft filtering technique does not require much computation time and
can be used to identify a large class of different structures. The applications studied have
shown that the resolution obtained in thek domain is sufficient to provide an accurate
characterisation of the wave field. This remains true even in the case of an experiment
consisting of only four measuring points in space.

Appendix: Derivation of P(ω, k)

The problem of the filter determination can be formulated as

P(ω, k) = Tr
{
F† M F

}
= minimum

with F† H = I
(3.33)

SinceF is a complex matrix each element has a real and an imaginary part, thus

Fij = Xij + iYij
(F †)ji = Xij − iYij

(3.34)

Xij andYij are independent variables, consequentlyFij and(F †)ji are independent vari-
ables too. In what follows we treatF andF† as independent matrices. Then, using the
Lagrange multiplier technique, to solve the filter determination problem formulated by
equation3.33is equivalent to minimise

P (ω, k) = Tr
{
F† MA(ω)F + Λ

(
I − H† F

)
+

(
I − F† H

)
Γ
}

(3.35)
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whereΛ andΓ are the Lagrangian multiplier matrices related to constraints involvingF
andF†, respectively. Equation3.35written in terms of components reads

P(ω, k) = (F †)ijMjkFki +3ii −3ij (H
†)jkFki + 0ii − (F †)ijHjk0ki (3.36)

Equating to 0 the partial derivative of this expression with respect toFki and(F †)ij , yields
the following results

∂P (ω, k)

∂Fki
= 0 −→ F†M = ΛH† (3.37)

∂P (ω, k)

∂(F †)ij
= 0 −→ MF = HΓ (3.38)

Then we multiply equation3.37by F and equation3.38by F†. From the definition ofP
and the constraint of equation3.33, we get

Λ = Γ and P(ω, k) = Tr {Γ} (3.39)

ProvidedM is not singular, the expression ofΓ is obtained by multiplying equation3.38
by H†M−1, thus

Γ =

[
H† M−1 H

]−1
(3.40)

Finally, substituting this into equation3.39, we obtain an expression for the spectral energy
densityP

P(ω, k) = Tr

{[
H† M−1 H

]−1
}

(3.41)
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We thank Steven J. Schwartz, Götz Paschmann, and the referee for helpful comments and valu-
able suggestions.

Bibliography

Bendat, J. S. and Piersol, A. G.,Random Data: Analysis and Measurement Procedures,
John Wiley, New York, 1971.

Motschmann, U., Woodward, T. I., Glassmeier, K.-H., Southwood, D. J., and Pinçon,
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4.1 Introduction

Future multi-satellite space missions will provide us with a wealth of data requiring
a very careful data analysis. However, data analysis is an art, the art of seeking hidden
knowledge in a complex set of observations. New methods of pattern recognition are thus
necessary to handle and interpret future missions data. It is the purpose of this chapter to
outline a new method for the determination of the general polarisation properties of any
given set of multi-instrument and multipoint measurements of wave fields in space plas-
mas. The method described is a mode decomposition technique suggested byGlassmeier
et al. [1995]. As this method requires the knowledge of the wave propagation direction a
generalisation of the wavelength and direction filtering technique described byPinçon and
Lefeuvre[1991] andMotschmann et al.[1996] is discussed, which also allows a validation
of the plasma model used in the decomposition technique.

The method discussed is aresearchtool in that it makes use ofa priori assumptions
on the physical system to be studied and the models to describe it. In this the method
resembles similarities with the classical Fourier analysis where the assumption of a time
or space harmonic process is used to decompose any time or space series into its Fourier
components. In a more general way, any signal can be decomposed into a predescribed set
of basis patterns, which could be the MHD eigenmodes, for example. In this respect, the
mode decomposition technique is a kind of generalisation of the Fourier analysis with the
constraints applied allowing one to filter those parts of the signal to be analysed which can
be described by the plasma model used.

4.2 Mode Decomposition of MHD Wave Fields

The mode decomposition method allows the calculation of the energy per eigenmode
of a given wave field for a given position in theω-k space. The method has similarities

79
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with the pure state algorithm presented bySamson[1983]. The wave field to be anal-
ysed will be expanded in its set of eigenmodes. This requires the selection of a suitable
plasma model. Here a magnetohydrodynamic description will be used. The corresponding
eigenmodes are the Alfvén mode, the fast mode, and the slow mode, all travelling forward
and backward, giving one six independent eigenmodes. The coefficients of the expansion
represent the strength of the corresponding eigenmode with respect to the full wave field.
In other words, the coefficients represent the degree of polarisation of the wave field with
respect to a certain eigenmode.

The determination of the eigenvectors is analogous to the derivation of e.g.Akhiezer
and Akhiezer[1975]. The basic equations are

∇ · b = 0 (4.1)
∂b

∂t
= ∇ × (v × B0) (4.2)

ρ0
∂v

∂t
=

∇ × b

µ0
× B0 − c2

s ∇ρ (4.3)

∂ρ

∂t
= −ρ0 ∇ · v (4.4)

Equation4.1 is used to specify the frame of reference. It is chosen in such a way that the
wave propagates parallel to thex axis (k ‖ x); thusbx = 0. The background magnetic
field B0 is in thexz plane withB0 = B0(cosθ, 0, sinθ), whereθ is the angle between the
x axis and the background magnetic field. The vectorsb, v, andρ are the magnetic field,
the velocity, and the density variation of the wave field, cs is the sound velocity andµ0
the vacuum permeability. The six non-trivial componentsby, bz, vx, vy, vz, andρ may be
summarised in the dimensionless state vector

v =


v1
v2
v3
v4
v5
v6

 =
1

vA


vy

by/
√
µ0ρ0
vx
vz

bz/
√
µ0ρ0

ρ/ρ0cs

 (4.5)

with the Alfvén velocityvA = B0/
√
µ0ρ0. The basic equations4.1–4.3 may now be

written in the form
∂v

∂t
+ Z

∂v

∂x
= 0 (4.6)

where the matrixZ is defined as

Z = vA


0 − cosθ 0 0 0 0

− cosθ 0 0 0 0 0
0 0 0 0 sinθ

√
β

0 0 0 0 − cosθ 0
0 0 sinθ − cosθ 0 0
0 0

√
β 0 0 0

 (4.7)

whereβ = c2
s /v

2
A is the plasma beta. By means of a Fourier transformation one gets the

algebraic equation
Z v = w v (4.8)
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where the eigenvaluew = ω/k is the phase velocity. By means of an appropriate choice
of weights for the components in equation4.5, symmetry ofZ has been reached. This is
convenient as further manipulations are easier since now the eigenvalues ofZ are always
real and the eigenvectors are orthogonal. After some algebra we obtain the following
eigenvaluesw and the corresponding eigenvectorse:

w
(12)

= ±vA cosθ ; e
(12)

=



∓
1

√
2

1
√

2
0
0
0
0

 (4.9)

These modes are the forward propagating (index 1) and the backward propagating
(index 2) Alfvén modes.

w
(34)

= ±vf ; e
(34)

=
1

hf



0
0
1

−
v2
A sinθ cosθ

v2
f−v2

A cos2 θ

±
vAvf sinθ

v2
f−v2

A cos2

±
vA

√
β

vf


(4.10)

These modes are the forward propagating (index 3) and backward propagating (index
4) fast modes.

w
(56)

= ±vs ; e
(56)

=
1

hs



0
0
1

−
v2
A sinθ cosθ

v2
s−v

2
A cos2 θ

±
vAvs sinθ
v2
s−v

2
A cos2

±
vA

√
β

vs


(4.11)

These modes are the forward propagating (index 5) and backward propagating (index
6) slow modes.

In the above equations

v(fs )
= vA

√
1 + β

2
±

1

2

√
1 + β2 − 2β cos 2θ (4.12)

and the eigenvectors have been normalised using the normalisations

h(fs )
=

√√√√√1 +
v2
Aβ

v2
(fs )

+ sin2 θ

v2
(fs )

+ v2
A cos2 θ

v2
(fs )

− v2
A cos2 θ

(4.13)

Hence the set of eigenvectorse1, . . . , e6 forms an orthonormal base for the MHD wave
state space.
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Following work bySamson and Olson[1980] andSamson[1983] on pure states and
their more general concept of polarisation, an arbitrary MHD wave field can be expanded
in the set of eigenmodes via

v =

6∑
i=1

gi ei (4.14)

The complex coefficientsgi represent the contributions of the modesi to the total wave
field v. The total energy of the wave field is given by

|v|
2

=

6∑
i=1

|gi |
2 (4.15)

Thus,|gi |2 represents the energy contribution of modei. The coefficientsgi can be deter-
mined from equation4.14via

gi = ei
T v (4.16)

where T denotes the transposed vector.
Equation4.16may be regarded as describing the link between the actual observations

and the plasma model chosen:v is the observed wave field vector and the vectorsei are
the eigenvectors of the model space. In traditional spectral density analysis the complex
spectral density matrix is

S = v v† (4.17)

where † stands for hermitian adjoint. With this definition of the spectral density matrix
one gets

|gi |
2

= eTi Sei (4.18)

Finally, we may define normalised expansion coefficients via

gNi =
gi√∑6
j=1 |gj |2

(4.19)

which represent the relative share of an eigenmode to the total wave field.

4.3 Test of the Decomposition Method

To test the applicability of the mode recognition method we simulate an MHD wave
field. At the left boundary of a one-dimensional simulation box a wave transmitter of fixed
frequency is operating. All components of the state vectorv will be excited. The simu-
lation uses a hybrid code where the ions are described as particles and the electrons as a
massless fluid (Section18.4.3in Chapter18). In principle this also allows excitation of ion
kinetic effects. However, these are suppressed by choosing a transmitter frequency much
below the ion cyclotron frequency. Only magnetohydrodynamic modes will be excited in
the simulation box. We use a transmitter frequency ofω = 10−2�i , and a length of the
box of 103c/ωi . Here�i andωi are the ion gyrofrequency and the ion plasma frequency,
respectively, andc/ωi is the ion inertial length. The background magnetic fieldB0 has
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an angle ofθ = 30◦ with the x axis which is the simulation axis. The plasma beta is
β = 1. The resulting quasi-stationary and quasi-homogeneous wave field is displayed in
Figure4.1where theby andvx components are shown as examples.

The state vector as given from these simulations is transformed from thex-t space into
theω-k space with the resulting wave number spectrum displayed in Figure4.2. It should
be remembered that we run the simulation at a fixed transmitter frequency. The wave
number spectral density maximises atk/2π = 0.014, 0.023, and 0.082ωp/c. For these
maxima we determine the corresponding complex spectral density matrices according to
equation4.17. Subsequently, the eigenvectorse1, . . . , e6 are computed usingθ = 30◦ and
β = 1. This allows one to determine the coefficients|gNi |

2 from 4.18and4.19as listed in
Table4.1.

Table 4.1: Results of the simulation

k/2π |gN1 |
2

|gN2 |
2

|gN3 |
2

|gN4 |
2

|gN5 |
2

|gN6 |
2

0.014ωi/c 0.02 0.001 0.93 0.01 0.007 0.04

0.023ωi/c 0.95 0.001 0.01 0.006 0.01 0.02

0.082ωi/c 0.05 0.002 0.02 0.01 0.90 0.03

At k/2π = 0.014ωi/c, the dominance of the third coefficient allows one to identify
this mode as the forward propagating fast mode. Atk/2π = 0.023ωi/c, the first co-
efficient dominates, and the mode is identified as the forward propagating Alfvén mode.
At k/2π = 0.082ωi/c, the fifth coefficient dominates, and the mode is identified as the
forward propagating slow mode, much as expected from our simulation.

We thus conclude that application of the discussed mode recognition mechanism to a
simulated wave field yields a sufficiently precise mode identification, provided the wave
propagation direction is known. To study the effect of any errors ink-determination, i.e.,
any uncertainties in the determination of the angleθ , we used the same spectral density
matrixP to determine the expansion coefficients. However, the angleθ has been varied by
∓20◦ around the correct value. We found that only minor modifications of the expansion
coefficients occur, i.e. only a small fraction of the wave energy is shifted between the
different modes. In a similar way the influence of errors in the determination of the plasma
β have been studied. Again it can be demonstrated that the suggested mode recognition
mechanism is very robust against errors inβ as well asθ . Determination of the respective
modes is rather stable and unique.

4.4 Thek Filtering and Generalised Minimum
Variance Analysis

The mode decomposition as described above requires the knowledge of the wave prop-
agation and the wave vectork. A generalised minimum variance technique has been intro-
duced into the field of space science byPinçon and Lefeuvre[1991] andMotschmann et al.
[1996], which allows the determination of wave propagation vectors with high precision.
General aspects of this technique are described in Chapter3. Here we shall outline only
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Figure 4.1: Theby andvx components of the simulated wave field in an one-dimensional
simulation box.

Figure 4.2: Fourier transformedby andvx component of the simulated wave field.



4.4. The k Filtering and Generalised MVA 85

those elements of the technique which are required to understand its potential for a wave
mode analysis.

We assume a wave field consisting of an arbitrary number of partial waves. Each partial
wave is assumed as a quasi-monochromatic plane wave. Thus it may be represented by its
frequencyωn, wave vectorkn, and amplitude vectorAn. With this one has

U(r, t) =

N∑
n=1

Ane
i(kn·r−ωnt) + noise (4.20)

where the amplitudesAn are complex with random phase. Prior to anyk-analysis, that is
prior to the determination of propagation direction and wavelength, a frequency analysis
must be done. This can be achieved with conventional techniques of spectral analysis.
Any k-analysis will then be done for a fixed frequencyω.

To sketch the main steps of the analysis we start from the observed wave field ampli-
tudesU(rα), whereα = 1, . . . , N andrα denote the position vectors of the measurement
points. These are, for example, the locations of the four satellites as planned for the Cluster
mission. This set of measurements can be arranged in the data matrix

M = E


 U(r1)

...

U(rN )

  U(r1)
...

U(rN )

†
 (4.21)

whereE stands for expectation value. This data matrix needs to be treated to extract
the different waves, which built up the wave field vectorU . A detailed derivation of the
required filter matrixF is given byMotschmann et al.[1996]. The following expression is
found

F(k) = M−1H(k)
(
H†(k)M−1H(k)

)−1 (4.22)

This filter matrix has to be applied to the data matrixM to receive the required spatial
spectral information. The filter matrix describes an adaptive filter process with the filter
depending on the data themselves. The matrixH contains the sensor positions and is given
by

H(k) =


I eikr1

...

I eikrN

 (4.23)

The spatial spectral information is contained in the spectral density matrixP(k) given
by

P(k) = A(k) A†(k) (4.24)

Now, applyingF to M one obtains

P(k) =
(
H†(k)M−1H(k)

)−1 (4.25)

and the spectral power densitŷP (k) can be defined as the trace of this matrix:

P̂ (k) = Tr|P(k)| (4.26)

Thek domain can now be scanned and thosek-positions be found where the spectral power
density maximises. Results and further discussion of thek-filter technique are described
in Chapter3.
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4.5 Model Validation

The filter process outlined above may be interpreted as a projection of the actual data
onto the wave direction specified by the wave vectork, i.e., the procedure outlined is a gen-
eralised projection method applied ink space. In deriving equation4.25the only assump-
tion used is that of a plane propagating wave. However, in general, other constraints on
the wave field measured can be applied. This opens another application of the generalised
minimum variance analysis, that of a more general validation of the model assumptions
necessary for the mode decomposition method. We shall discuss two examples in the fol-
lowing, the case of selecting magnetic solenoidal wave fields and magnetohydrodynamic
wave fields out of any given field.

Previously, the described filter process was applied to magnetic field data only. The
amplitudeA in this case is given by the magnetic field vectors, that isA(ω, k) = B(ω, k).
A natural constraint to be applied to the magnetic field is due to its solenoidal character.
We thus have

k · B = 0 (4.27)

a constraint equivalent to the projection [Motschmann et al., 1996]

B = C B (4.28)

with
C = I + κ k† (4.29)

whereκ is an arbitrary vector with the restrictions

κ 6= −
k

|k|2
κ 6= 0 (4.30)

Inserting4.29into equation4.28demonstrates that the constraints4.28and4.27are equiv-
alent, and gives one

B = B + κ (k · B) (4.31)

from which equation4.27follows for κ 6= 0.
Application of constraint4.28modifies equation4.24; the spectral density now reads

P(k) =
(
C†(k)H†(k)M−1H(k)C(k)

)−1 (4.32)

Note that equation4.32is valid for all constraints which can be written in the form4.28.
Determination of the spectral density matrix as given by4.32allows to separate solenoidal
from non-solenoidal parts of the measured wave field. As any physically reasonable mag-
netic field must be solenoidal the special general mode filter outlined here is useful to
suppress any non-solenoidal noise in the data.

In a similar way, any set of observations can be treated with respect to contributions
which can be, for example, described as MHD and non-MHD variations. Such a model
filter is useful as the mode decomposition technique requires a set of orthonormal eigen-
vectors to be found. These eigenvectors can be constructed from assuming e.g. an MHD
model describing the observations with sufficient accuracy. However, any check of this
assumption is very useful. And the constrained generalised minimum variance analysis
opens such a possibility.
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Here we shall discuss the case of plasma processes which can be described in the
linearised MHD approximation. Observed parameters are the perturbed magnetic field
vectorb, the perturbation of the bulk velocityv, and the perturbed plasma mass density
ρ. These perturbations are to be separated from the mean background parametersB0,V 0,

andρ0. The wave vector amplitude is given by

A (ω, k) =

(
b(ω, k)

v(ω, k)

ρ(ω, k)

)
(4.33)

with its components related via the following linearised MHD equations

− ωb + (V0 · k)b = (B0 · k)v − B0(k · v)

−ωv + (V0 · k)v =
B0 · k

µ0ρ0
b −

k

µ0ρ0
B0 · b −

c2
sk

ρ0
ρ (4.34)

−ωρ + (V0 · k)ρ = −ρ0kρ

Equations4.34can be represented in the form4.28after some algebra resulting into equa-
tion 4.35(on page88).

With this definition ofC, the spectral density matrix4.32 the observations can be
scanned in thek domain. Due to the constraint applied only those contributions pass the
filter which may be interpreted as waves in the linear MHD approximation. The mode
decomposition method can then be used to determine the different MHD modes out of
which the observed wave field is built up.

4.6 Conclusions

Techniques for the analysis of the dispersion and the polarisation of plane waves based
on observations with small satellite arrays are presented. The major idea of the wave
vector analysis is the construction and application of an adaptive filter selecting a partial
wave at anyk and under constraints given by e.g. the MHD equations. By scanning the
k space the spectral density matrix is given for the entirek domain. The presence of
waves is determined for those positions ink space where the spectral power maximises.
This k-filtering method is exposed to the aliasing problem like any other spectral analysis
method. To avoid ambiguities by spatial aliasing one has to demand|k ·1r| ≤ 2π for any
separation1r between two sensor positions. When detecting a wave at least two sensors
are needed within a wavelength.

A mode decomposition tool or generalised polarisation analysis procedure is intro-
duced by defining a state vector in the state space spanned by the observed independent
parameters, which number also defines the state space dimension. Whereas for thek-filter
technique the number of observed parameters is less important a unique mode decomposi-
tion requires a full set of observable independent parameters. Thus, the state space can be
spanned by the pre-selected eigenvectors, and any observed state may be expanded into a
series of these eigenvectors. The coefficients of this expansion correspond to the power a
specific mode contributes to the observed state.

A full mode recognition thus requires two major steps: First, the constrained minimum
variance analysis is applied to check the data for the applicability of a particular plasma
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model, e.g. magnetohydrodynamics, and to determine the wave propagation vectork. Sec-
ond, the mode decomposition technique is applied to those wave number domains where
the spectral density matrix maximises under the constrainedk filter. This technique has
been successfully tested with synthetic data. Anyone interested in the application of the
techniques is invited to contact the authors for more information on the described tools.
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5.1 Introduction

In this tutorial chapter, we discuss the measurement of plasma velocity distributions
for particles belonging to the energy range from a few eV to a few tens of keV, sometimes
referred to as the “hot plasma” regime. Instruments for the measurement of more energetic
particles are not explicitly dealt with here, although some of the concepts reviewed here
for hot plasma instruments also apply to energetic particle instruments. This chapter is a
companion for Chapter6. Plasma velocity moment determination is a procedure which
manipulates the velocity distribution measurements; thus the quality of the plasma mo-
ments is affected by the quality of the distribution measurements. We will examine the
general principles of typical modern instruments, showing the way the data is acquired,
with emphasis on the capabilities and limitations of the instruments used. The chapter will
illustrate the nature of the measured distribution data products and discuss their correct
application and possible pitfalls in their interpretation.

A generic instrument for measuring plasma velocity distributions consists of a velocity
space filter system, a detector and a counter. The velocity space filter controls access to
the detector, so that it is only those charged particles from a pre-selected region (volume
element) in velocity space which may reach the detector at a given instant in time. The
detector is able to respond to an arriving charged particle by generating an electrical sig-
nal. The counter records the electrical signals and their time of arrival. The distribution
is characterised by making measurements for a set of different regions in velocity space.
Measurements of a multi-species plasma require the additional capability of distinguish-
ing between ions of different masses and charge states. It is often important to be able to
distinguish between particles of different masses, for example for studies seeking to iden-
tify the sources of particles, or studies where the mass density or higher moments of the
distribution function are required (see Chapter 6).

91



92 5. MEASUREMENT OFPLASMA VELOCITY DISTRIBUTIONS

5.2 General Principles of 3-D Velocity Distribution Mea-
surements

There are a variety of instrument designs based on the “curved plate electrostatic anal-
yser” which are able to acquire three-dimensional velocity distributions relatively rapidly.
These can separate particles according to their direction of arrival and according to differ-
ent values of energy per unit charge,E/q (and according to positive or negative charge),
but do not distinguish between particles of different masses. Mass resolving instruments
are built either by adding a “time of flight” (TOF) analyser section at the exit of anE/q

analyser or by using a system which incorporates a deflection magnetic field.
In this section we will describe in general terms the process of measuring non-mass

resolved velocity distributions with anE/q analyser, specifically a “Top Hat” spherical
section analyser (an adaptation to provide mass resolving capability will also be men-
tioned). It will become clear that the capabilities of an instrument in terms of resolution
and coverage of solid angle andE/q, and of time resolution, are not independent vari-
ables, and that an instrument is therefore usually tailored to its mission. Similarly, there
are “dynamic range” constraints; limits to the count rates an instrument can deal with (also
discussed below) which require that the analyser is designed to control the flux of parti-
cles reaching the detector to lie within acceptable limits in the plasmas of interest. The
instrument may encounter plasmas other than those for which it has been optimised, in
which case its performance may be poor. It is important that users of data acquired with
such instruments have an awareness of the instrument capabilities and limitations, and in
particular of when the data may not be providing a good description of the plasma the
instrument encountered.

5.2.1 Velocity Space Filter

The velocity space filter must be able to select particles arriving from a restricted ve-
locity space volume. It should be able to select a solid angle element from the unit sphere
of look directions, and should be able to independently select particles of a chosen energy.
A three-dimensional velocity space distribution is constructed by making measurements
which sample the full 4π solid angle at a desired resolution, for each of a set of energy
values which cover a required energy range, again at a desired resolution. Typical mod-
ern instruments are not able to simultaneously observe the full unit sphere, but instead
cover a quasi-two-dimensional swathe following a great circle on the unit sphere, and rely
on spacecraft spin or an appropriate device to scan the field of view around the full unit
sphere. Simultaneous measurement of several distinct bands ofE/q across a broad range
of E/q is also not usually possible.

Instantaneous Solid Angle Coverage (FixedE/q)

The “Top Hat” is a widely used instrument design which uses a curved plate analyser
(CPA) as its velocity space filter. We discuss a spherical analyser here, but other analyser
geometries which have different optical properties, such as the toroidal analyser, are also
often used in Top Hat instruments. This is an example of the diversity in modern plasma
instrument design which we discuss further below. We will refer to the curved plates in
our example as “hemispheres” (although the turn angle is often less than 90◦ and the outer
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Figure 5.1: A schematic illustration of a Top Hat electrostatic analyser. The upper figure
shows a cross-section through the analyser in a plane that contains the axis of rotational
symmetry, which is marked by the dashed line labelled “AA”. Fine lines indicate the az-
imuthal angle acceptance range,1ψ . Particles which do not have arrival paths lying within
the fan bounded by these fine lines cannot reach the detector plane. The fan is defined by
the parallel planar plates of the collimator section at the Top Hat entry aperture. The full
range of directions from which particles may enter the aperture and go on to reach the de-
tector plane is defined by rotating the acceptance fan about AA (and so includes directions
into and out of the paper). As indicated by the bold arrows, the trajectories of particles
which successfully pass through the analyser are rotated through about 90◦ as they pass be-
tween the “hemispheres” (see also Figure5.3). Shortly after leaving the exit of the nested
hemispheres, the particles strike the detector (indicated by the grey rectangles). The lower
figure shows the detector in plan view (i.e. looking down the axis AA). We show a detector
as an annular ring divided into several (the figure uses 24) equal sectors each associated
with a different polar angle,θ . Each corresponds to a “polar zone” of width1θ as marked.
Other detector arrangements are also possible.

hemisphere has a hole in it!). Figure5.1 provides a schematic illustration, showing that
the analyser has a rotational symmetry about the axis AA. The analyser has a field of
view of [360◦ by 1ψ ], where1ψ describes the aperture acceptance angle range and is
usually less than 5◦. A parallel plate collimator mounted at the entrance to the aperture
(see Figure5.1) is used to define1ψ for all particles whatever their energy. Particles
approaching the analyser aperture from directions outside the aperture acceptance angle
range will strike one of the collimator plates and so be brought to a halt (although they
may generate secondary electrons, which must be controlled, but we will not discuss that
problem here). Thus the collimator prevents any particles with arrival directions lying
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Figure 5.2: The instantaneous field of view of a Top Hat analyser consists of a rotation
through 360◦ of the azimuthal angle acceptance fan, angular width1ψ , about the symme-
try axis AA. The field of view is shown divided up into separate sectors, of angular width
1θ , each corresponding to a detector zone at a different polar angle.

outside the field of view from reaching the detector. The other aspect of velocity space
filtering,E/q selection, is discussed later. The instantaneous field of view is illustrated in
Figure5.2.

We will work with a spherical polar coordinate system (θ, φ) where the polar angle,θ ,
is measured in the plane whose normal is parallel to the analyser symmetry axis, as illus-
trated in Figures5.1 and5.2. The azimuth angle is used later when we discuss scanning
the field of view to cover the full unit sphere. The polar angle,θ , has a range of 360◦,
and is defined relative to an arbitrary reference direction. For an analyser on a rotating
spacecraft, the reference direction is chosen to lie parallel to the spacecraft spin axis.

Particles arriving from anywhere in the field of view enter the analyser and are de-
flected away from the plane of the field of view, to an annular region at the analyser exit,
where the detector is placed. A set of parallel particle trajectories from a givenθ direction
will be focused (i.e. the particle trajectories will be brought together in a small dot shaped
region in the “focal plane”) irrespective of where they enter the aperture, as shown in Fig-
ure5.3. If some of these trajectories are displaced from one another along the symmetry
axis AA, the particles will arrive in the focal plane separated in the radial direction, so
the focused trajectories form a narrow strip aligned radially. The detector dimensions are
matched to the maximum possible radial extent of the focused beam, which is well defined
by the analyser. The Top Hat’s desirable property of good focusing at all polar angles is
not shared by all analyser designs.

Particles that enter the analyser from directions with different polar angles are transmit-
ted to different parts of the detector and may be distinguished from one another according
to where they strike the detector. The detector is usually subdivided into a number of
zones (also often called sectors), and particles arriving in a given zone are grouped to-
gether by the counter. The analyser focusing will typically be quite precise (of order 1◦

in a well designed system) so the polar angle resolution1θ is not usually constrained by
the quality of the focus. Instead the chosen polar angle resolution is usually the coarsest
resolution consistent with making an effective measurement of the plasmas the instrument
is intended to study (e.g. see discussion of velocity space resolution requirements in Chap-
ter 6, Section6.4.1, page132). Finer resolution brings with it the problems of more a
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Figure 5.3: An illustration of particle trajectories through a Top Hat electrostatic analyser.
Thick lines shows the trajectory of particles which have been accepted by the analyser.
The lower figure shows a projection of particle trajectories onto the plane containing the
detector. The small circle at the centre represents the opening in the outer hemisphere
through which all detected particles must pass. The focusing of parallel beams arriving
from (three) different polar angles is shown. The focusing properties of a Top Hat analyser
are equally good whatever the polar angle of arrival.

complex detector, more counters, and how to reconcile a limited ability to transmit data
with an increase in measured data volumes. Thus, finer resolution is only provided when
it is a solid scientific requirement.

There is no discrimination between detected particles that arrive from directions shar-
ing a given polar angle, but having different aperture entry angles in the range1ψ . Thus
the instrument samples a set of solid angles each of dimension [1θ by1ψ ].

Overlap of Solid Angle Coverage of Rotating Analyser (FixedE/q)

In order to detect particles from the full unit sphere, the Top Hat field of view must be
rotated through the full range of azimuth angle. A simple and commonly used approach
is to mount the Top Hat on a spinning spacecraft with the analyser symmetry axis perpen-
dicular to the spacecraft spin axis. The plane of the analyser field of view is then parallel
to the plane containing the spin axis. (In the following discussion we make the reasonable
assumption that we can neglect the offset of the spacecraft spin axis and the analyser field
of view plane, and assume that the spin axis lies in the field of view plane.) Figure5.4
illustrates the orientation of the analyser field of view in the (θ, φ) coordinate system. By
convention,θ is defined so that the spin axis passes throughθ = 0◦ andθ = 180◦.
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∆θ
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φ

Figure 5.4: The instantaneous field of view of a Top Hat analyser mounted on a spinning
spacecraft, shown in the(θ, φ) coordinate system where the spin axis is aligned with the
θ = 0◦ and 180◦ axis. The analyser symmetry axis AA lies in the spin plane, and rotates
about the spin axis.

∆ψ

∆φ
∆θ

∆θ

Figure 5.5: The instantaneous field of view shown at two separate instants, separated in
azimuth angle by1φ, viewed looking along the spin axis direction. In order to illustrate
the solid angle coverage of the field of view at these two instants, we have superimposed
a unit sphere representing the full 4π solid angle range. Nested circles show boundaries
between polar zones (shown1θ = 15◦ apart). Radial lines are centre lines of 32 azimuthal
look directions (1φ = 11.25◦ apart). The illustrated azimuthal angle acceptance fan
angular width1ψ = 5◦. The solid angle associated with regions of a fixed angular width
in polar and azimuth angle is [1θ by1ψ ]. The overlap of solid angle coverage is obvious
for polar zones near the spin axis (centre of the image).
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Figure 5.6: Solid angles are subtended from the centre of the unit sphere. Thus the solid
angle subtended by an arc which subtends1φ at the spin axis (in the plane parallel to
the spin equatorial plane) and which virtually lies on a circle at constantθ , is given by
1φ sinθ . For a Top Hat analyser, the solid angle associated with a fixed polar angular
width is controlled by the azimuthal angle acceptance fan angular width1ψ , rather than
1φ sinθ , so we have an overlap between two measurements separated by1φ, of solid
angle coverage near the spin axis, as illustrated in Figure5.5.

Figure5.5shows a view looking down the axis of rotation of a steadily spinning anal-
yser. Thin radial lines represent the plane (seen “edge on”) instantaneously occupied by
the field of view at successive regularly spaced time intervals,1t , which correspond to
regularly spaced azimuthal look directions separated by angles,1φ. Nested circles rep-
resent the boundaries between polar zones, spaced out at intervals of1θ . The two bold
rectangles represent the projection of the field of view of the analyser (imagine looking
at Figure5.2 from within the plane of the field of view) at two instants in time, separated
by 1t . The width of each bold rectangle corresponds to the aperture acceptance angle
1ψ . In our example,1φ > 1ψ . It is clear from the figure that there is an overlap of the
solid angle coverage of these two fields of view of the instrument (i.e. of the rectangles)
near the spin axis, but not near the spin equator. The degree of overlap can be reduced by
increasing1t , but it can never be reduced to zero.

The reason for the overlap is that the solid angle associated with the field of view of
a given polar zone is independent of the polar angle, in practice, whereas the solid angle
would ideally become smaller as the look direction approaches the spin axis. Consider
Figure5.6, which shows a line of constantθ (i.e. a circle) marked on the unit sphere. Two
meridian planes separated by an angle1φ are indicated by dotted lines which show where
they intersect the upper part of the sphere. These planes cut off an arc on the circle, which
subtends an angle1φ in the plane whose normal is along the vertical axis. The points
marking the ends of this arc also identify a second arc (not explicitly shown) on the great
circle which passes through both points, which subtends an angle1φ sinθ at the centre of
the sphere, as shown. Since solid angles are referred to the centre of the sphere, it is the
angle subtended by the great circle arc rather than the angle between the meridian planes
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∆φ sinθ
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Figure 5.7: An illustration of the instantaneous field of view needed for an “ideal analyser”
in which the solid angle coverage of observations spaced1φ apart in azimuth could be
seamlessly combined without overlap or gaps to provide complete 4π coverage of solid
angle. Here the solid angle associated with regions of a fixed angular width in polar and
azimuth angle would be [1θ by1φ sinθ ].

which we use when defining solid angles. For complete and non-overlapping solid angle
coverage, we would need a variable1ψ so that the field of view could conform to the
pattern described by lines of constantθ andφ on the unit sphere, as indicated by thin lines
in Figure5.5 (see also Figure5.11). Then the solid angle associated with a directionθ
would be [1θ by 1φ sinθ ] as shown in Figure5.7. In practice, the aperture acceptance
angle1ψ is fundamentally independent ofθ and does not decline as sinθ as shown in
Figure5.4, so we have to accept that the solid angle coverage, given by [1θ by1ψ ], will
overlap at the poles.

As shown in Figures5.4 and5.5, a “Top Hat” is able to observe simultaneously two
polar angle fans, each of polar angle range 180◦, of aperture angle width1ψ , and these
fans stare in directions separated by 180◦ in azimuth angle. Solid angle varies with polar
zone,θ , and there is an inevitable overlap of solid angle coverage between measurements
made near the spin axis at different times. The full range of azimuth angle is not simultane-
ously accessible, but the range is scanned as the satellite rotates so that particular azimuth
directions may only be observed at particular times. A 360◦ field-of-view analyser can
scan the full unit sphere in half a spin.

On some instruments the 360◦ field of view is sacrificed in favour of some other capa-
bility. The field of view may be divided into two parts, each playing a different role. For
example, one part may retain a 180◦ field of view (fromθ = 0◦ andθ = 180◦ to give 4π
solid angle coverage in a spin) for studying magnetospheric and magnetosheath plasmas.
For an ion instrument, the other part might be designed for solar wind measurements, with
a reduced field of view of perhaps 135◦, centred onθ = 90◦, and a detector with fine
polar resolution (i.e. small1θ ). Alternatively, the two parts of the field of view could
have different geometry factors (see Section5.2.3) to give different degrees of sensitivity.
This extends the instrument dynamic range, enabling it to make good measurements in a
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wider variety of plasma conditions. A 360◦ field-of-view analyser must be mounted with
the field of view plane tangential to the spacecraft surface in order that the spacecraft does
not get in the way of arriving particles. However, stray electric fields at the spacecraft
surface can affect the trajectories of the measured particles, to an undesirable degree in
the case of low energy particles. Thus analysers intended to study low energy particles are
sometimes mounted such that they look radially out from the spacecraft, sacrificing field
of view in order that the trajectories of arriving particles are less affected by the spacecraft
stray electric fields. In this case, a scan of the full unit sphere takes a full spin as the field
of view is only 180◦.

Energy Per Charge Sampling

Before discussingE/q sampling with a Top Hat analyser, we briefly mention another
electrostatic analyser concept. The principle of the family of Retarding Potential Analysers
(RPAs) is to direct particles through an electric potential that acts to oppose their motion.
Particles withE/q values lower than the applied potential will be brought to a standstill
and then sent back out through the entrance aperture without being detected. All particles
with E/q in excess of the applied potential reach the detector and are counted. In order
to assess the number of particles within a given band ofE/q values, measurements are
made for two values of the potential (corresponding to the upper and lower bounds of the
E/q band). The difference in the number of counts then corresponds to the number of
particles within the band ofE/q values (provided that the plasma has not altered during
the time between measurements). Note that the RPA must generate potentials equal to the
E/q values of interest.

A curved plate analyser (CPA), directly measures the number of particles within a nar-
row band ofE/q. The energy per unit charge of particles admitted by the analyser is con-
trolled by virtue of an electric potential applied between the inner and outer hemispheres,
which deflects the particle trajectories so that they closely follow the plate curvature, al-
lowing particles to pass between the plates without striking them (and so being lost). The
potential required to deflect a particle within a CPA is a fraction of the potential which
would be required by an RPA to bring the same particle to rest (a technical advantage
for the CPA). The CPA determines the number of particles within the selected band of
E/q values in a single measurement (again, unlike the RPA). For a spherical geometry
analyser with hemispheres of radiiR1 andR2 (whereR1 < R2), we can define the gap
1R = R2 − R1, the mean radiusRM = (R1 + R2)/2 and the radius at which the poten-
tial is midway between the values on the platesRV =

R2R1
RM

. Particles travelling between
the plates are subject to the radial electric field (qdV/dR) which provides a centripetal
force. The field strength is controlled by the (variable) potential difference1V between
the hemispheres and the dimensions of the hemispheres.

For simplicity we will consider particles which follow circular trajectories through the
analyser (i.e. tangent to the hemispheres). For these particles, the required centripetal
force for circular motion is provided by the electric field at all points along their path
within the analyser. As the centripetal force is given by (mv2/R = 2E/R) for a particle
of kinetic energyE travelling at radiusR, the balance of forces requires that

E/q =
R

2

dV

dR
=

1

2

1V

1R

R2R1

R
(5.1)
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The parameterk = RM/1R is called the “analyser constant”. It is a useful figure of
merit which is related to several properties of the analyser. For example, it can be used
to characterise the ratio of the potential difference needed to bring the particle to rest, as
in an RPA, and the CPA inter-hemisphere potential difference;(E/q)/1V = k/2. This
relationship is the result of applying equation5.1 in the case of a circular path of radius
RV . Note that the analyser constant is purely controlled by the radii of the hemispheres.
Typical values ofk are in the range 5 to 10.

For a fixed potential, the analyser admits particles with energy per charge values which
fall within the narrow range, or “intrinsic passband”,1E/q, centred on a particular value
of E/q, often termed the ”passband centre energy”. The passband width is related to the
range ofE/q values accepted for a fixed1V which, according to equation5.1, corre-
sponds for circular trajectories to the range of values ofR betweenR1 andR2, i.e.1R. If
we assume that the passband centre energy trajectory has radiusRV it is easy to use equa-
tion 5.1 to show for this special case of circular particle paths another important result
involving k, which is that1E/E = 1/k, i.e.1E/E is a constant.

In general, particle trajectories in a spherical section analyser can be eccentric ellipses
as well as circles. The force balance expression used above does not hold along ellip-
tical trajectories. The non-circular trajectories result in a passband which is not equally
weighted at all energies within the acceptance range (as would be expected if circular tra-
jectories alone are considered). For example, a particle with energyE which enters along
a tangent at radial distanceR will follow a circular path of radiusR if E andR satisfy
equation5.1, but other particles with larger or smaller energiesE‘ which enter along the
same path will follow elliptical paths in the analyser, and will only reach the exit if their
paths do not intersect a hemisphere. A particle will strike a hemisphere if the difference
E‘ −E exceeds the difference in the potentials of the equipotential surface of radiusR and
of the hemisphere towards which the particle moves. Thus, ifR is nearR2, then the range
of transmitted energies which are smaller thanE is greater than the range of transmitted
energies larger thanE. Similarly, a wider range of energies greater thanE, as opposed to
energies belowE, are transmitted ifR is nearR1. The widest spread of energies to either
side ofE occurs when the path has radiusRV , at which distance the potential is midway
between the potentials of the two hemispheres. Thus there is a peak in the energy response
of the aperture as a whole, usually associated with particles entering on the path of radius
RV . This peak typically falls at the centre of the passband in a well designed analyser.

The particular expression given above for1E/E in terms ofk applies only in the
special case outlined there. For example, a CPA where the aperture dimensions areR1
andR2, but where the gap between the plates is wider than1R, can accommodate ad-
ditional particle trajectories which the analyser described above would not accept; these
being paths which describe more eccentric ellipses than would be possible if the plate sep-
aration matched the aperture. Thus this second CPA will have a broader spread of accepted
energies about the centre energy, and a larger1E/E.

In real analysers, whether they are simple CPAs or use a Top Hat aperture, there are
non-radial electric field components near the apertures. These ”fringing fields” also lead
to more complicated behaviour than we have outlined here, although instruments are of-
ten designed to minimise the effects of the fringing fields so that performance is close to
the ideal discussed above. Experimental determination of the actual analyser transmission
characteristics are always an important part of an instrument calibration, in order to val-
idate both that the design has correctly addressed all the complexities hinted at here and
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Figure 5.8: The figure illustrates theE/q step spacing (with centre valuesE/q separated
by stepsδE/q) and the change inE/q acceptance range1E/q with centre value under
the condition that1E/E is constant. The axes are a linear energy per charge scale and
a linear time scale (both in arbritrary units). In practice, energy steps are often spaced so
that the steps are separated byδE/q = 1E/q rather than the wider spacing shown here.

that the manufacture has correctly followed the design.
In fact, the property that1E/E is a constant applies generally for any given CPA

design (i.e. even when elliptical paths are considered) so that ifE/q is altered,1E/q also
changes. Thus the intrinsic passband is narrower when the admittance energy is smaller,
as shown in Figure5.8. The intrinsic passband width is typically chosen so that1E/E

is of order 10 to 20% for measurements of magnetospheric plasmas, but may be smaller
where betterE/q resolution (usually across a reducedE/q range) is required; the classic
example being that of solar wind measurements.

An instrument is usually intended to study a broad range ofE/q, but can only measure
in a narrow range1E/q at any given moment. The desired coverage ofE/q is achieved
by making consecutive measurements for values ofE/q spread across the required range.
Typically these are spaced logarithmically, byδE/q, (chosen so thatδE/E is constant)
and ideallyδE/q = 1E/q so that there are no gaps in coverage between the passbands
of consecutive measurements, as illustrated Figure5.9.

Data is usually gathered for a fixed time interval, the accumulation timetacc (the dura-
tion of which is influenced by other instrument design parameters). In some instruments
the inter-hemisphere potential is held constant for> 90% of tacc and rapidly lowered to
the next required value during the remainder of the interval. In this case, where we “step”
through a range of measuredE/q values, each measurement is essentially taken at a well-
defined, fixed value ofE/q and for a well defined passband1E/q.

Another common practice is to “sweep” through a range of measuredE/q values,
which involves allowing the potential to continuously vary (usually declining logarithmi-
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Figure 5.9: Similar to Figure5.8, except that theE/q scale is now logarithmic andδE/q
is set equal to1E/q. Also, unlike Figure5.8, this figure represents a complete energy
sweep, or set of energy steps, consisting of 15 accumulation intervals and a flyback in-
terval. For a single accumulation interval, we show the azimuthal angle acceptance fan
angular width1ψ at the start and end of an accumulation time (horizontal white and dark
grey rectangles) separated by an angle1φacc so that the full range of accepted azimuth
angles during the accumulation interval is1ψ ′

= 1ψ +1φacc (the figure represents the
case ofθ = 90◦). The illustrated azimuth angle resolution1φ (= 1φsweep) corresponds
to 11.25◦, or 32 sweeps per spin, and the value of1ψ is shown as 5◦. For an energy
sweep of duration 16tacc (15 accumulation intervals and one flyback)1φacc = 1φ/16,
corresponding to 0.7◦, so that1ψ ′

= 5.7◦. (The flyback interval in the figure is shown
slightly smaller thantacc).

cally from the top of theE/q range to the bottom). The rate of change of the potential
is chosen such that the selected value ofE/q falls by δE/q (usually set equal to1E/q)
in a time tacc. In this case the range of energies admitted in an accumulation time, i.e.
the effective passband,(1E/q)eff, associated with a particular accumulation time, will
be significantly larger than the intrinsic passband, due to the change inE/q during the
accumulation.

There is an inevitable trade-off between the time taken to cover the energy range,
Trange (dependent on the number of measurements chosen and the duration of each one,
tacc) and the quality of coverage of that energy range. IfTrange is long enough, the “step-
ping” approach can be used withδE/q = 1E/q, in which case the full energy range is
covered with no gaps and with a highE/q resolution. OftenTrange must be shorter, so



5.2. General Principles of 3-D Velocity Distribution Measurements 103

that a stepping analyser must use steps separated by gaps wider than the intrinsic bandpass
(δE/q > 1E/q) in order to sample points throughout the fullE/q range. Consequently,
coverage of the fullE/q range is not complete in this case. A sweeping analyser can
cover the sameE/q range in the same shorter time, taking data on a coarserE/q res-
olution, (1E/q)eff, but without gaps inE/q coverage. For an instrument on a spinning
satellite, the azimuthal resolution is controlled by the ratio ofTrangeto the spin period. As a
result, improved energy resolution and coverage are only achieved at the cost of worsened
azimuthal resolution.

There is a short interval between sweeps (or a sequence of steps) during which the
inter-hemisphere potential is raised from its minimum to its maximum values. Information
acquired from the counters during these brief “flyback” intervals is usually discarded as it
is difficult to interpret.

A typical instrument might admit particles from anE/q range with a maximum as
high as several tens of keV/q and a minimum of only a few eV/q.

Solid Angle Coverage of Rotating Analyser (VaryingE/Q)

We will consider a sweeping instrument in the following. A sweep through the full
E/q range takes a finite time (Trange= Tsweep), during which the satellite rotates and the
look direction azimuth angle changes by1φsweep. The duration of a measurement at a
particularE/q value,tacc, corresponds to a small change in azimuth1φacc. Instruments
are usually designed with a sweep period which is an integer fraction of the spin period,
so that there are an integer number of sweeps in a spin, and so that1φsweepis consistent
with the required azimuthal resolution. The consequence is that measurements taken at
a particularE/q (during the short timetacc) on consecutive sweeps are separated in time
by Tsweepand are correspondingly separated in azimuth by1φsweep. Measurements taken
at some otherE/q on consecutive sweeps are likewise separated in time byTsweepand
thus in azimuth by1φsweep, but are displaced from the first set of measurements by the
time taken for the sweep to move from oneE/q to the other (some integer multiple of
tacc) and the look directions are displaced by a corresponding azimuth angle (an integer
multiple of1φacc). These concepts are illustrated in Figure5.10. There is a gap in velocity
space coverage due to flyback intervals during which no usefulE/q data is taken from the
small azimuth angle range corresponding to the flyback time. This effect is illustrated in
Figures5.9and5.10.

The angle1φacc is typically small compared to the aperture acceptance angle,1ψ .
Figure5.9uses representative values; the azimuth angle resolution1φ (=1φsweep) corre-
sponds to 11.25◦, or 32 sweeps per spin, and the value of1ψ is shown as 5◦. For an energy
sweep of duration 16tacc (15 accumulation intervals and one flyback)1φacc = 1φ/16,
corresponding to 0.7◦, much smaller than1ψ . For strict accuracy, we note that the solid
angle coverage taking into account spin is [1ψ ′ by1θ ], where1ψ ′

= 1ψ+1φaccsinθ .
As 1ψ ′

≈ 1ψ is clearly a good approximation (usually), Figures5.4 and5.5 are a
good representation of the solid angle coverage during an accumulation time, although
we previously used them to discuss instantaneous solid angle coverage. Thus, sincetacc
is usually a small fraction ofTsweep, our earlier discussion of how solid angle coverage
overlaps near the poles applies here as well. The gaps in solid angle coverage forθ = 90◦

occur for eachE/q measurement and are illustrated in Figure5.10as black bands. These
coverage gaps close up at a value ofθ intermediate between 90◦ and 0◦ (180◦) and in
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Figure 5.10: Demonstration of three consecutive measurement cycles across theE/q

range, each identical to the cycle shown in Figure5.9. For four values ofE/q we show
the azimuthal coverage1ψ ′. Note that1ψ ′ < 1φsweepfor the situation outlined in the
caption to Figure5.9so that the azimuth angular acceptance is not wide enough to overlap
with the coverage at the same value ofE/q on the next sweep. Black areas represents
regions ofE/q-azimuth angle space which are not sampled. We would see an overlap if
the figure represented the case ofθ = 15◦.

the polar regions we usually have overlapping coverage rather than gaps. If we had an
analyser with a field of view which tapered towards the poles (Figure5.7), and the value
of1ψ were chosen to be equal to1φ, the sweeping (or stepping) of the analyser potential
would ensure that samples of a givenE/q were spaced1φ apart and the instrument would
naturally have perfect solid angle coverage at all values ofE/q, with no overlap, nor any
gaps (this ideal is shown in Figure5.11). Unfortunately, there are a number of technical
problems with the realisation of this design approach, so practical analysers tend to have
both overlap and gaps in solid angle coverage.

We will now summarise the discussion in Section5.2.1. We have seen that the di-
rection of origin of the stream of particles arriving at a particular detector polar zone is
continuously varying if the satellite is spinning. For zonen, the incident particles arriv-
ing at any given instant come from a solid angle [1θ by1ψ ], centred on the polar angle
θ = (n − 0.5)1θ and on a continuously changing azimuth angleφn(t). During a time
tacc the azimuth angle changes by a small amount1φacc (= φn(t+tacc) − φn(t)) and the full
solid angle scanned is [1θ by1ψ ′]. Only that fraction of the incident stream which the
E/q selector admits, instantaneously given by the intrinsic bandpass1E/q, is allowed to
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Figure 5.11: Solid angle coverage associated with the rotation of the field of view of an
“ideal analyser” (see also Figure5.7) in which the solid angle elements correspond to
regions of a fixed angular width in polar and azimuth angle,1θ and1φ. The right-hand
figure shows coverage due to a single polar zone during one spin. The spin is subdivided
into 32 azimuthal sectors.

reach the detector. The selected value ofE/q changes continuously (for a sweeping anal-
yser) so the range ofE/q values admitted duringtacc is given by an effective bandpass,
(1E/q)eff, larger than1E/q. All polar angles can be continuously and simultaneously
monitored, but continuous and simultaneous coverage of energy and azimuth is not possi-
ble with a Top Hat instrument. A typical instrument could have; 24 equal polar zones each
of1θ = 15◦, Tspin = 32Tsweepso there are 32 equal azimuth zones each of1φ = 11.25◦,
andTsweep= 16tacc (15 accumulation intervals and one flyback) so there are 15E/q mea-
surements per sweep. Such an instrument generates 11520 measurement values each spin.
This is 2880 measurements per second if the spin period has a typical value of 4 seconds.

5.2.2 Mass per Charge Analysis

An E/q analyser is incapable of directly discriminating between particle of differ-
ent masses. A data analyst may be able to identify different species by examiningE/q

analysed distributions, in certain special cases. An example is the case of solar wind pro-
ton and alpha particle populations. These have about the same bulk speed, but different
masses. The kinetic energy of bulk motion of the two populations differs by the ratio of
their masses (4:1). The spread of particle energies relative to the kinetic energy of bulk
motion is characterised by the thermal speed of the population, and for the solar wind pop-
ulations the thermal speeds are small compared to the difference in their kinetic energy
of bulk motion. Thus the two populations occupy distinct and non-overlapping ranges of
E/q. The same populations, slowed somewhat and greatly heated as they cross the bow
shock into the magnetosheath, become indistinguishable using anE/q analyser. Their
thermal energies now cover a much broader range, more than sufficient to bridge the en-
ergy per charge gap due to the difference in kinetic energy of bulk magnetosheath motion,
and so the populations now occupy overlapping ranges ofE/q. An M/q analyser will
distinguish between protons (H+, M/q = 1), alpha particles (He2+, M/q = 2) and even
singly charged helium (He+, M/q = 4) enabling discrimination between these different
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Figure 5.12: A schematic illustration of a Top Hat analyser with a Time of Flight section
placed at the analyser exit. An incoming ion trajectory is shown as a thick line. The
ion penetrates the foil and carries on to the outer detector (“stop detector”). Secondary
electrons are generated at the foil and these travel very quickly to the inner detector (“start
detector”) – their path is indicated by the thin “flattened S” shaped curve. Electrons arrive
at the inner detector before the ion arrives at the outer detector. Ion and electron arrival
sites are marked on the detector in the lower figure.

particle populations in both the solar wind and the magnetosheath.
There are several concepts forM/q analysis in which various combinations of electric

and magnetic fields are used. Spacecraft magnetic cleanliness constraints vary from mis-
sion to mission, in some cases preventing the use of certain instrument designs. However,
instruments have been built with a magnetic field geometry which minimises “leakage” of
magnetic field beyond the instrument, for example by using a ring shaped magnetic field
matched to the shape of the annular exit region of a velocity space analyser. Particles leav-
ing the analyser are deflected radially to differing degrees according to their mass, while
preserving their polar angle distribution. The position sensitive detector therefore needs to
be able to simultaneously monitor not only polar zones but also (in essence) radial arrival
position within each polar zone.

A different family of instruments uses only electrostatic fields forM/q analysis, and
are based on the “time of flight” (TOF) principle. TOF designs are used in conjunction
with velocity space analysers, so that particles entering the TOF system already have well-
definedE/q values and have been sorted according to incident polar direction, e.g. see
Figure5.12. A common TOF technique involves a velocity measurement, which is usually
achieved by determining the time taken for the particles (ions) to travel a known distance
between a thin foil (through which they pass) and a detector, the “stop” detector. The foil
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is chosen so as to impede the particle as little as possible, but must also generate electrons
at the point through which the particle passes. These electrons are directed by a (relatively
small) electric potential onto a second detector, the “start” detector. The system is arranged
so that the time taken for the electrons to reach the start detector is well known and very
small compared to the time for the particle to reach the stop detector. The signal from the
start detector is used to infer when the particle crossed the foil, and this is compared to
the time of arrival of the particle at the stop detector to determine the time of flight of the
particle across the measured distance, and hence the particle speed. A linear electric field
placed between the analyser exit and the foil is used to “post-accelerate” particles through
a known potential. The post-acceleration provides the particle with sufficient energy to
easily penetrate the foil, although by increasing the particle energy it reduces the time of
flight which is thus harder to measure. The increase in kinetic energy per unit charge as
the particle transits the post-acceleration region (given by the known potentialU ) plus the
kinetic energy per unit charge of the particle as it left the electrostatic analyser (also known
from theE/q analyser) gives the kinetic energy per charge of the particle as it enters the
TOF section,ETOF/q. The mass per charge is straightforwardly derived givenETOF/q and
the corresponding particle speed measured in the TOF section. Polar position information
is usually measured by dividing the “start” detector into polar zones. In some instruments,
the stop detector is designed to measure the energy of the arriving particle, in which case
the instrument unambiguously determinesE,M, andq. M/q resolution depends on tim-
ing accuracy, on the angular spread of particle trajectories passing through the TOF due to
the dispersion of their exit trajectories from theE/q analyser, on the accuracy of theE/q
measurement and in particular on the spread of energy per charge values1E/q admitted
by theE/q analyser. The accuracy is also limited by the interaction of the particles with
the foil, in which some will experience a degree of angular scattering and energy absorp-
tion. Pre-flight calibrations provide a proper understanding of the significance of these
various effects and thus of the true instrument performance limits.

A more recent (positively charged particle specific) development in TOF design de-
serves a brief mention due to its superiorM/q resolution. The attractive feature of this
design is that the particle makes a timed journey in a parabolic trajectory under the influ-
ence of a linear electric field, for which the time of flight is not dependent on the particle
E/q, but depends only on theM/q and the electric field strength. TheM/q resolution is
thus limited only by timing accuracy (and not for example by the properties of theE/q

analyser).
The maximum count rate for which goodM/q measurements can be made is limited by

the ability of the instrument to associate signals correctly from the start and stop detectors
without ambiguity. The larger the range ofM/q to be measured, the larger the TOF could
be and so the smaller the maximum count rate. Other effects which limit performance at
higher count rates are discussed in the following section.

5.2.3 The Detector and Counter

The role of the detector was defined in Section5.1 as being to respond to an arriving
charged particle by generating an electrical signal. The overall detector-counter efficiency,
εDC, may be defined as the ratio of the number of counted particles to the number of
incident particles. It is often the case that the performance of detector polar zones varies
from zone to zone, so it is usual to consider a separate efficiency(εDC)i for each polar zone
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separately. A second important property is the dead timeτi of each detector-counter zone,
which is a parameter used to describe effects which cause a decline inεDC with increasing
count rate.

Microchannel Plate Chevron Pair Detector

A commonly used detector is the microchannel plate chevron pair (MCP), with a bias
electric potential difference across it, beneath which is placed a charge collecting anode,
divided into several parts which define the detector zones. A microchannel plate consists
of a large number of tiny hollow tubes (“pores”) packed together so that their open ends
form the top and bottom surfaces of the plate. An incident particle arrives at the upper
surface of the upper plate and may enter a pore in which case it will usually generate an
avalanche of electrons through that plate, which in turn stimulates further avalanches in
the lower plate. The result is a huge (> 1 × 106) charge amplification that generates a
sufficiently large charge to be registered by electronics attached to the anode below the
lower surface of the MCP.

The Anode

As noted earlier, it is the design of the anode that controls polar resolution. The MCP
is usually a continuous unbroken object and the analyser has good polar angle focusing
properties. The “anode” we have been discussing actually consists of a set of equal sized
Discrete Anodes, each with its own signal processing and counting electronics. The spatial
resolution1θ is controlled by the size of each discrete anode. Anodes do not need to be the
same size as each other. A solar wind measuring instrument might use smaller anodes for
that part of the polar angle range which is expected to see the solar wind. Similarly, anodes
designed to have widths related to bins of constant pitch angle can be used in regions of
well-defined and steady magnetic field orientation (e.g. sounding rocket applications). The
discrete anode approach has the advantage that each anode/counter operates separately, so
that the instrument can handle high count rates on many anodes at once, but there is also
the disadvantage that greater angular resolution requires additional anodes and associated
electronics. In practice, considerations related to electronic complexity limit the number of
discrete anodes. Alternative anode designs allow higher angular resolution, at the expense
of high count rate performance.

Another common design is the “charge dividing” Resistive Anode, which consists of
a material of uniform resistance. A charge cloud deposited on the anode will be divided
between charge collectors on opposite sides of the material in a ratio which indicates the
location of the charge cloud on the shortest straight line between the collectors. With
two sets of collectors and a quadrilateral anode, position sensing in two dimensions is
possible. A more suitable approach for application to an annular anode is the “charge
sharing” Wedge and Strip Anode which has three electrodes. Thinking first of a rectangular
anode, two of the electrodes are reminiscent of the teeth of interlocking combs, the third
fills in the gaps between the teeth. One of the two “combs” has rectangular teeth (“strips”).
The strip thickness gets progressively smaller from one end of the comb to the other,
and the other comb has identical teeth which narrow to a point (“wedges”). Thus the
strips change thickness from one end of the comb to the other, while the wedges change
thickness from base to tip, in the direction transverse to that in which strip length varies.
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Consequently, the ratio of the electrode areas at any point is unique, and the ratios of the
amounts of charge collected is also unique, allowing one to determine the location of the
charge cloud. The design can be modified for use in an annular or semi-annular anode.
Anodes with such two-dimensional position sensitivity are needed for the family of mass-
resolving analysers that disperse particles of different mass in one dimension, while using
an orthogonal dimension for angular position sensing.

Fraction of Particles which Generate Signals

Not all incident particles precipitate a charge avalanche. A proportion of incident
particles strike the material between the pore voids, rather than entering a pore, and are
thus undetected. Those particles that enter pores but do not generate charge avalanches are
also undetected. The efficiency (“quantum efficiency”) of the process whereby particles
generate a charge avalanche depends on the nature of the particle and on its energy (pre-
acceleration techniques are often used to optimise performance). In summary, the peak
MCP efficiency is typically of order 60 to 70% but the efficiency can be smaller according
to the particleE/q.

The performance of an MCP may not be uniform across the area exposed to incident
particles, due to manufacturing limitations (some blocked pores, variation of quantum
efficiency from pore to pore, etc.). If the incident particle trajectories are not along the
normal to the MCP, pore bias angle effects may also lead to variations of efficiency with
position on the MCP surface. Typically the detector performance is therefore evaluated
polar zone by polar zone.

All the above factors contribute to an MCP efficiency parameter,(εMCP(E))i , which
is energy dependent and polar zone dependent. As we explain below, not all charge
avalanches which are triggered are actually counted, so the detector-counter efficiency
is smaller than the MCP efficiency.

Fraction of Signals that are Counted

The signal gain, i.e. the amount of charge liberated at the anode for an incident particle,
exhibits a statistical variation from particle to particle, but follows a roughly Gaussian
distribution (even for an ideal homogeneous MCP). For each charge avalanche, the charge
deposited at the anode is electronically amplified and the corresponding signal is further
processed before it is accepted as a counted particle. In a crucial processing step, the signal
amplitude is compared to a predetermined threshold which it must exceed in order for the
particle to be counted (so as to avoid reacting to electronic noise which can mimic an anode
signal). A fraction of the real signals may generate a pulse which falls below the threshold,
but this should be only a small proportion of the real signals for a correctly set threshold.
If we take this cause of non-counting of an incident particle into account as well, together
with (εMCP(E))i we finally arrive at the detector-counter efficiency(εDC(E))i applicable
for low count rates.

Limits to Detector Performance at High Count Rates

A limitation on MCP performance can arise when the count rate is very high. The
signals generated by the MCP in response to incident particles become weaker and the
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mean signal gain falls. The effect can be thought of in terms of a pore requiring a finite
time to recover after a charge avalanche, so that when a new particle arrives before pore
“recharging” is complete, the resulting charge avalanche is smaller than if the pore had
been fully recharged. An equivalent view is that there is a limit to the rate at which charge
can be extracted from the MCP, and as it is approached, that current no longer increases
with count rate, but instead the limiting current is divided between more events which, on
average, become correspondingly weaker. Fewer particles generate signals exceeding the
threshold, so a smaller proportion of the incident particles are counted. Detector-counter
efficiency thus falls with increasing count rates, although in a well-designed system this
gain depression effect should not cause serious efficiency loss within the range of count
rates for which the system is specified. Note though, that the dynamic range required of
instruments depends on their mission, and instruments are sometimes flown in the knowl-
edge that their performance has been optimised for some, but not all of the environments
they will encounter.

Limits to Counter Performance at High Count Rates

At high count rates we must also consider constraints due to the response of the counter
electronics. We have briefly indicated that after the charge cloud caused by a particle
interacting with the MCP reaches the anode, there is a certain amount of electronic am-
plification and other processing to produce a signal suitable for acceptance/rejection as
a “count”. The processing electronics require a finite time, known as a “dead time” to
deal with this activity and are unable to register subsequent counts while they are doing
so, hence the term, “dead time”. It is common to divide counters into two groups, “non-
paralysable” and “paralysable” counters. The non-paralysable counter is unresponsive to
additional incident particles while it is occupied with processing an event, and thus has a
fixed dead time. In contrast, further events may extend the dead time of the paralysable
counter, with very severe consequences at high count rates, hence its name. Actual counter
behaviour is often more complex than these two models suggest, but performance typically
lies between the bounds set by the two models.

Poisson statistics are used to describe of frequency of arrival of particles at the detector.
The probability5 that a new count will arrive during a fixed dead timeτ is given by the
negative exponential

5 = 1 − e−λτ (5.2)

when the incident count rate isλ. The probability5 is thus very low at low count rates,
rising rapidly for count rates in the range 0.1τ to 10τ to values very close to 1.

A non-paralysable counter will respond to an incident count rateλ by registering events
at the reduced rateλ′ given by

λ′
= λ/(1 + λτ) (5.3)

while the expression for a paralysable counter is

λ′
= λe−λτ (5.4)

These expressions for registered count ratesλ′ are illustrated by curves in Figure5.13
(for a typical electronic dead time of order 1µs) which also shows the incident count rateλ
for comparison. Both types of counter work well at low count rates, i.e.λ′

≈ λ, because at
low count rates few counts arrive within a dead time of one another. The counters become
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Figure 5.13: An illustration (using a log scale) of the variation of registered count rate with
the rate at which particles arrive at the detector, for three cases. The thin solid line rep-
resents a perfect detecting and counting system, so all arriving particles are counted. The
thicker lines represent two models of counting system performance, the paralysable and
non-paralysable counters. Neither counter performs well at high incident count rates; lim-
its to counting capability place an upper limit on the dynamic range of an instrument. The
paralysable counter curve has a maximum value, which can cause problems as a registered
count rate could be interpreted as one of two values, according to whether the instrument
is believed to be measuring low or high particle fluxes. The non-paralysable counter curve
tends asymptotically to a constant value. Once near this value, it is difficult to infer the
incident count rate reliably using the registered count rate.

useless when the change in registered counts for a change in incident count rate becomes
very small. The effective operating range of the paralysable counter is thus quite limited,
asλ′ reaches a peak value ofλ′

≈ 0.37λ atλ = 1/τ after whichλ′ declines with increasing
count rate.

Thus, for a paralysable detector, we are unable to reconstruct the incident count rate
from the detected count rate once the incident count rate exceedsλ = 1/τ . The non-
paralysable counter is still useful atλ = 1/τ , recording about 50% of incident counts,
however as count rates increase, the registered count rate tends to a limiting count rate of
λ′

= 1/τ . Nevertheless, the non-paralysable counter can operate over a count rate range
at least a factor of 10 higher than the paralysable counter.

When characterising an instrument it is usual to classify it as one of the two types and
determine a corresponding dead timeτ . Dead time correction can then be performed on the
registered events to reconstruct the incident count rate, using whichever of equations5.3
or 5.4 is more appropriate. Often the system will be designed so that the count rates do
not reach levels at which there is a significant difference between either of the two models,
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or the real behaviour, so that a good correction is possible using whichever model is more
convenient.

If the detector-counter is operated at count rates where MCP gain depression becomes
significant, the registered count rates will cease to conform to the electronic dead time
model so that the relationship between incident count rate and registered count rate is
no longer so well described usingτ together with one of equations5.3 or 5.4. Thus the
accuracy with which the incident count rate is recovered from the registered count rate will
be reduced. Ideally, the system is designed to avoid MCP gain depression.

Conversion from Counts to Phase Space Density

The goal of the measurement process is to characterise the velocity space distribution
of the plasma within which the instrument is operated. In the following discussion we deal
with the detection by anE/q analyser of singly charged particles of a single species. Thus
we refer to particle energy rather thanE/q. The treatment of data from an analyser which
also resolvesM/q follows identical lines for each individual species in turn.

The counter registers a continuous stream of electrical signals in response to particles
arriving at the detector front end. As discussed earlier, the instrument divides time up into
a long series of accumulation intervals of durationtacc and records the number of pulses
from each anode during each such interval, together with a reference time for each interval.
The reference time is used to identify both the azimuthal look direction and the selected
particle energy corresponding to that interval. The polar look direction is defined by the
polar zone (anode) from which the data is acquired.

Determination of Number of Counts that Reached the Detector

The number of particles,N , that actually reached the detector from the analyser, can
be related to the number of particles,P ′, registered by the detector-counter system during
the accumulation timetacc (so λ′

= P ′/tacc) by taking into consideration the detector
efficiency and the possibility of a dead time effect. For a non-paralysable counter, we adapt
equation5.3 to giveP , the number of registered particles corrected for dead time effects
(intended to represent the true number of particles which arrived during the accumulation
time) using a polar zone dependent dead timeτi

P =
P ′

1 − P ′ τi
tacc

(5.5)

We have neglected to account for the MCP gain depression effect. Thus this expression
only applies is there is no significant MCP gain depression effect, or else in the case that
the consequences of any effect are regarded as having been successfully subsumed within
the electronic dead time correction. Now we correct for the energy dependent and polar
zone dependent detector-counter efficiency, to give

Nijk = Pijk/(εDC(Ek))i (5.6)

wherei represents the polar zone,j the azimuthal sector, andk the centre energy (dis-
cussed further in the following paragraphs) associated with the accumulation interval.
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Relating Counts Accepted by the Analyser and the Velocity Space Density in the
Acceptance Volume

The role of the analyser (velocity filter) is to ensure that particles that reach the detector
could only have come from a specific restricted velocity space volume, the “acceptance
volume”, centred on the velocity space coordinate{θi, φj , Ek}. The acceptance volume
has dimensions [1θ by 1ψ ′ by 1E] for a stepping analyser or [1θ by 1ψ ′ by 1Eeff]
for a sweeping analyser. The filtering action can be represented mathematically by an
“analyser response function”. The particle count rate (Nijk/tacc) depends on the number
flux across the instrument aperture of those particles which the filter allows through, i.e.
those particles within the phase space acceptance volume labelled byijk.

The mathematical representation of the process relates the count rate to an integration
over all of velocity space of the product of the phase space density, the number flux across
the aperture and the analyser response function. In spherical polar velocity space coordi-
nates, the infinitesimal volume element dv = v2dv sinθdθdφ. Since1E/E = constant,
we can writev2dv = v3dv/v = constant· v3 so that dv is directly proportional tov3. The
number flux varies asv. Thus we can expect that the count rate will be related to the phase
space density by a term involvingv4. In fact, the expression relating the mean phase space
density in the acceptance volume,fijk, to the number of countsNijk determined to have
reached the detector in the accumulation timetacc is

fijk = Nijk/(taccv
4
k Gi)

wherevk is the velocity corresponding to the centre energy associated with the accumu-
lation interval, andGi is the analyser response function integrated over the range of ve-
locities able to enter the aperture, a property of the analyser which is independent of the
effective energy of the measurement. In principle,G is independent of polar angle for
an ideal Top Hat analyser (though not for all analysers) however in practice there is the
possibility of a variation of G with polar zone (see below) hence the suffixi. Thorough
mathematical derivations of this expression, and ofG, are available in texts listed in the
bibliography.

Centre Energy

The meaning of the term “centre energyEk” (and its corresponding velocityvk) de-
pends on the energy coverage method used by the analyser. As discussed in Section5.2.1,
an analyser instantaneously accepts particles with energies lying within an energy pass-
band1E associated with a passband centre energyE. For a stepping analyser, the ac-
cepted energy (and passband) dwell on these values throughout virtually all the accu-
mulation time. In this case the centre energyEk = E. For a sweeping analyser, the
instantanously accepted energyE declines during the accumulation. Then the valueEk
represents a form of mean energy for the distribution of energies that are admitted during
the accumulation.

Geometric Factor

In discussing the geometry factor it is useful to consider the question of what parti-
cles may reach a given polar zone when the analyser is held at constant potential, so the
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∆V/V

ψ

Figure 5.14: The figure shows representative transmission contours for a Top Hat anal-
yser, in1v/v (=1E/2E) versus azimuthal acceptance angleψ space. The outer, dashed
contour represents no transmission (and particles with values of1v/v andψ outside this
contour are not transmitted to the detector). The inner, solid contour defined the 50%
transmission level. Also shown are sketches of the transmitted fraction versus1v/v for
constantψ and of the transmitted fraction versusψ for constant1v/v. Together with
dotted guide lines indicating the extreme values of1v/v andψ for which transmission
is possible, these are intended to emphasise that the use of the labels1E/q and1ψ to
describe the transmitted range of values ofE/q andψ is a major over-simplification. Con-
sequently, precise prediction of geometric factor is difficult, and usually requires the use
of numerical simulations of many particle trajectories.

centre energy is constant. In the earlier discussion, we have stated that the analyser will
accept particles from a range of energy1E, and a range of aperture angles1ψ (these
being defined by the analyser shape, collimator and potential) and from a range of polar
angle1θ defined by the detector zone size. In reality, the energy-azimuth angle response
for a particular polar angle (e.g. for1θ ≈ 0) is more complicated than we have so far
suggested; we illustrate it in Figure5.14. This figure is adapted from measured data (i.e.
a real instrument) and shows two closed loops somewhat resembling hysteresis curves. In
fact these loops are the contours of the normalised analyser transmission factor mapped
in (1v/v,ψ) space, where the dashed line shows a transmission factor of zero and the
solid line shows a transmission factor of 50%. (Note that1E/E = 21v/v). The figure
also provides rough sketches of the transmission factor versus1v/v for ψ = 0 and of
the transmission factor versusψ for 1v/v = 0, to reinforce the idea that the contours
represent a surface.

It can be seen that the acceptance criteria are more restrictive than is suggested by
the simplest picture (in which we consider only circular particle trajectories within the
analyser) where we have full transmission within a rectangular region of dimensions1E,
and1ψ . Instead, the angle acceptance range will be slightly different for particles with
different energies within the energy range1E. Similarly, the energy acceptance range
varies according toψ . These properties are the consequence of the way in which some
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particle trajectories which are accepted by the collimator nevertheless follow trajectories
which strike a hemisphere and thus go undetected. We discussed earlier how a subset of
particles which follow elliptical paths are rejected according to their energy. Similarly,
arrival at the aperture with non-tangential entry directions leads to rejection of a subset
according to their entry angle. The area under the surface represents the number of counts
reaching the detector if the analyser is uniformly illuminated from all aperture entry angles
and energies, but only a single polar angle (1θ ≈ 0). The number of particles reaching the
detector under conditions of uniform illumination from the full unit sphere and all energies
is naturally larger, as contributions from all polar angles within the range1θ are included.
This number can be characterised by an energy independent geometry factorGi .

The parameterG will be different for analysers with different physical dimensions
(e.g. more particles can enter if the gap between hemispheres is wider, or if the collimator
is shortened). SimilarlyGi would be different if the polar zone angular width were differ-
ent, even if the analyser dimensions were not altered (e.g. instruments for solar wind and
magnetosphere studies often have reduced polar zone widths in the range of polar angle
expected to “see” the solar wind). A different cause for the variation ofGi with polar
zone is a deviation from true concentricity of the analyser hemispheres, which alters the
aperture acceptance angle as a function of polar angle (less particles can get through if the
inter-hemisphere gap is reduced, and vice versa).

Key Issues

This section has explained how we convert from counts to phase space density. The
expression forfijk tells us the average phase space density within the acceptance volume
corresponding to the measurement labelled by the suffixijk. We have stated the location
and dimensions of the acceptance volume corresponding to a particularijk. The mea-
surement is unable to reveal any variations in phase space density within the acceptance
volume during the acceptance time. Thusfijk represents the average value off (v) in
the solid angle and energy range assigned to the coordinatesijk and the mean velocity
associated with the measurement isvk.

The combination of the measurements acquired during a spin consists of a set of sam-
plesfijk at discrete locations within velocity space. As discussed earlier, for many in-
struments the sampling is not simultaneous in the energy-azimuth regime, and coverage
of azimuths at a given energy is incomplete for polar angles near 90◦, but over-sampled
at polar angles near the spin poles. The over-sampling brings with it the possibility that a
feature existing in a narrow azimuth range can be sampled repeatedly with the result that
its azimuthal extent is exaggerated. Gaps in solid angle coverage which occur at polar
angles near 90◦, and at every energy due to the sequential energy range sampling process,
bring the possibility that features existing in a narrow energy or azimuth range will not be
sampled at all, and so will go undetected. This has been illustrated in Figure5.10. It is not
uncommon practice for data analysts to treat the measurements as pseudo-continuous and
as if they were acquired simultaneously. It should be clear from this discussion that the
study of events in which the velocity distribution varies over time scales and/or velocity
space volumes comparable to those involved in the sampling should be performed with
caution and skepticism (if attempted at all).

Finally we note that a continuous distribution function is needed for moments calcula-
tions. Moments calculations implicitly treat the measurements as pseudo-continuous and
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as if they were acquired simultaneously (just as we have cautioned against in a different
context). Details of the process of determining moments from measured distributions are
given in Chapter6.

5.3 Calibration

5.3.1 Importance of Ground and In-Flight Calibrations

We have seen that several instrumental factors need to be properly accounted for in
deriving velocity space distributions from recorded count rates. These properties are sum-
marised in the parametersεDC (E)i , τi andGi .

Ground calibration of a complete instrument will show how registered count rate
(P ′

ijk/tacc) varies with the particle flux incident on the analyser. Calibration at low count
rates allows one to determine performance in the absence of electronic dead time effects
and MCP gain depression, but the results nevertheless reflect the combined effects of the
geometry factor and the detector efficiency. Ideally the detector efficiency would be de-
termined in the absence of the analyser, however this is not always possible in practice.
In some cases the detector efficiency is assumed to be 1 and all effects, including energy
dependence and detector performance variation with polar angle are subsumed within a
(misnamed) termGi(E) for each detector zone. The dead time can be estimated by us-
ing increasingly large count rates. Ideally, the calibration would determine the bounds of
the regime for which a simple dead time correction can be applied, although laboratory
calibrations often cannot reach the high count rates expected in space. A very important
aspect of the ground calibration is to determine the properties of each zone individually.

Monitoring of in-flight performance is usually required when working with MCP de-
tectors, since the MCP gain tends to decrease as the total quantity of charge collected at the
anode increases, i.e. the gain begins to fall as the total number of counted particles grows.
Provided the performance variation is well characterised by studying the progression of
the decline in gain, calibration factors can be altered accordingly, and the variation can be
corrected for in the data analysis. Alteration of the MCP bias voltage during flight can in-
crease the gain to compensate for a decline. In this case there will also be a modification of
the calibration factors to be used when interpreting the data. One disadvantage of increas-
ing MCP gain in this way is an increase in the level of noise intrinsic to the MCP. Note
that MCP gain depression properties may be altered when the bias voltage is changed; this
is usually only significant at very high count rates.

In summary, it is important to use the appropriate calibrations factors for the time at
which a distribution is acquired when deriving quantities in scientific units, and to be aware
that the pre-flight calibrations may not be the appropriate factors for data acquired several
months into a mission. Sometimes there are additional special problems encountered in
flight which do not fall into the general categories dealt with here and which require spe-
cific knowledge of, and experience with, the particular instrument.

5.3.2 Special Considerations for Multi-Spacecraft Data Analysis

Multi-spacecraft data analysis typically involves making detailed investigations of the
differences between conditions at the different spacecraft. If the spacecraft are co-orbiting,
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i.e. spacecraft separation distances are small, then measurements must be performed with
the maximum possible relative accuracy so that even quite small differences in plasma
properties at different spacecraft can be recognised (i.e. the relative error margin must be
smaller than the plasma property differences if those differences are to be measured).

Distribution measurement with a set of identical instruments on co-orbiting spacecraft
can actually be performed with more confidence than with instruments on solitary space-
craft, since frequent comparisons of performance in very similar plasmas can be made. For
example, if the detector on one satellite ages faster than on another, this can be recognised
at a very early stage allowing remedial action, and timely correction of calibration factors.
It is usually difficult to recognise such variations on a single satellite until the performance
is quite degraded. In principle, regular inter-comparison with other instruments which
measure a common parameter using a different measurement principle (e.g. electron den-
sity can be measured by plasma analysers and various wave experiment techniques) can be
a helpful performance check, but in practice, the opportunities for this approach will de-
pend on the nature of the payload and on the adoption of cooperative procedures adopted
by the relevant instrument teams.

The comparisons mentioned above, to track detector performance degradation, are
only possible if the analyser performance of the various instruments is close to identi-
cal, so that near identical velocity space regions are sampled for easy comparison. As
has been noted above, non-concentricity of the hemispheres will introduce variation of
the geometry factor with polar angle (this could easily happen in a different way on each
analyser). The degree of non-concentricity can usually be minimised by careful design
and manufacture. Similarly, the system controlling the energy sweeps must be reproduced
identically on each instrument, so that the samevk are used.

5.4 False Counts and Statistical Fluctuations

A number of cautions concerning the application and interpretation of distribution data
are provided in Section6.4.1of Chapter6. We will provide a different perspective on some
of those issues, and others, in this section.

So far we have discussed how an instrument measures particles from selected regions
of velocity space. These particles might be considered to generate “real counts”. There
are a number of causes of “false counts” as well as the possibility that the distribution of
velocities entering the analyser can in some situations be significantly different to the nat-
ural distribution. The latter problem is due to spacecraft charging, in which the spacecraft
potential becomes significantly positive (or sometimes negative) thereby accelerating ar-
riving electrons and repelling arriving ions (so that the lowest energy ions do not reach the
detector). Usually the spacecraft potential is relatively low, and only makes a significant
change to the energies of low energy particles. Many modern spacecraft carry devices
intended to control the spacecraft potential, holding it to levels near zero most of the time,
for example by using ion emitters.

There are many sources of false counts, of differing levels of importance. The MCP
spontaneously generates a few counts per spin—little can be done about this, but it is a mi-
nor problem. Photoelectrons can be generated by solar UV photons entering the aperture
if they strike the analyser hemispheres. This can be a serious problem, but there are well
established design methods for keeping it to acceptably low levels. Secondary electrons
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due to energetic particles striking the analyser in the aperture region are also controlled
by careful design. Penetrating radiation is a more serious issue. It affects instruments in
all orbits of interest in a mild form (the relatively low fluxes of cosmic rays) and is more
serious within the regions of trapped, very energetic particles often found in a magneto-
sphere (“radiation belts”). The particles are sufficiently energetic to penetrate the instru-
ment structure and directly stimulate the MCP (i.e. without passing between the analyser
hemispheres). The solution here is to add shielding mass, but the spacecraft mass budgets
constrain the degree to which shielding can be carried out. A further source of false reg-
istered counts will be noise counts associated with electronic noise falsely triggering the
counter electronics.

We have already seen that there are upper limits to the counting rate. There are also
lower limits. Clearly, there is a need for the (real) count rate to exceed the noise count rate
in order that a signal can be recognised. In radiation belt missions, it is common practice
to include a “background” channel which never receives particles from the analyser, but
which can provide an indication of the radiation induced false count rate, which can be
subtracted from the signals in the other channels to improve signal recovery. A better
alternative would be to make a regular measurement of the radiation induced counts in
each anode, as the anodes are likely to be affected differently.

Another issue applies even for the case of a noise-free instrument. It is the need for
there to be sufficient counts in a distribution that the observation has a low statistical error.
The arrival of particles is usually treated as a random process which can be described by
Poisson statistics. The impact of statistical fluctuations at low count rates on the calculation
of plasma velocity moments is discussed in Chapter6. When working with a distribution,
rather than moments, it is important not to attribute too much significance to bins (i.e.
particularijk measurements) with only one or two counts in them. As we have seen, there
are many possible sources of false counts which could be responsible for these data. In
assessing the contribution of false counts to measured distributions it is often helpful to
initially examine distributions using counts rather than phase space density. The energy
weighting associated in converting to phase space density can mislead the unwary as to
the significance of data, especially at lower energies.

5.5 Distribution Data Products

Chapters6 and7 provide a discussion of the scientific applications of velocity distri-
butions. Here we briefly review some of the data products commonly used to transmit
information about measured particle distributions, in order to emphasise the need to un-
derstand how these data products are assembled before working with them. Typically the
data products are only a well chosen subset of the measured distribution. We emphasise
how the properties of the data products are affected by the procedure by which they were
acquired with a Top Hat analyser. An understanding of these properties can be important
to the data user, particularly where case studies of plasma behaviour at high time resolu-
tion are concerned, as such studies usually involve detailed examination of a sequence of
individual distributions.
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5.5.1 Pitch Angle Distributions

Under conditions where a particle distribution is expected to be gyrotropically symmet-
ric, a measurement of a 2-dimensional pitch angle distribution (if available) is sufficient to
characterise the particle distribution. The three-dimensional distribution is reconstructed
by simply rotating the pitch angle distribution about the magnetic field. The assumption
of gyrotropic symmetry is considered to be often valid for plasma electron distributions,
although not usually for ion distributions. Both electron and ion distributions can exhibit
gyrophase structure during wave-particle interactions or when within a gyroradius of a
plasma boundary (but observations of electron gyrostructure in regions only a gyroradius
wide can be challenging as the plasma electron gyroradius is typically so small compared
to the relative motion of the instrument and the plasma in an observation time).

Gyrotropy (when there is truly no gyrophase structure) is a property of the distribution
function in a frame in which there are no cross-field drifts (e.g. the species rest frame,
which does not usually coincide with the spacecraft/instrument rest frame). Electron drifts
are typically much smaller than the electron thermal speeds for hot plasma distributions,
so that the measurement frame is a good approximation to the species rest frame. Thus
for electron measurements, a two dimensional distribution containing the magnetic field
direction can simply be selected from a three-dimensional measurement and treated as an
electron “pitch angle distribution”. Indeed, it is quite common practice for electron mea-
suring instruments in particular to transmit pitch angle distributions in preference to full
three dimensional distributions (there is a substantial reduction in the telemetry required
per distribution, allowing a higher rate of transmission of pitch angle distributions than of
more complete 3-dimensional distributions). Ion drifts are not usually negligible compared
to ion thermal speeds for hot plasma distributions. The removal of ion cross-field drifts by
on-board computations is not usually attempted. Instead, ion pitch angle distributions are
usually reconstructed during ground-based data analysis working with three-dimensional
distributions.

Onboard pitch angle selection requires some indication of the orientation of the mag-
netic field. Two approaches are possible. One may take data directly from the magnetic
field experiment onboard the satellite or else infer the field direction by determining an
axis of symmetry in the measured distribution. The former technique is subject to the
risk that offsets and calibration factors available onboard for correcting the raw magnetic
field data may be inaccurate, leading to an incorrect selection of the field direction and
hence of the subset of the measured plasma data to be used as “pitch angle data”. The
second technique is also vulnerable to the risk that the distribution does not have a well
defined symmetry axis, as for example for an isotropic distribution (or that if there is one,
it may not coincide with the magnetic field direction). Some instruments return informa-
tion defining the direction assumed for the magnetic field, for later comparison with the
true direction as determined by proper (ground based) analysis of the magnetic field data.
It is also useful to verify whether the magnetic field is stable (slowly-varying with respect
to the spin period) during the acquisition of pitch angle data, particularly if the pitch angle
data seems unusual.

The magnetic field direction falls within the field of view of a 360◦ field-of-view anal-
yser twice per spin (provided the direction is not varying rapidly compared to the spin
period). At these two times during each spin the instrument can acquire a complete pitch
angle distribution in a single energy sweep, since polar zone coverage is simultaneous.
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The time taken can be a small fraction of the spin period sweep (e.g. 0.125 s for a 4 s spin
and an instrument with 32 sweeps per spin). Thus the instrument can provide snapshots of
the pitch angle distribution at a high rate.

Sometimes, a Top Hat will be used to collect data from a more limited 180◦ field
of view. In this case, a complete pitch angle distribution cannot be acquired in a single
energy sweep (except in the special case where the spin axis is aligned with the magnetic
field direction). A full pitch angle distribution must usually consist of two parts acquired
at times separated by half a spin period, each of duration an energy sweep. The pitch
angle distribution acquired in this way may be misleading if the magnetic field changes
during the interval between the collection of its two parts. Note that if the 180◦ field of
view instrument is twinned with a second identical instrument on the opposite side of the
spacecraft, which covers the same energy range, we can in principle revert to the 360◦ field
of view situation.

Instruments with still more restricted fields of view cannot in general acquire full pitch
angle distributions, although in special situations it is still possible. For example, the
magnetic field direction is generally stable and predictable in the inner magnetosphere, so
a spacecraft in an equatorial plane orbit can be arranged with its spin axis roughly normal
to the mean magnetic field direction (a “cartwheel” configuration). An instrument with a
field of view of say 120◦, arranged so that the field of view includes the spin axis direction
and the normal to the spin axis (roughly along the magnetic field direction), will look up
the field and down the field at two intervals half a spin apart during each spin, in each
case covering at least a 90◦ section of the pitch angle distribution. The full pitch angle
distribution is reconstructed by combining the two sets of data from each spin.

Some instruments will return unprocessed counts data from the look directions judged
to contain pitch angle data. Other instruments go further and re-sort data into a prede-
termined set of pitch angle bins. The benefit may be a further reduction in telemetry
requirement per distribution, which is accompanied by the risk of some form of error be-
ing introduced in the onboard procedure. The data analyst on the ground has less control
over the analysis when onboard processing is involved and should be fully aware of the
nature of the onboard processing before interpreting the data.

5.5.2 Full Three Dimensional Distributions

A complete three dimensional distribution measurement usually generates a very large
amount of data (e.g. see the Summary of Section5.2.1). A typical instrument will be capa-
ble of transmitting such a distribution, but will only do so occasionally, to provide a spin
resolution “snapshot”. One important role of the snapshot is its use to verify the proper
working of any onboard software, which may be used to generate moments (or more usu-
ally the related “moments sums”), pitch angle distributions, etc. In addition, the provision
of these snapshots, or at least of reduced three dimensional distributions, is essential for
assessing the meaning of the moments. Section6.6 in Chapter6 provides a number of
examples of this, showing that more than one distribution can give rise to a particular set
of moments values. These snapshots are also important as they provide an opportunity
to discover plasma behaviour which may be disguised in the process of forming other,
more commonly transmitted data products. For example, narrow beams may be observ-
able at the solid angle resolution of the measurement, but may not be apparent in a lower
resolution distribution constructed to reduce telemetry loading or for moments generation.
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Some reduction in the size of a full three dimensional distribution is possible without
severe degradation of the information content. For example, some data may be discarded
from polar zones near the spin axis, where over-sampling is known to occur (as discussed
in Section5.2.1).

It will be clear from the earlier discussion that a full three dimensional distribution can
be acquired in half a spin period using a 360◦ field-of-view analyser or in a spin period
using a 180◦ field of view analyser. Particle distributions are usually organised by the
magnetic field direction. When this is so, variations of the magnetic field direction on
time scales of order a spin or less can change the orientation of the field of view of the
instrument with respect to the distribution it is trying to measure, leading to incomplete
coverage of some parts of the distribution, and over-sampling of other parts (distinct from
the over-sampling discussed in Section5.2.1). If an examination of magnetic field data
at a time resolution of many vectors per spin shows that the field is not static, but also
shows that the field rotation is not too complicated, it is possible in principle to reconstruct
a partial distribution from the acquired data by carefully determining which regions of
velocity space were in fact sampled.

5.5.3 Reduced Three Dimensional Distributions

As full three dimensional distributions are so large, and two dimensional slices are
not always useful (e.g. see earlier discussion in Section5.5.1) a common approach is to
produce reduced size distributions which may be transmitted more frequently. As already
noted, size reduction can be achieved by discarding parts of the distribution, for example
part of the azimuth sectors as for the pitch angle distribution case. In principle, instruments
could discard data according to a variety of rules (do not transmit empty bins, do not use
this part of the energy range when thought to be in this plasma environment, etc.) but in
general instruments do not have the resources to carry out anything other than very simple
selection processes, and there is always the risk of discarding important data. It is more
common to retain the full energy and solid angle range, but to “decimate” the distribu-
tion by combining data in adjacent energy and/or solid angle regions, effectively reducing
the energy and/or solid angle resolution of the data. Thus we have a further trade-off be-
tween energy/solid angle resolution and time resolution, on top of those enforced by the
measurement technique, which we described earlier. Other techniques are adaptations of
data compression techniques from imaging instruments. In general these become more
“lossy” as the measured distribution becomes less smooth/uniform (and more interesting!)
so the trade-off here is between compressibility and loss of accuracy in structured parts of
the distribution. The data user should be aware of the process by which the distribution
is decimated or otherwise compressed, as the compression process may destroy informa-
tion about structure which is of interest. Cross-checking with full resolution distributions,
which may be occasionally available, is recommended if this risk is likely to be important.

5.5.4 Four Dimensional Distributions

Our discussion of three dimensional distributions can be applied on a species by species
basis to distributions from a mass-resolving ion instrument, however it is customary to
think of four dimensional distributions as the data product in this case. The mass dimen-
sion usually increases the distribution size by a factor of only a few, say four. Nevertheless,
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this places a higher demand on the telemetry link than a non-mass resolving instrument,
so such distributions are more likely to be telemetered in compressed or decimated form.

5.5.5 Data Compression

So far we have discussed the compression of distribution data products. In order to
make good use of telemetry, data compression techniques are usually also applied to indi-
vidual counts values, to represent the values using fewer bits or bytes. The reconstruction
of the original values during ground processing will usually introduce some difference be-
tween the onboard value and the ground value. The error will usually be a few per cent
at most for elements of a distribution matrix, and will be smaller (by design) where ac-
curacy is considered more important, for example for moments calculated onboard. In
some data analysis applications, particularly involving differences between distributions
measurements, the decompression error may be significant, however it is disregarded in
most single spacecraft work.

5.6 Summary

In this chapter we have described in some detail how a modern plasma analyser mea-
sures velocity space density in discrete regions of velocity space. We also explain how
these measurements are combined to provide a distribution representative of the plasma
phase space distribution. The use of these measurements in the construction of plasma
velocity moments and the uses of those velocity moments are the topics of Chapter6.

We have tried to show that instrument characteristics such as energy per charge cov-
erage and resolution, solid angle coverage and resolution, time resolution and dynamic
range are all interdependent, and that a particular instrument is necessarily designed for
a particular plasma environment. That instrument will often also be operated in other en-
vironments, in which its performance may be less satisfactory. Sometimes this will be
obvious to a data analyst, but not always, so the analyst is strongly advised to spend some
time verifying that the questions they wish to address can in fact be answered with the data
collected by the instrument, while in the environment of interest to the analyst.

We have also briefly discussed the range of data products which may be produced by
the instrument. Again it is worth noting that much of the telemetry from an instrument
may not represent the best resolution (in energy per charge, solid angle or time) available.
Less commonly used data products may be more appropriate for some studies.

The importance of calibration and in-flight monitoring of instrument characteristics
is also highlighted. A data analyst can normally expect that data will be supplied from
an instrument team with a reliable calibration, but should be aware that calibrations are
sometimes reassessed as an increasingly large data set is gathered, so that data carries a
greater risk of recalibration relatively soon after it has been acquired. We note that the
possibility of inter-calibration between instruments on spacecraft which are co-orbiting at
relatively small separations gives grounds for confidence that good relative accuracy can
be achieved and maintained between the spacecraft.
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6.1 Introduction

This chapter is intended as a tutorial on plasma moments: their definition, computa-
tion, interpretation, accuracy, and use. The chapter builds upon Chapter5 which describes
the measurements of the particle distribution functions from which the moments are con-
structed. Velocity moments are the plasma parameters that most easily lend themselves to
quantitative multipoint analysis. For a description of the analysis of multipoint moments
the reader is referred to Chapter17.

6.2 Definitions

6.2.1 Single-Species Moments

The moments of the velocity distribution function,f (v), of a given particle species are
defined as

Mn ≡

∫
f (v) vnd3v (6.1)

wherevn is ann-fold dyadic product, and d3v is the volume element in velocity space.
The moments commonly used are the zero-, first-, second-, and third-order moments,

i.e., the number density,N , the number flux density vector,NV , the momentum flux
density tensor,Π, and the energy flux density vector,Q, respectively:

N =

∫
f (v)d3v (6.2)

NV =

∫
f (v) v d3v (6.3)

Π = m

∫
f (v) v v d3v (6.4)

125
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Q =
m

2

∫
f (v) v2v d3v (6.5)

Higher moments can be calculated, but do not have a simple physical interpretation.
Multiplying N andNV with the particle massm, one obtains the mass density,ρ, and

the mass flux density vector,ρV , respectively. From the zero- and first-order moments
one can compute the average velocity,V , of the particles, referred to as the bulk velocity:

V = (NV )/N (6.6)

Converting the momentum flux tensor and the energy flux vector to the frame where the
average velocity is zero, one obtains the pressure tensor,P, and the heat flux vector,H :

P = Π − ρ V V (6.7)

H = Q − V · P −
1

2
V Tr (P) (6.8)

One can also write down definitions forP andH directly in terms of the velocity differ-
ences relative to the bulk velocity:

P = m

∫
f (v) (v − V ) (v − V ) d3v (6.9)

H =
m

2

∫
f (v) |v − V |

2(v − V ) d3v (6.10)

Using the definitionP ≡ N k T, wherek is the Boltzmann constant (1.38 × 10−23 J/K),
one can convert the pressure tensor into a temperature tensor. Note that the momentum
flux, pressure and temperature tensors are symmetric tensors.

Scalar pressures and temperatures can be obtained from the trace of the associated ten-
sors:p ≡ Tr(P)/3 andT ≡ Tr(T)/3 = p/(Nk). Temperatures are converted to thermal
energieskT , usually measured in eV, by noting that 1 eV corresponds to 1.16×104 K. Tem-
perature and thermal energy are related to the thermal velocity, defined viakT = (m/2)v2

th.
For the case of electrons and protons the relations arevth,e = 593

√
kTe = 5.50

√
Te and

vth,p = 13.8
√
kTp = 0.128

√
Tp, respectively, when the velocities are measured in km/s.

For a discussion of the meaning of temperature and thermal velocity, see Section6.5.

6.2.2 One-Fluid Moments

Separate sets of moments can be computed for each particle species. From these indi-
vidual sets of moments one can derive single-fluid quantities. For illustration we choose
the case of two species, e.g., electrons and protons, or two different ion species. The
equations are easily generalised to more than two species.

ρ = Neme +Ni mi = ρe + ρi (6.11)

N = Ne +Ni (6.12)

V = (ρe V e + ρi V i)/(ρe + ρi) (6.13)

P = PCMe + PCMi (6.14)

It should be noted that in general the total pressure is not the sum of the partial pressures
if the latter are computed in the bulk-velocity frames of the individual species. Instead the
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individual pressures must be computed in their joint centre-of-mass frame, which we will
distinguish from the individual bulk-velocity frames by the superscript CM. Only if the
two species have identical bulk velocities is the total pressure simply the sum of the partial
pressures computed in the individual bulk-velocity frames.

If the two species are electrons and protons, thenρ ≈ ρi andV ≈ V i , and there are
two new quantities, namely space charge and current density:

σ = e (Ni −Ne) (6.15)

j = e (NiV i −NeV e) (6.16)

wheree is the elementary charge,e = 1.6 × 10−19 C.

6.3 Computations

As described in Chapter5, modern plasma instruments which measure the three-di-
mensional velocity distribution function acquire thousands of samples per distribution.
For example, an instrument which samples 30 energiesE, 16 azimuth anglesφ, and 8
elevation anglesθ , will collect a total of 3840 count rate samples,Cijk = C(Ei, φj , θk),
per spacecraft spin. Each of these samples is itself an integral over some range of energies
and angles, the intrinsic acceptance volume of the instrument. The elevation angle samples
are typically abutting, while the azimuth samples are usually spaced much wider apart than
the intrinsic acceptance, thus leaving gaps that are not covered. Energy coverage is usually
achieved by sweeping or stepping the intrinsic narrow energy window exponentially in
time and accumulating the counts in a number (30 in our example) of bins. This way the
energy channels are contiguous, with centres spaced equidistantly in logE. Typical values
for1E/E are 0.3 and the dynamic range in energy is≈ 2000. A1E/E of 0.3 corresponds
to a1v/v of 0.15, while a 22.5◦ (i.e., 0.4 rad) angular resolution corresponds to a1v/v

of 0.4. The resolution in velocity magnitude is thus usually better than the resolution in
angle.

From the matrix of count rates the moments can then be computed according to the def-
initions given in Section6.2, by noting that, for an electrostatic analyser,fijk ∝ Cijk/v

4
ijk,

with a proportionality factor given by the detector response function (see Chapter5). The
integrations are replaced by summations and usually the assumption is made thatf (v) is
constant over the integration volume elements, d3v. Noting that d3v = v2dv = v3dv/v,
and dv/v is constant for these types of analysers, one obtains the expressions given in Ta-
ble6.1where the net velocity exponents are one less than in the equations in Section6.2.

Table6.1 illustrates the large number of different cosine and sine weights in the inte-
gration over angle. These weights are computed as integrals over the angle channels. The
Cijk in the table are not the raw count rates, but have already been corrected for detector
dead time and energy-dependent detection efficiency, and a factor cosθ has been applied
that removes the over-sampling at high elevation angles (see Chapter5). Not shown in
Table6.1 are the factors involving the detector response function, the size of the velocity
space elements, and the particle mass in front of the expressions that can be applied after
the summations.

Instead of assuming thatf is constant over the integration volume element, one can
also use a trapezoidal method for the summations, thus allowingf to vary linearly between
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adjacent measurements. Simulations have, however, shown that it makes a negligible dif-
ference (see Section6.4.2).

A more sophisticated scheme has been implemented for the moments from the Hy-
dra instrument on the Polar spacecraft. There the integration is done with cubic splines.
Furthermore, integration over speed is effectively extended from 0 to∞. This is done by
mapping the infinite interval onto a finite one chosen such that it is centred where the peak
contribution to a particular moment occurs in the measured distribution. This guarantees
that the actual measurements define the transformed integration within most of the finite
interval. The scheme then exploits thatf → 0 for v → ∞ and that the integral vanishes
at v = 0. Cases where this scheme becomes questionable are identified by computing,
separately for each of the moments, the fractional contribution to the integral from the
energy range beyond the highest energy of the actual measurements. For electrons, where
problems occur usually at low energies, care is taken to remove photoelectron counts,
andf is then shifted in energy according to the spacecraft potential as measured by the
double-probe instrument. Finally,f is defined at speeds lower than actually measured, by
doing a Taylor expansion around the origin which matches the measurements at the first
few energy steps. The Hydra method has been checked by simulations, as described in
Section6.4.2.

For completeness we note that in the early days, instruments did not have full three-di-
mensional (3-D) velocity-space coverage and/or resolution and measured only two-dimen-
sional (2-D) distribution functions. Some measurements provided a cut through the 3-D
distribution, i.e.,fij = f (Ei, φj ). Other instruments did not resolveθ either, but covered
some range inθ up to some maximum value, e.g., 55◦ in the case of the 2-D detectors of
the Los Alamos/Garching Fast Plasma Experiment on ISEE-1 and -2. Moment integration
from 2-D distributions required some assumption on the behaviour of the distribution as a
function of the elevation angle. For convected distributions that were nearly isotropic in
the bulk-velocity frame, the computed density and 2-D vector and tensor quantities were
reasonably accurate.

6.4 Accuracy

In addition to the errors they inherit from the underlying distribution functions (see
Chapter5), the moments suffer from limitations introduced by the implied integration pro-
cedures. Much of the difficulty arises from the extraordinary dynamic ranges in particle
velocity (or energy), and in the flux levels and angular widths of the incident distribution
that one has to cope with. Densities range from 0.01 cm−3 in the lobes of the geomag-
netic tail to several 100 cm−3 in the (highly compressed) magnetosheath. The necessary
energy range is indicated by the temperatures to be encountered which range from<10 eV
(<105 K) for solar wind protons to>10 keV (>108 K) for plasma sheet protons. The dy-
namic range in fluxes is 107 for ions and 105 for electrons. The angular widths of the
distributions are determined by the ratio of thermal and bulk speeds, and range between
≈ 20◦ for highly supersonic distributions, such as the solar wind ions, to 360◦ for subsonic
distributions found elsewhere. These numbers illustrate the formidable task a single instru-
ment faces if it is to be used in all these regimes which is the usual situation. Note that in
this paper we have ignored ionospheric (and plasmaspheric) plasmas that would increase
these ranges even further, having densities of 103 cm−3 and higher, and temperatures of
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Table 6.1: Moment summations as carried out on board AMPTE/IRM for ions and elec-
trons. Factors involving detector geometry factor, integration-volume elements, or particle
mass have been omitted because they can be applied on the ground.

Density:

N =
∑
k

1
V (E)

∑
φ

∑
θ

C(θ, φ,E)

Number flux density vector:

NVx =
∑
E

∑
φ

cosφ
∑
θ

cosθ C(θ, φ,E)

NVy =
∑
E

∑
φ

sinφ
∑
θ

cosθ C(θ, φ,E)

NVz =
∑
E

∑
φ

∑
θ

sinθ C(θ, φ,E)

Momentum flux density tensor:

Pxx =
∑
E

V (E)
∑
φ

cos2 φ
∑
θ

cos2 θ C(θ, φ,E)

Pyy =
∑
E

V (E)
∑
φ

sin2 φ
∑
θ

cos2 θ C(θ, φ,E)

Pzz =
∑
E

V (E)
∑
φ

∑
θ

sin2 θ C(θ, φ,E)

Pxy =
∑
E

V (E)
∑
φ

cosφ sinφ
∑
θ

cos2 θ C(θ, φ,E)

Pxz =
∑
E

V (E)
∑
φ

cosφ
∑
θ

cosθ sinθ C(θ, φ,E)

Pyz =
∑
E

V (E)
∑
φ

sinφ
∑
θ

cosθ sinθ C(θ, φ,E)

Energy flux density vector:

Hx =
∑
E

V 2(E)
∑
φ

cosφ
∑
θ

cosθ C(θ, φ,E)

Hy =
∑
E

V 2(E)
∑
φ

sinφ
∑
θ

cosθ C(θ, φ,E)

Hz =
∑
E

V 2(E)
∑
φ

∑
θ

sinθ C(θ, φ,E)
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Figure 6.1: Illustration of the effect of a velocity range of the measurements (grey an-
nulus) that does not completely cover the input velocity distribution, represented by the
isocontours centred on the bulk velocityV0.

1 eV or less, and requiring dedicated measurement techniques.
In this section we will first discuss qualitatively all the factors that can affect the mo-

ments, and then look at the results of various studies that have quantitatively evaluated the
resulting errors.

6.4.1 Error Sources

Energy Range

The measurements are made over an energy range that cannot be arbitrarily large.
First, analyser deflection voltages (and thus the range of energies a detector can accept)
are technically constrained to a limited dynamic range, typically a few thousand. Second,
counting statistics sets a minimum dwell time per energy channel which limits the energy
range that can be covered in a certain time. If the distribution function extends outside this
finite range, as schematically illustrated in Figure6.1, all moments are adversely affected,
but to varying degrees because of their different velocity weights.

If the distribution extends to energies below the low-energy limit of the measurements,
density and pressure are both underestimated, but the density more so than the pressure
because of the higher velocity weighting of the pressure. As a consequence, the computed
temperature, being proportional top/N , is too high. The computed bulk velocity magni-
tude will be overestimated, but its direction will be unaffected, unless the temperature is
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very anisotropic and magnetic field and bulk velocity are not aligned. If the distribution
extends beyond the high-energy limit of the measurements, density and pressure are still
underestimated, but now the pressure more so than the density, with the result that the
computed temperature is too small. The bulk speed will also be underestimated in this
case. Furthermore, any time a significant portion of the true distribution is excluded from
the measurements, the distribution no longer is symmetric in the bulk-velocity frame, and
false pressure and temperature anisotropies are introduced.

The effect of the limited energy range is particularly acute at low energies where a
population of very cold (of order 1 eV) particles of ionospheric origin would be missed
entirely by typical hot-plasma instruments. For electrons the problem occurs also in the
solar wind where thermal energies are≈ 10 eV (corresponding to≈ 105 K), close to the
low-energy limit of typical hot-plasma instruments.

There are several ways to estimate the contributions from below the low-energy limit.
If one has reason to believe that the low-energy portion of the distribution can be approxi-
mated by a Maxwellian (such as for the core of the solar wind electrons), one can estimate
the contribution to the moments of the missed electrons by fitting a Maxwellian to the
measurements at low energies, taking care not to include channels contaminated by photo-
electrons. If one is only interested in improving the density, one can calculate the fraction
of the density that resides at the energies not measured, under the assumption that the dis-
tribution is Maxwellian with a temperature equal to that computed from the moments. The
measured density is then adjusted accordingly. This correction, which was employed on
AMPTE/IRM for the electrons in the solar wind, is an underestimate because the tempera-
ture that is being used is too high. A third possibility is to approximate the missing part of
the distribution by linearly interpolating logf through zero speed between oppositely di-
rected azimuth-angle channels. This scheme seems plausible for magnetosheath electrons
which often have a flat-topped distribution at the lowest energies.

For ions the problem with cold populations is less severe because even a small bulk
velocity will shift the ion energies into a comfortable energy range. For example, an
oxygen ion at 20 km/s has an energy of already 34 eV. The question of detection is then
more one of energy resolution rather than energy range. (For electrons bulk motion is no
help because even a 1000 km/s corresponds to only 3 eV.) For ions, problem often occur at
high energies. Assuming a temperature of 2× 108 K (corresponding to a thermal energy
of ≈ 20 keV), not uncommon in the Earth’s plasma sheet, protons with a Maxwellian
distribution have≈ 25% of their density and≈ 50% of their pressure at energies above
40 keV, the upper energy limit of typical hot-plasma instruments. To catch 90% of the
proton pressure would require measurements up to 80 keV. Because real distributions tend
to fall off less steeply at high energies than a Maxwellian, the real situation is even worse,
particularly if the plasma has a substantial bulk speed which shifts the distribution to even
higher energies. The problem can be overcome to some extent by computing (and adding)
the partial pressure of ions above 40 keV from spectra measured by an energetic particle
instrument, as done on AMPTE/IRM.

Note that the scheme employed for the Hydra instrument on Polar technically inte-
grates over energies between 0 and∞, as described in Section6.3.



132 6. MOMENTS OFPLASMA VELOCITY DISTRIBUTIONS

Velocity Space Resolution

Features in the distribution functions that are comparable with or narrower than the
integration volume elements cannot be properly handled by the moment integration. Cold
ion beams such as the solar wind are an example. For an instrument with 22.5◦ angular
resolution, for example, a cold beam will have almost all counts concentrated in a single
angle sample. The moment computation will then attribute half of the 22.5◦ angle-spacing,
or 20% of the bulk speed, to the thermal speed. Assuming a bulk speed of 400 km/s, the
apparent thermal speed is 80 km/s, equivalent to almost 35 eV or 4× 105 K. At 700 km/s
the apparent temperature would be≈ 106 K. These values are much in excess of the true
solar wind ion temperature which is typically≤ 105 K.

The bulk speed of a cold beam will be determined fairly accurately, to within the ther-
mal speed, as long as the beam is sampled at all, while the error in the density will strongly
depend on where (relative to the peak) the distribution is sampled. On AMPTE/IRM the
azimuth sampling pattern was rotated by one quarter of the sample spacing in successive
spins. In the solar wind (or other cold-beam environments), the computed ion density
therefore exhibited a strong modulation over a four-spin cycle. Averaging the moments
over one complete four-spin cycle removes most of the density modulation, but at the ex-
pense of reduced time resolution. The computed temperature still is too large because the
intrinsic angular acceptance of the instrument, particularly in polar angle, is itself already
too large for the solar wind. To overcome these difficulties, some ion instruments (such as
the AMPTE/UKS instrument), have used narrower intrinsic acceptance angles and added
extra samples near the solar direction. A better solution is to add a separate instrument
specifically designed for the measurement of narrow beams.

Time Variations

Moment integration assumes that no significant time variations occur while the part
of velocity space with significant counts is being sampled. For a supersonic distribution,
occupying only a small angular sector, this takes only a fraction of a spacecraft spin. For a
“hot” distribution, it takes an entire spin. Either way, the time between successive samples
of the same element in velocity space is much larger (typically by a factor of several
hundred) than the duration of each sample. In the language introduced in Chapter2, the
moments are extremely under-sampled, and thus subject to severe aliasing.

Part of the stability argument concerns the magnetic field. If the distribution exhibits
an anisotropy ordered by the magnetic field direction, the moments will be affected if the
magnetic field rotates while the distribution function samples are still being collected. As
the magnetic field is measured many times per spin, such occurrences can be recognised
in the data and the moments flagged accordingly. The off-diagonal terms in the pressure
(temperature) tensors are particularly sensitive to variations in the magnetic field direction,
as discussed in Section6.5.

An interesting case occurs if the spacecraft crosses a density boundary in the mid-
dle of the measurement cycle. In this case one segment of azimuth-angle samples have
high counts, the other segment has low counts. Computing moments of this distribution
produces an artificial bulk velocity as well as anisotropic temperatures, but only for the
interval straddling the density change. Such an occurrence is easily recognisable.

Another problem can occur if the spacecraft crosses a boundary separating plasmas
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with very different distribution functions, such as the bow shock. If for one reason or
another the distribution is not properly measured on one side of the boundary, then funda-
mental quantities such as the density jump across it are not determined correctly.

Counting Statistics, Averaging

The total number of counts recorded in a distribution is proportional to the incident
particle flux and to the geometric and efficiency factors of the instrument. The input flux
in turn is proportional to density times thermal speed of the plasma,Nvth. For a givenvth
the relative uncertainty in the density will vary as 1/

√
N because the counts obey Poisson

statistics. For a density ranging from 0.01 to 100 cm−3, the associated statistical error in
the computed density thus varies by two orders of magnitude.

Along an orbit such as that of Cluster, the incident fluxes extend over a dynamic range
that is approximately 7 orders of magnitude in the case of ions. This is more than a de-
tector with a fixed geometry factor can handle. For this reason the ion instrument (CIS)
employs detectors with different geometry factors, one each for low and high flux levels.
For electrons the dynamic range in incident flux is less, approximately 5 orders of magni-
tude. Still, the PEACE electron instrument developed for Cluster consists of two separate
detectors with different geometry factors.

The different velocity weights of the counts (see Table6.1on page129) shift the em-
phasis in the moments summations from where the peak counts actually occur, thus re-
ducing statistical accuracy, except for the number flux vector where no shift occurs. Still,
one can take the total number of counts accumulated in a distribution as a crude measure
of the statistical accuracy, as demonstrated in Figure6.4. This parameter is, for example,
recorded by the PEACE electron instrument on Cluster.

Averaging can overcome some of the counting statistics problems. The reason for this
is that the moment computation is a linear operation and thereforeM(f 1)+M(f 2)+· · · =

M(f 1
+ f 2

+ · · ·), where thef j are the distributions measured in a sequence of spins.
Adding the raw moments from several spins is thus equivalent to computing the moments
from the summed distribution, i.e., effectively adding up the counts from several spins.
But it should be noted that one should average the raw moments before computing the
derived quantities. For example, to improve the statistics on the bulk velocity, one must
add the momentsN andNV from a number of spins and then computeV by dividing the
summedNV by the summedN . Averaging theV directly does not improve the statistics.

Background Counts

Another cause of error are counts which are not due to plasma particles. These “back-
ground” counts can have several sources, including (high-energy) penetrating particles, de-
tector dark counts, solar UV induced counts, photoelectrons, or electronic noise. Penetrat-
ing particle background counts are only important where there is a high flux of energetic
particles, e.g., in the radiation belts or during solar energetic particle events. UV-induced
counts are only seen when the detector is facing the sun. A particularly severe problem
are photoelectrons from spacecraft surfaces because they can dominate the count rates of
electron instruments at low energies. To minimise errors, the magnitude of the various
backgrounds must be estimated or empirically determined and subtracted before moments
summation.
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Spacecraft Charging

A spacecraft in a plasma will charge to an electrical potential that is determined by a
balance of all the currents from electrons and ions that are incident on or emitted from its
surface, including the photoelectron current if illuminated by the sun. Spacecraft poten-
tials thus depend on particle fluxes and in magnetospheric plasmas are typically less than
tens of volts in sunlight for an electrostatically clean spacecraft. When photoelectrons
dominate, the spacecraft potential is positive. Spacecraft potentials change the velocity
of the incident low-energy particles and can prevent particles from reaching the detectors
altogether. If one knows the spacecraft potential from other measurements, or if one can
estimate it from features in the measured distributions themselves, one can correct for the
velocity change, but only for those particles that can still reach the detector. It is thus ad-
vantageous to reduce the spacecraft potential by some active control. Significant reduction
of positive spacecraft potentials has been achieved with indium ion emitters strong enough
to dominate the current balance. Holding the spacecraft potential near zero also allows
the photoelectrons to disperse so that they are not measured along with the natural plasma
electrons.

Effect of Thermal-to-Bulk-Speed Ratio

If the bulk velocity is large compared with the thermal velocity (“supersonic flow”),
the particles (and thusf (v)) occupy a relatively small region in velocity space. If the mea-
surements have adequate resolution, it is then no problem to determine the bulk velocity
reliably, as illustrated above for the case of solar wind ions. If on the other hand the bulk
speed is much lower than the thermal speed (extreme “subsonic” flow), the shift of the
distribution caused by the bulk velocity introduces only small changes in the count rates
at any position in velocity space, and is thus harder to measure accurately.

The problem is particularly acute with electrons which in space plasmas are always
subsonic. Electron temperatures are similar to those of the ions, but at a given temperature
the electron thermal speed is the square root of the mass ratio (≈ 43) times that of the
protons. Furthermore, the maximum bulk speeds that occur in space plasmas are of order
1000 km/s, corresponding to only 3 eV for electrons, but to almost 6 keV for protons (and
still higher for any heavier ions that might be present). By comparison, the electron thermal
speed typically corresponds to tens to hundreds of eV. This explains why electron bulk
velocities are harder to measure than ion bulk velocities. For the same reason electric
currents, which are proportional to the difference between electron and ion bulk velocities,
are difficult to directly determine from the ion and electron moments, too.

Ion-Composition

If ion species are not resolved, as is true for any energy-per-charge analyser, moments
are usually computed under the assumption that all ions are protons. Although it is true
that space plasmas usually are dominated by protons, even a small addition by number of
heavier ions can drastically change the mass density. For example, the presence of only
6% oxygen ions by number causes the computed mass density to be off by a factor of
almost two.

If two ion species are present at the same velocities, for example protons and singly-
charged oxygen, an E/q analyser will record the two species at energies that differ by



6.4. Accuracy 135

their mass ratio, which is 16 in our example. Under the pure proton plasma assumption,
this will be interpreted as a double-beam situation and the computed moments can be
grossly in error, in particular the temperature. If the species involved are known, one
can fit model distributions to each peak and compute separate moments for each species.
Before the advent of mass-resolving instruments, this method has been employed for E/q
ion measurements in the solar wind to separate the contribution of alpha particles (whose
abundance is of order 5%) from those of the dominant protons.

Calibration

All the moments in equation6.1inherit from the measurements off the proportional-
ity to the geometry factor of the analyser and a factor representing the normalised detector
efficiency (see Chapter5). These factors can be applied after the moment summation. For
microchannel plate detectors (MCP’s), the detection efficiency depends on particle energy
and the applied voltage, and can be spatially non-uniform. This efficiency corrections must
already be included during moments summation. Geometric factors can be calibrated with
particle beams in the laboratory, but can also be computed with ray-tracing techniques.
Efficiencies are usually determined by measurement. Absolute uncertainties in instrument
response functions are usually 10% or higher, while relative uncertainties (between instru-
ment of the same design and build-status) are as low as a few per cent. As the bulk velocity
involves a ratio between raw moments, common factors drop out. The bulk velocity is thus
independent of the geometry factor.

On-board versus Ground Computations

Beginning with AMPTE/IRM, moment computations are now often done on board,
such as in the ion and electron instruments developed for Cluster and for Equator-S. This
is because a distribution function consists of several thousand samples and there is usually
not enough telemetry to transmit it at the full time resolution. The moments up to the
heat flux, on the other hand, amount to just 13 numbers per species and therefore require
only a modest bitrate. Computing the moments already on board is mandatory if high
time-resolution is required.

The disadvantages of on-board computation are limited numerical accuracy and less
flexibility. On the ground it is easier to use more complicated integration schemes, or
to adjust the integration to correct for photoelectron contamination, or to compute partial
moments in case a distribution is composed of several distinct populations. On the ground
one can also easily, and retrospectively, change the energy dependence of the detector
efficiency, correct for any non-uniformity in detector response, and even deal with cases
where excessively high incident fluxes have caused gain depressions in the MCP’s. Full
analysis of the errors from counting statistics is also easier on the ground.

To combine the advantages of on-board and ground computations, a reasonable com-
promise is a solution where moments are computed on board and transmitted with full
time-resolution, but moments are then also computed on the ground from the fewer distri-
bution functions that have been transmitted.
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Figure 6.2: Simulation flowchart for moment computations.
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Figure 6.3: Effect of the angular resolution of the measurements on the accuracy of the
moments for the AMPTE/UKS ion instrument. The density was assumed at 10 cm−3,
the bulk speed at 100 km/s, and the angular spread of the input distribution, measured by
the ratio between thermal and bulk speeds, was varied as shown along the abscissa. The
angular resolution of the measurements was fixed at 22.5◦.

6.4.2 Simulation Results

Computer simulations of the effects discussed in the previous section have been carried
out at various institutions involved in space plasma measurements. The method consists
in choosing a distribution with a given density, bulk velocity and temperature; translating
this input distribution into the count rates that a real instrument with specified response
characteristics would produce; computing the moments from these “measured” distribu-
tions, and comparing them with the moments of the input distribution, i.e., those moments
that a perfect instrument would produce. Figure6.2 illustrates the process. In the follow-
ing we will discuss some of the results obtained this way for instruments on previous and
future missions. Because input distributions have commonly been taken as Maxwellians,
the resulting moments had, by definition, no off-diagonal terms in the pressure (and tem-
perature) tensors, nor a heat flux. Errors in those terms could therefore not be determined.

The first example refers to results obtained for the ion plasma instrument flown on
AMPTE/UKS that in one standard operating mode covered an energy/charge range be-
tween 10 V and 20 kV 16 times per satellite spin, i.e., with 22.5◦ resolution in azimuth and
with similar resolution in elevation angle. Figure6.3shows the effect of the velocity-space
resolution on the accuracy of the moments. A distribution with fixed density and bulk
speed was assumed, and the thermal spread of the distribution was varied by changing the
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Figure 6.4: Effect of increasing the number of counts by increasing the input density from
10 to 104 cm−3. The velocity and temperature were held constant at 100 km/s and 106 K,
respectively.

temperature. The dramatic effect of the angular width of the distribution on temperature,
discussed in the previous section, is clearly evident. As expected, the density is only af-
fected if the thermal spread is close to the resolution of the instrument, and the bulk speed
is hardly affected at all. Figure6.4 shows the expected reduction in the statistical errors
that result when the density is increased while keeping the other parameters constant.

The next example concerns results obtained for the CIS ion plasma instrument devel-⇒6.1
oped for Cluster. CIS comprises an energy-per-charge instrument named HIA that mea-
sures ions without mass resolution in the energy/charge range from 5 V to 32 kV. The other,
named CODIF, resolves the most important ion species and covers a range between≈ 15 V
and 40 kV. Both have two sections, one with a low geometry factor (LGF), the other with
a much larger geometry factor (HGF). This is to get adequate counting statistics over the
large dynamic range of fluxes that we alluded to earlier.

Figures6.5, 6.6, and6.7 show the errors in computed density, temperature, and ve-
locity, respectively, as a function of the density and temperature of the input Maxwellians
that were varied between 0.1 and 100 cm−3, and between 10 and 104 eV, respectively. The
four panels refer to different combinations of instruments, geometry factors and assumed
bulk velocity. The figures demonstrate the large range of errors that can occur, from less
than 5% to more than 100%, as a result of the finite energy range and resolution, as well
as from poor counting statistics at low densities or from overflow at high densities.

The effect of the limited energy range of the measurements on the accuracy of the
moments can be considered separately from other aspects. Figure6.8 shows the calcu-
lated errors in density as a function of the bulk speed,v0 (vertical scale) and the minimum
speedvmin, i.e., the speed corresponding to the low-energy limit of the measurements
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Figure 6.5: Errors in measured density for the HIA and CODIF ion instruments developed
for Cluster, as a function of temperature (vertical scale) and density (horizontal scale), for
assumed bulk speeds of (from top to bottom) 100, 300, 300, and 300 km/s, respectively.
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Figure 6.6: Same as Figure6.5, but for the errors in temperature.
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Figure 6.7: Same as Figure6.5, but for the bulk velocity.
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Figure 6.8: Errors in density as a function of the bulk speed (vertical axis) and the min-
imum speed detected by the instrument (horizontal axis), both normalised to the thermal
speed. The numbers alongside the curves identify the fraction of the input density that the
computed moments reproduce. The shaded region refers to fractions larger than 0.9, i.e.,
errors less than 10%. The computation assumed a ratio of 1500 between maximum and
minimum energies covered by the instrument.

(horizontal axis), both normalised to the thermal speed of the plasma,vth, assumed to
have isotropic temperature. The figure, which was used when designing the AMPTE/IRM
electron and ion instruments, demonstrates that the error increases sharply oncevmin/vth
becomes larger than one. As discussed earlier, this effect is particularly significant for
electrons. A low-energy limit of 10 eV is close to the typical thermal energy of electrons,
i.e., vmin/vth ≈ 1, while for ions we typically havevmin/vth � 1. The figure also shows
the error that arises once the distribution extends above the upper limit,vmax of the mea-
surements in case the thermal speed and/or the bulk speed become large. The calculations
assumed a dynamic range in detected particle energies,Emax/Emin, of 1500, which corre-
sponds to a ratiovmax/vmin of ≈ 38.

Figure6.9 shows in detail the effects of just the low energy limit on the accuracy of
computed density, bulk speed, pressure, and temperature. The increase in error when the
low energy limit,Emin, gets close to or exceeds the thermal speed of the distribution is
clearly evident from these plots.

Distributions are often characterised by different temperatures in the directions parallel
and perpendicular to the magnetic field. Such effects can be simulated by assuming a bi-
Maxwellian as the input distribution. Figures6.10and6.11show the errors in density and
T‖, respectively, as a function ofT‖ (vertical axis) andT‖/T⊥ (horizontal axis), for the
CESR electron instrument on the Interball mission. Figure6.10shows that the density is
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Figure 6.9: Computed moments, normalised to the true moments, as a function of the min-
imum particle speed detected by the instrument,VL, with the different curves indicating
different assumed bulk speeds,V0, directed along thez axis. All speeds are normalised to
the thermal speed of the distribtion. The two additional rows of numbers along the bottom
indicate the ion and electron temperatures, respectively, that correspond to the normalised
VL if the lower energy limits are chosen as 20 eV and 15 eV, respectively. The maximum
detected particle speed was taken as∞.

measured accurately as long as the thermal energy is well inside the energy range (10 eV
to 25 keV) of the measurements, as expected. The density accuracy does not depend much
on the temperature anisotropy, in contrast to the accuracy of the temperature (Figure6.11)
which depends strongly on the temperature anisotropy. Here the limited angular resolution
drives the errors.

In the simulations presented so far, moment summation assumed thatf (v) is constant
over the entire integration volume. But the simulations performed at MSSL have also tried
a trapezoidal method for the summation that allows for linear variations inf (v) between
samples. But for the cases where the two methods have been compared the differences
were negligible.

The more sophisticated integration scheme used for the Hydra measurements and de-
scribed in Section6.3 has also been checked with simulated data. For the published case
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Figure 6.10: Error in density as a function of the parallel temperatureT‖ (vertical scale)
and the temperature anisotropyT‖/T⊥ (horizontal scale) for three assumed input densities.

(a κ-distribution with N=1 cm−3 and V=100 km/s), the agreement was found to be better
than 1% for all moments up to and including the heat flux.

6.4.3 Overall Error Assessment

At the top of the list of error sources are inadequate range and resolution of the
measurements. This effect is well-studied and quantified for model distributions by the
computer simulations reported in the previous section. When the energy range properly
matches the input distribution, errors are as small as a few %. When the input distribu-
tions get closer to the limits of instrument coverage or resolution, errors quickly become
large. Because of the different velocity weighting, the effect will depend on the order of
the moment. In actual data, such situations can often be recognised by inspection of the
distribution functions when the latter are available. But even then the resulting error cannot
be quantified, except when the distribution can be described by some model distribution
(Maxwellian or kappa distribution) that is then fitted to the measured distribution, in which
case the contributions to the moments from outside the measured energy range can be es-
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Figure 6.11: Same as Figure6.10, but for the error in parallel temperature,T‖.

timated accordingly. Needless to say, a population that falls entirely outside the energy
range, or in the gaps between channels, cannot even be recognised in the distributions, let
alone corrected for in the moments.

Uncertainties in absolute calibration are not considered in the simulations and must
be added for those quantities that are not themselves ratios of moments, such as density
and pressure. These uncertainties are estimated at no better than 10%. For bulk velocity
and temperature such common factors drop out. When comparing instruments of identical
design on different spacecraft, relative accuracies of a few % or better are achievable, at
least when in-flight cross-calibrations are included.

The simulations do not deal with errors due to time variations. Such events can some-
times be recognised in the data by the occurrence of a single set of moments that differ
strongly from those at adjacent times. Temporal variations in the magnetic field direc-
tion produce spurious anisotropies and off-diagonal terms in the pressure and temperature
tensors.

Counting statistics are a major error source because the enormous dynamic range of
fluxes invariably leads to insufficient count rates in the low-density regions that are encoun-
tered. The simulations have included the statistical errors by applying Poisson statistics
to the received counts. For the actual measurements, the statistical errors for every mo-
ment can be computed if the moments are computed on the ground. Because of telemetry
constraints one usually has the distributions available on the ground much less frequently
than the moments, or with reduced resolution, and can thus compute the statistical errors
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less frequently or less accurately. But one can always get a good measure of the statisti-
cal errors by transmitting the accumulated total counts in a distribution, together with the
moments.

Overall, one can say that the uncertainties of the moments considered in the simula-
tions (i.e., up to the second order) can be as low as a few % if the underlying distributions
are well matched to energy range and resolution as well as to the geometry factor of the
instrument, do not vary during one spin, and if the instrument is well calibrated.

Errors in the quantities not treated in the simulations (off-diagonal terms in the pressure
or heat flux) are more difficult to judge. From AMPTE/IRM observations it appears that
the “noise” in the off-diagonal terms for ions and electrons seems to range up to 10% of
the diagonal terms, close to maximum magnitudes for these terms predicted by plasma
simulations.

6.5 Interpretation

First we will discuss the meaning of the various moments when these are computed
separately for each particle species, but we will also point out the special effects that arise
if moments from a number of species are combined into one-fluid quantities.

6.5.1 Single-Species Moments

Number and Mass Densities

The meaning of number density and mass density is obvious from the definitions.
Number densities in solar-terrestrial space plasmas range from<0.1 cm−3 in the magne-
totail, to≈100 cm−3 in extreme conditions in the subsolar magnetosheath.

Bulk Velocity Vector

The bulk velocityV is the average velocity of the particles and represents the motion
of the plasma as a whole. Bulk velocities in space plasmas range from essentially zero to
several thousand km/s.

Plasma bulk velocities are often better expressed in terms of dimensionless numbers,
by scaling them to some characteristic velocity, such as the thermal speed or some wave
speed. The solar wind ions, for example flow at bulk speeds much in excess of either
their thermal speed or any wave speed the plasma can support. They thus represent a
“supersonic” flow. The solar wind electrons, by contrast, although having the same bulk
velocity as the ions and similar temperatures, are subsonic, because of their much higher
thermal (and thus sound) speed.

Measured bulk velocities are often decomposed into the components perpendicular and
parallel toB to distinguish motion that does transport magnetic flux (“convection”) from
motion that does not (though as noted below, there are some perpendicular drift motions
that do not transport flux).
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Momentum Flux and Pressure Tensors

The pressure tensor measures the momentum flux due to random particle motion, while
the momentum flux tensor includes the momentum flux,ρ V V , associated with the motion
of the plasma as a whole. Theρ V V term is often referred to in the plasma literature as
the dynamic pressure. It should be noted, however, that in ordinary fluid dynamics the
term dynamic pressure is reserved for(1/2) ρ V V , a term which appears in the Bernoulli
equation.

If f (v) is spherically symmetric in the bulk-velocity frame, the pressure is isotropic
and the pressure tensor will be diagonal, with the diagonal elements (Pxx, Pyy, Pzz) all
equal top, the scalar pressure. Scalar pressures typically range between 0.1 and 10 nPa.

If f (v) is not isotropic but cylindrically symmetric (in the bulk-velocity frame) about
the magnetic field direction, the pressure is different parallel and perpendicular toB. In
a coordinate system where thez axis is aligned withB, the pressure tensor will still be
diagonal, but withPxx = Pyy = p⊥ andPzz = p‖. P still shows isotropy in planes
perpendicular toB and one can still define a scalar pressure viap ≡ Tr(P)/3 = (2p⊥ +

p‖)/3. Distribution functions with such symmetry perpendicular toB are referred to as
gyrotropic.

In a coordinate system not aligned withB, the pressure tensor for a distribution that is
cylindrically symmetric in the bulk-velocity frame, becomes:

P = p⊥ I + (p‖ − p⊥)
B BT

B2
(6.17)

where I is the unit tensor. As the trace of a tensor is invariant under coordinate trans-
formations, the scalar pressurep stays the same. But the individual diagonal terms have
changed, and the off-diagonal terms are no longer zero.

To separate the contributions of the non-spherically symmetric part off (v) from the
symmetric part, the pressure tensor is sometimes split into two parts, one traceless, the
other diagonal:P = π + p I. The partπ not only contains the off-diagonal terms, but
along its diagonal also the differences between the diagonal terms ofP and the scalar
pressure,p.

The pressure tensor can always be diagonalised through a major-axes transformation,
regardless of inherent symmetries, with diagonal elementsP11, P22, P33 and zero off-
diagonal terms. Unlessf (v) is spherically symmetric, or cylindrically symmetric with
respect toB, the diagonal elements will all be different, and none of the major axes will
be aligned precisely with the magnetic field. These angle-offsets are an alternate way
of quantifying the properties of the distribution associated with off-diagonal terms in the
pressure.

Off-diagonal Terms

As illustrated by equation6.17, non-zero off-diagonal terms in the pressure tensor
already arise if in the bulk-velocity framef (v) is cylindrically symmetric aroundB, but
the chosen coordinate system is not aligned withB. In this case the off-diagonal terms can
be regarded as an artifact of the coordinate system and have no physical significanceper
se.

If non-zero off-diagonal terms occur in a field-aligned coordinate system, however,
they indicate the presence of shear stresses in the plasma.Pxy , for example, measures the
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flow of x-momentum by motion in they-direction. The existence of such shear stresses
requires a shear in bulk velocity, in our example∂Vx/∂y 6= 0. As P is symmetric,
Pxy = Pyx , which means there also must be a dependence on∂Vy/∂x. Pxy andPyx
must therefore each be proportional to(∂Vx/∂y + ∂Vy/∂x).

In ordinary fluids the off-diagonal terms are associated with viscosity, and the con-
stants that relate the off-diagonal terms with the velocity derivatives are termed viscosity
coefficients. As a result of collisions, particles carry momentum into other parts of the
fluid, the larger the mean free path, the farther the momentum is carried. This tends to
equalise the velocities and thus reduces the velocity shear. In a collisionless plasma a sim-
ilar effect is introduced by the gyration of the particles around the magnetic field, with the
gyroradius replacing the mean free path. This effect is often referred to as gyroviscosity.

Off-diagonal terms manifest themselves in the underlyingf (v) by the lack of cylindri-
cal symmetry aroundB in the bulk-velocity frame, i.e., by a deviation from gyrotropy. The
reverse is, however, not true. One can construct (admittedly exotic) distribution functions
that are not gyrotropic, but for which the off-diagonal elements in the pressure tensor are
zero. Examples are distributions withf ∝ sinnφ with φ the gyrophase angle andn > 2.

Spurious off-diagonal terms (and anisotropies in general) in the computed pressure
and temperature tensors result when the distribution function extends significantly beyond
the energy range of the instrument, or when the magnetic field direction fluctuates while
the distribution function is being measured. The latter effect can be illustrated with a
case where the off-diagonal terms are assumed to be zero in a frame aligned with the
instantaneous magnetic field. In the frame aligned with the magnetic field averaged over
one spin, the tensor will have spurious off-diagonal terms that arise from the fluctuations
in Bx, By (of order εBz) around the average direction which is taken asz. According
to equation6.17, in a frame not aligned withB the termsPxy, Pxz, Pyz are proportional
to the productsBxBy, BxBz, ByBz, respectively. One thus obtains spurious components
Pxz, Pyz that are of orderε, whilePxy is much smaller, of orderε2.

With regard to the expected magnitude, plasma simulations of current sheets typically
show off-diagonal terms of no more than 10% or 20% of the diagonal terms, close to the
detection limit of present measurements.

Temperature Tensor

The temperature tensor is obtained from the pressure tensor by noting thatT ≡ P/(Nk).
Similarly, one can define a scalar temperature viaT ≡ Tr(T/3) = p/(Nk). The temper-
ature tensor has the same properties as were noted above for the pressure tensor. Temper-
atures in space plasmas range from 104 K to more than 108 K, and thermal energies from
1 eV to more than 10 keV.

The temperature determined this way is often referred to as kinetic temperature be-
cause it is not necessarily a temperature in the thermodynamic sense. The latter implies
that the plasma is in thermal equilibrium, i.e., has a Maxwellian velocity distribution. The
concept of a kinetic temperature can be illustrated with the two distributions compared in
Figure6.12, a single hot Maxwellian and two cold counter-streaming beams, respectively.
They have the same parallel kinetic temperatures (and same density) although only one
is a thermal distribution in the usual sense, meaning that a fixed fraction of particles is
contained within a thermal velocity around the peak off (v). By contrast, in the case of
the counter-streaming cold beams there are no particles close to the bulk velocity at zero.
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Figure 6.12: Comparison of two distribution functions, a hot Maxwellian and two coun-
terstreaming cold beams, that have the same kinetic temperature and the same density.

Nevertheless, the kinetic temperature can be a useful quantity as a measure of the
(random) velocity spread of the particles. Take the case of the bow shock. Immediately
downstream of the quasi-perpendicular shock the distribution consists of the slowed down
cold solar wind beam, surrounded by gyrating beams of ions that were first reflected at the
shock, but eventually transmitted after gyrating back to the shock, having gained energy in
the upstream electric field. The kinetic temperature computed for this distribution, which
looks anything but “thermal” and is not even gyrotropic, is still an indication of what
the temperature will be, once scattering in angle and energy has finally “thermalised” the
distribution.

Heat Flux Vector

The heat flux vector measures the net flux of kinetic energy of random motion. It is
commonly decomposed intoH‖, the component parallel toB, andH⊥, the component
perpendicular toB. H‖ is expected to be the dominant component as the magnetic field
impedes heat flow in the perpendicular direction. Typical values ofH‖ in space plasmas
range up to 0.1 and 1 mW/m2 for electrons and ions, respectively.

Heat flux can be a signature of fast particles escaping along the magnetic field from
some source region. Examples are the electron heat flux in the solar wind that is a signature
of magnetic connection to the hot corona. Energetic magnetospheric particles escaping
along reconnected field lines across the magnetopause also constitute a heat flux. But heat
flux is also taken as evidence for connection with a dissipation region. An example are the
electron heat flux pulses observed when a spacecraft crosses the field lines that presumably
connect to the so-called “diffusion region” where reconnection between interplanetary and
terrestrial field lines occurs.
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Even though strictly defined as an integral over the entire distribution, the heat flux is
sometimes computed separately in the directions parallel and anti-parallel to the magnetic
field. An example is the solar wind where the above-mentioned heat flux from escaping
coronal electrons is partially reflected if the magnetic field line is connected to the Earth’s
bow shock. This “reverse” heat flux can be used as an indicator for magnetic connection
to the bow shock.

6.5.2 One-Fluid Moments

From the definitions in the second part of Section6.2, the interpretation of the one-fluid
mass and number densities is straightforward. But with regard to the overall bulk velocity,
it should be noted that it refers to the mass-weighted average of the velocities, andV is
thus often referred to as the centre-of-mass (CM) velocity. Use of a single bulk-velocity
frame for all species introduces important changes for the pressure and temperature tensors
which we will discuss below. In addition, there are the new quantities, charge density and
current, if electrons are one of the species.

Pressure and Temperature Tensors

If one constructs single-fluid moments from the moments of several species, e.g., elec-
trons and ions, the pressures and temperatures now refer to the overall centre-of-mass
(CM) frame. If the CM frame is different from the bulk-velocity frames of the individ-
ual species, distribution functions that were symmetric in their own bulk-velocity frame,
and thus had isotropic temperature, are no longer symmetric in the CM frame, with the
result that pressure and temperature anisotropies are introduced. This happens, for exam-
ple, if the species have the sameV⊥ but differentV‖. Furthermore, individual distribution
functions need no longer be gyrotropic in the CM frame, even though they might have
been gyrotropic in their own bulk velocity frames. The one-fluid pressure and tempera-
ture tensors will then have acquired off-diagonal terms even though these were zero in the
bulk-velocity frames of the individual species.

Charge Density

As long as one is dealing with low-frequency motions where electron inertia is not a
factor, plasmas will be quasi-neutral in which case the charge density is zero.

Current Density

Assuming quasi-neutrality (i.e.,Ne = Ni = N ) and singly-charged ions, the current
density is defined asj = eN(V i − V e). Thusj can, in principle, be directly determined
from the electron and ion moments. But this task can challenge the accuracy of the bulk
velocity measurements. Take the case of the Earth’s magnetopause: for a change inB

of 30 nT over a thickness of 200 km, i.e., a current densityj of 0.1µA/m2, and a number
densityN of 30 cm−3, the difference velocity is only 25 km/s. At the bow shock the plasma
density is lower and the thickness of the current layer smaller, and the difference velocity
is therefore much larger, e.g., 150 km/s for a jump inB of 15 nT, a thickness of 50 km, and
a density of 10 cm−3.
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6.6 Distribution Functions, Moments, Partial Moments

From a representation of a distribution function in terms of contours in phase-space
density, one can usually see immediately whether the particle population is moving with
some bulk speed, has an isotropic or anisotropic temperature, or has some heat flux. Bulk
motion is recognised by a shift of the contours’ centres relative to the origin. Isotropic
temperature means circular contours, at least in the vicinity of the peak, and temperature
anisotropy is recognised by elongated contours. Superimposing the magnetic field direc-
tion clarifies whether the distribution is symmetric aroundB and whetherT‖/T⊥ is larger
or smaller than one. Heat flux is recognised by a “skewing” of the distribution at higher en-
ergies. A projection of the distribution onto a plane at right angles toB shows whether the
distribution is gyrotropic or not. In this sense the moments are a compact way to describe
main features of the distribution function, providedf (v) is not too complicated.

As the moments (up to the heat flux) are just 13 numbers per species, it is not surprising
that there is much more information in the distribution functions that typically consist of
several thousand samples in velocity space. It is therefore quite apparent that to fully
utilise the information gathered by plasma instruments, the distribution functions should
be transmitted with the highest possible time resolution.

The example of the bow shock ions noted earlier is a case in point. The superposition
of the reflected ions appears in the moments as a reduction in bulk speed and a temperature
increase, but only the inspection off (v) reveals that ions are being reflected, accelerated,
returned to and transmitted across the shock. When concerned with wave-particle inter-
actions, the moments are of only limited use as well. This is because it is the detailed
structure of the distribution functions that indicates instability to the growth of waves.

Another good example occurs in the plasma sheet boundary layer (PSBL) in the Earth’s
magnetotail. At its outer edge there often is a single beam that moves earthward with
large bulk speed. In the converging magnetic field closer to Earth the beam particles are
mirrored, but will return deeper in the PSBL because of the inward convection induced
by the prevailing dawn-dusk electric field. When superimposed on the original earthward
beam, the return beam will partially compensate the earthward beam, causing a reduction
in the averageV of the distribution. Once earthward and return beams have attained almost
equal densities,V will become almost zero, even though each beam may be moving at
several 1000 km/s. The large velocity separation of the two beams alongB will simply
manifest itself in the moments as a large parallel temperature. From the moments alone
one would not be able to distinguish this situation from one with a single bi-Maxwellian
with small or zero bulk velocity (see Figure6.12). Only inspection of the distribution
function will clarify what is happening.

Data compression is only one aspect of the utility of moments. More important is their
role as the quantities entering the plasma fluid equations, in particular those concerned
with conservation of mass, momentum, and energy. It should be stressed here that in these
latter applications, the exact nature of the distribution function underlying the moments
is irrelevant. When computing the pressure, in order to check pressure balance across
some boundary for example, it is immaterial whether the distribution function is a sim-
ple Maxwellian or is made up of multiple beams moving at different speeds in different
directions. Similarly, for tangential stress balance across a discontinuity that has both a
magnetic field and a plasma mass flow across it, one must take the moments computed
over the entire distribution function, even though the distribution on each side may be
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made up of the particle population incident on the discontinuity, a portion that has been
reflected at the discontinuity, as well as populations that were transmitted from the other
side of the discontinuity. All these populations carry momentum towards or away from the
discontinuity and therefore must be included in the balance.

The moments to be used in the conservation equations considered below require inte-
gration over the entire range of velocities. But there are questions that benefit from mo-
ments computed over just a portion of the distribution function (“partial moments”). Take
the example of the region upstream of the Earth’s bow shock (referred to as the foreshock)
that, in addition to the solar wind, contains a population of energetic ions accelerated at
the shock. When moments over the entire distribution are computed, one notices that the
bulk speed is reduced. Is this the result of the solar wind ions being slowed down, or is
this an effect of the addition of the more energetic ions that have a small average velocity?
In the distribution functions these energetic ions are usually well isolated from the solar
wind ions. One can therefore answer that question by computing the bulk velocity of just
the solar wind ions alone, and compare it with the wind velocity in the region outside the
foreshock where the energetic particles are absent.

6.7 Spherical Harmonic Analysis

As pointed out in Section6.4.1, if major portions of the plasma distribution function
fall outside the instrument measurement range, moment analysis will not produce mean-
ingful results. It is for this reason that the procedure is rarely applied to data sets from
energetic particle experiments, where the lowest energy threshold might be several tens of
keV. For example, the bulk velocity cannot be well estimated by the averaged measured
velocity if the majority of the plasma particles are below the lowest threshold.

In such a situation, classicalspherical harmonic analysisbecomes useful. In this
scheme, the measured particle fluxesj (E, θ, φ) are fit to a series of spherical harmonic
functions, with coefficients that contain all the angular information at a given particle en-
ergy. The coefficients are determined by means of a linear least squares fit of the measured
data points.

Of particular significance for our purpose are the first-order coefficients that determine
a vector, referred to as first-order anisotropy. This anisotropy vector has both magnitude
and direction; it arises from particle density gradients and/or bulk flow.

Unlike moment analysis, spherical harmonic analysis is strictly a two-dimensional pro-
cedure over the surface of a sphere that must be carried out for each energy separately. For
a detailed description of the spherical harmonic analysis procedure, see the bibliography.

6.8 Applications

6.8.1 Identification of Regions and Boundaries

The plasma moments, such as density, bulk speed, and temperature, are the principal
means to distinguish the various plasma regimes, to describe their characteristic properties,
and to identify crossings of boundaries between these regimes.



6.8. Applications 153

6.8.2 Conservation Equations

The plasma velocity moments appear in all the macroscopic equations that govern the
behaviour of the plasma as a fluid, such as the continuity equations for mass, momentum
and energy, or the generalised Ohm’s law. These equations apply for time variations with
characteristic frequencies smaller than the ion gyrofrequency and length scales larger than
the ion gyroradius of the heaviest ion species present. Simplified equations, commonly
referred to as MHD equations, result if further assumptions are made, as pointed out be-
low. It is a widespread misconception that use of plasma moments implies validity of the
assumptions underlying MHD.

The conservation equations contain spatial and temporal derivatives of scalar, vector
and tensor quantities that require multipoint measurements of plasma moments, magnetic
and electric fields. The equations depend on knowledge of the mass density and thus stress
the importance of mass-resolved ion measurements.

We will consider only the two lowest-order equations, those associated with conserva-
tion of mass and momentum. Each equation introduces a new quantity whose evolution
is described by the next higher equation. Thus the system is not closed, i.e., there are
more unknowns than equations. The energy equation and the heat flux equation would
be the next two levels. Without closure of this progression the equations are incomplete.
Closure is obtained either by truncation (e.g., by setting the heat flux to zero), or by as-
suming some equation of state. The latter approach is easily recognised by aγ (the ratio
of specific heats) appearing in the equations, but the value ofγ is usually not known for a
collisionless plasma.

Conservation of Mass

∂ρ

∂t
= −∇ · (ρV ) (6.18)

The equation demands a balance between the time-derivative ofρ and the divergence of
the mass-flux density vector. The equation is valid for each particle species separately, but
also for the entire fluid, withρ as defined in Section6.2.2. The equation can be rewritten
as:

dρ

dt
= −ρ ∇ · V (6.19)

whered/dt ≡ (∂/∂t+V ·∇) is the convective or co-moving derivative. Bothdρ/dt and∇·

V must be determined from multipoint measurements, as described in Chapter17. If one
finds∇ ·V ≈ 0, one is dealing with incompressible flow,dρ/dt = 0, and one can compare
observations with results from theory or simulations that assume incompressibility and are
therefore easier to do.

Conservation of Momentum

Each particle species,s, obeys an equation of motion:

ρs
dV s

dt
= −∇ · Ps +

qs

ms
ρs (E + V s × B) (6.20)
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If the plasma consists of electrons and one ion species, one can construct the equation of
motion for the total fluid by adding the two corresponding equations of motion and using
the single-fluid quantities defined in Section6.2.2. Assuming zero space charge, one gets:

ρ
dV

dt
= −∇ · P + j × B (6.21)

Insertingj =
1
µ0

∇ × B, thej × B term can be expressed in terms of the gradient in
magnetic pressure and the tension from magnetic field curvature:

ρ
dV

dt
= −∇ · P − ∇

B2

2µ0
+
(B · ∇)B

µ0
(6.22)

If isotropic pressure is assumed and theV · ∇ in the convective derivative is ignored,
equation6.21reduces to the form used in MHD:

ρ
∂V

∂t
= −∇ · p + j × B (6.23)

Generalised Ohm’s Law

Subtracting the equations of motion for electrons and ions, neglecting terms that are
proportional tome/mi , and assuming quasi-neutrality, one obtains:

E + V × B = ηj +
1

Ne
j × B −

1

Ne
∇ · Pe +

me

Ne2

∂j

∂t
(6.24)

In an ideal magnetohydrodynamic (MHD) fluid, all terms on the right are set to zero.
In this caseE = −V × B. In resistive MHD, only theηj term is retained. However,
neglecting the second term on the right (the so-called Hall term) is not justified if signif-
icant currents are flowing, such as within plasma boundaries. Noting thatV ≈ V i , and
thereforeV − V e ≈ j/Ne, one can remove the Hall term in equation6.24by usingV e

instead ofV . Neglecting again the other terms on the right one getsE = −V e × B. This
shows that the magnetic field is more closely coupled to the electron bulk velocity rather
than the ion bulk velocity. Therefore one should use the electron bulk velocity, rather than
the ion velocity, if one is concerned with the motion of the magnetic field lines.

Plasma Drifts and Currents

If one neglects the convective derivative term in equation6.20 and takes the cross
product withB/B2, one obtains the equation for the drift velocity of a species of the fluid
under time-stationary conditions:

V s =
E × B

B2
+

1

qsNsB2 (B × ∇ · Ps) (6.25)

or if the pressure tensor can assumed to be given by equation6.17,

V s =
E × B

B2
+

1

qsNsB2
B × ∇ps⊥ +

1

qsNsB2
B × ∇ ·

[
(ps‖ − ps⊥)

B BT

B2

]
(6.26)
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Thus in addition to theE×B drift the fluid shows two other drifts: one caused by∇p⊥,
another that depends on pressure anisotropy and field-line curvature. The pressure gradient
drift is determined entirely by gyration of the particles without any net transport. Because
of ∇p⊥, there are more particles (or particles with higher energy) gyrating through a sur-
face in the∇p⊥-B plane from one side than from the other. This flux-imbalance mimics
a flow, even though the particle gyrocentres do not move.

By comparing the perpendicular component of the bulk velocities, measured indepen-
dently for electrons and various ion species, with theE × B velocity obtained from the
electric and magnetic field measurements, one can obtain a measure of the importance of
the extra terms in above equation.

Because the pressure gradient drift depends on the sign of the charge, the oppositely
directed drift of ions and electrons gives rise to a current that is called diamagnetic because
its magnetic field opposes the external field:

j⊥ =
B × ∇ p⊥

B2
(6.27)

wherep⊥ = pe⊥ + pi⊥.
Determination of∇p⊥ from multipoint plasma measurements thus allows us to deduce

the perpendicular current density,j⊥.
The full current vector, includingj‖, can be estimated from the multipoint measure-

ments of the magnetic field, viaj = (1/µ0)∇ × B, or may be directly obtained from the
measured ion and electron bulk velocities and densities, as discussed earlier on page150
under current density..

Divergence of the Pressure Tensor

Several of the previous equations involve the divergence of the pressure tensor,P.
The equations are often simplified by replacingP either by the expression given in equa-
tion 6.17, as in equation6.26, or by a scalar pressure,p. In the latter case∇ · P becomes
simply∇p.

It is immediately evident that the assumptions onP strongly affect the magnitude of the
closure problem, because keeping the full pressure tensor requires six evolution equations,
while one such equation is sufficient if only the scalar pressurep is kept.

In ordinary fluid dynamics one has

∇ · P = ∇p + µ∇
2V (6.28)

whereµ is the (dynamic) viscosity. This ansatz is yet another way to simplify the equa-
tions, with some form of gyroviscosity replacing the viscosity of ordinary fluids.

By ignoring the off-diagonal terms altogether, one sometimes eliminates the most im-
portant terms, as illustrated by the following example. Consider a magnetic neutral sheet
in thexy plane separating magnetic fields in the+x and−x directions, with an electric
field in they-direction. To see how the electric field force alongy could be balanced, one
needs they-component of∇ · P:

(∇ · P)y =
∂Pxy

∂x
+
∂Pyy

∂y
+
∂Pyz

∂z
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If one can assume that the situation is two-dimensional, and thus well described by taking
∂/∂y = 0, it follows that∂Pyy/∂y = 0, and thus only the off-diagonal terms matter in the
force balance.

Vorticity

Another important quantity involving a gradient operation, and thus multipoint mea-
surements, is the vorticity defined asω = ∇ × V . If one takes the curl of equation6.21
and inserts the expression forP from equation6.28, one can write the equation of motion
in terms of the evolution ofω:

dω

dt
− (ω · ∇)V = (B · ∇) j − (j · ∇)B + µ∇

2ω (6.29)

where we have assumed incompressible flow,∇ · V = 0. This equation is similar to
the equation of motion for ordinary viscous fluids and is thus often the starting point for
discussing MHD turbulence in relation to Navier-Stokes turbulence in ordinary fluids.

Jump Relations

Of particular importance is the application of the conservation equations, together with
Maxwell’s equations, to the case of plasma discontinuities, such as shocks, tangential
(TD) and rotational (RD) discontinuities. When these are assumed to be time-stationary
surfaces, where only the variations in the direction normal to the surface are important
(1-D case), the equations can be converted to jump-conditions across the discontinuity
that are commonly called Rankine-Hugoniot relations. They take on different forms for
the different discontinuities and provide thus the main tool to distinguish observationally
between the discontinuity types.

A familiar example where the R.-H. relations have been successfully applied is the
Earth’s bow shock, as discussed in Chapter10, Section10.2. Another example is the
Earth’s magnetopause. Without magnetic reconnection, the magnetosphere is “closed”,
and the magnetopause is expected to be a TD. When magnetic reconnection occurs, the
magnetopause becomes an RD and the magnetosphere is “open”. For a stationary RD,
combination of the conservation of tangential momentum and the conservation of the tan-
gential electric field, assumed to be given by the ideal Ohm’s law,E = −V × B, yields[

V t −
B t

√
µ0ρ

]
= const (6.30)

For an anisotropic plasma pressure, equation6.30is modified:[
V t −

(1 − α)B t
√
µ0ρ

]
= const (6.31)

whereα, the pressure-anisotropy factor, is defined asα ≡ (p‖ − p⊥)/(B
2/µ0). For a TD

the jump inV t across the discontinuity is arbitrary and thus unrelated to the jump inB t .
Equations (6.30) or (6.31) are therefore powerful tools to distinguish TD’s from RD’s. In
a related form (the Walèn relation) they are dicussed in Section9.3.3of Chapter9.
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We note in passing that a corollary of equation6.31is a jump relation involving mass
density and pressure anisotropy,

ρ (1 − α) = const (6.32)

that has often been applied implicitly, but never truly tested, because of the lack of mass-
resolved measurements with adequate time resolution.

If the assumption of a time-stationary, one-dimensional discontinuity is valid, then
momentum conservation along the normal direction yields a jump condition that for the
case of a TD and RD, and assuming isotropic pressure, takes the form

p +
B2

2µ0
= const (6.33)

Testing for normal momentum balance is a prerequisite for application of other jump con-
ditions, such as tangential momentum balance.

If we take the case of a plasma consisting of electrons and one ion species, thenp ≈

pe + pi = N(Ti + Te), if quasi-neutrality is assumed. This illustrates that the normal
momentum balance only fixes the jump inp but leaves open how this jump is split between
the individual ion and electron pressures or temperatures.

6.9 Summary

The moments of the plasma velocity distributions functions and their spatial gradients
play a key role in the quantitative description of plasma behaviour, as exemplified by the
conservation equations for mass, momentum and energy. In this chapter we have described
how the moments are defined, what they mean, how the are computed, and how their
accuracy is affected by limitations in the measurements and in the integration schemes.
The quantitative assessment of the errors forms the basis for the accuracy of the spatial
gradients obtained from multipoint measurements.
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7.1 Introduction

Handling data from charged particle analysers which measure phase space density re-
quires some care and attention. Even with a single satellite, the errors and uncertainties
introduced by energy level and response calibrations, incomplete sampling of phase space,
and discrete integration down to plasma moments (density, velocity, pressure, etc.) results
in basic errors typically larger than those in, say, magnetic field measurements (see Chap-
ter6 for more details concerning the computation of parameters from particle instruments).
Additionally, the time required to complete a sampling interval is often seconds or more,
comparable to many scales of interest and intrinsic variability, so that some time aliasing
is often present. Multi-spacecraft comparisons compound these difficulties. Thus many of
the methods (filtering, spatial gradient and other vector operators) introduced earlier with
electromagnetic fields as examples are much more difficult to apply to particle data.

On the other hand, particle data holds a richness in phase space information which can
be exploited to reveal the physical processes which govern the dynamics, and which can
probe/remote sense non-local structures. Nearly all such work is based on applications
of Liouville’s Theorem. In this chapter we explore some of the ways in which this phase
space information can be utilised. One major difference between these multi-spacecraft
particle techniques and those discussed earlier with respect to lower dimensional, higher
time resolution field data is that very often the particle techniques need to be adapted
and/or designed with a single specific study in mind. Thus the techniques described below
should be regarded as examples rather than off-the-shelf techniques.

Additionally, multi-species measurements provide another dimension which can be
utilised. At its most basic level, measurements of both ions and electrons enables a di-
rect measurement of the charge and current densities. Comparison of ions with different
masses (or charge-to-mass ratios) probes different scalelengths and differentiates the rela-
tive contributions of different forces.

This chapter is organised as follows. In the next section, we review Liouville’s The-
orem, and other background information. This is followed by a discussion of techniques
relating to basic moments of the particle distribution. Later sections cover various appli-
cations of Liouville’s Theorem and related phase space aspects.

159
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7.2 Liouville’s Theorem

The Boltzmann equation describes the evolution of the single particle phase space
distribution functionf (r, v, t):

∂f

∂t
+
∂

∂r
· (vf )+

∂

∂v
· (af ) =

(
∂f

∂t

)
collisions

(7.1)

wherea = F/m is the acceleration of a non-relativistic particle (F is the force) and
the right-hand side includes the effects of collisions or other processes which give rise to
instantaneous changes in particle velocity or position (e.g., due to creation by ionisation,
etc.). The Boltzmann equation is a statement about particle conservation, and is most
easily interpreted by considering the flow into and out of a fixed volume of(r, v) phase
space. [For relativistic particlesf is written as a function of momentump instead of
velocity. The third term in equation7.1becomes∂/∂p · (Ff ).]

The variablesr andv are independent, so thev can be moved outside of the derivative
in middle term on the left-hand side. Additionally, if the velocity divergence of the accel-
eration is zero, the third term can be similarly rearranged. This is the case for the Lorentz
forceq (E + v × B). If the right-hand side of the Boltzmann equation can be neglected,
the result is

Df

Dt
≡
∂f

∂t
+ v ·

∂f

∂r
+

F

m
·
∂f

∂v
= 0 (7.2)

[The relativistic form replaces(F/m) · ∂f/∂v with (F ) · ∂f/∂p.] The operator

D

Dt
≡
∂

∂t
+ v ·

∂

∂r
+

F

m
·
∂

∂v
(7.3)

represents the Lagrangian or convective derivative following a single particle trajectory
(r(t), v(t)) in phase space. Thus equation7.2can be interpreted as a statement that phase
space density is constant along particle trajectories in phase space, i.e.,

f (r, v, t) = f (ro, vo,0) (7.4)

wherer(t) andv(t) are solutions of the particle equations of motion

dr

dt
= v

dv

dt
=

F

m
(7.5)

[or dp/dt = F ] with initial condition r(0) = ro andv(0) = vo. This is Liouville’s
Theorem, which reduces the task of solving equation7.2 to one of solving single particle
motion. Liouville’s Theorem provides the basic tool for analysing multi-spacecraft particle
data at the level of phase space density. The theorem is a very powerful, but easily misused,
approach to a variety of kinetic problems. We discuss a few typical applications below,
although individual problems often require specifically tailored techniques.

Most applications of Liouville’s Theorem rely on the further assumptions of adiabatic
particle motion in static or slowly varying fields. Magnetic moment conservation, for
example, yields

v2
⊥

B
=
v2
⊥o

Bo
(7.6)
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wherev⊥ is the particle gyro-speed perpendicular to the magnetic field. Energy conserva-
tion in an electrostatic potential further yields

v2
‖

+ v2
⊥

+ 2qφ/m = v2
‖o + v2

⊥o + 2qφo/m (7.7)

Equations7.6 and7.7 completely characterise the particle trajectory with these assump-
tions if the fieldsB andφ are given/known.

7.3 Liouville Mapping: Known Fields

If the (dc) electromagnetic fields are known, Liouville’s Theorem can be used to study
the extent to which scattering or other non-dc effects influence the particle response. Addi-
tionally, Liouville’s Theorem provides a valuable tool for exploring boundaries in velocity
space which can often be seen in particle data. These boundaries or features occur, e.g., as
separators between different sources of plasmas. The shape and timing of such boundaries
provides rich information about the plasma source, such as its location, extent, temporal
variation, and properties of the electromagnetic fields and processes both at the source and
during the subsequent particle motion to the spacecraft location.

Historically, applications of Liouville’s Theorem have employed single spacecraft mea-
surements by using measurements taken at different times, converting temporal variations
to spatial gradients assuming time stationarity. Multi-spacecraft missions offer the pos-
sibility to map from one spacecraft location to another, thereby eliminating this assump-
tion. However, since Liouville’s Theorem deals with particle trajectories, the spacecraft
in question must be connected by the trajectories of particles of interest. For particles
with small gyroradii and large speeds, such as electrons, this requirement reduces to the
spacecraft being connected by a magnetic field line. Slower particles and finite gyroradius
effects complicate the matter, as trajectories which reach a particular spacecraft may di-
verge when traced backward in time, so that further assumptions of spatial homogeneity
or symmetry may be required. Additionally, in a time-dependent situation, particles of
different speeds arriving at the same time will have left and traversed the intervening fields
at different times.

In the case where the fields are known and time stationary, the process is straight-
forward. Let us consider two spacecraft, numbered 1 and 2 and located atr1 and r2
respectively.

1. Solve equations7.5for r(t), v(t).

2. From these solutions, or from equations7.6 and7.7 if appropriate, deducev2(v1)

corresponding to individual particle trajectories.

3. Given the measured distributionf1(v) construct the mapped distributionfm2 (v =

v2(v1)) ≡ f1(v = v1) as demanded by Liouville’s Theorem. That is, assign to each
velocity v2 the phase space density from the original distributionf1 at the location
in phase space(r1, v1). If the original distributionf1 is represented by contours in
phase space, this amounts to taking points along the contour, mapping the motion of
these points using the trajectory equations, and connecting them up with a contour
whose height is identical to the original.



162 7. ANALYSIS OF PLASMA K INETICS

v||

v⊥

v||

v⊥

High |B| Region (observed) Low |B| Region (mapped)

Inaccessible

Figure 7.1: Sketch of a mapping using Liouville’s Theorem to construct an expected dis-
tribution function. The solid line in the left is a contour of the observed phase space distri-
bution in a high field region. The dotted lines are circles representing constant energy. In
the absence of an electric potential, particle trajectories conserve energy and hence remain
on such circles. When mapped to a low field region (assuming magnetic moment conser-
vation), the final perpendicular velocity is given by equation7.6. Four such trajectories
are shown: two either side of 90◦ pitch angles, and two at intermediate pitch angles. Ad-
ditionally, points at 0◦ and 180◦ pitch angles are unaltered in the mapping. The resultant
mapped distribution is shown on the right (the arrowheads are left in to show the mapped
points from the left diagram). Since these points started on a single contour off (v) they
remain so, hence the mapped contour is found by connecting the arrowheads. Note that
mapping from high to low fields, as shown here, leaves inaccessible regions in which the
phase space density is filled in, if at all, by other processes or by trajectories which arrive
there without passing through the high field region.

A sketch of this construction in the case of a simple magnetic field decrease and
no potential difference is shown in Figure7.1. Note that this mapping fromr1
to r2 involves progressing some trajectories (e.g.,v‖ > 0) forward in time while
oppositely directed trajectories are advanced backward in time.

4. Compare the mapped distributionfm2 (v) with the observed onef2(v).

Discrepancies between observed and expected (mapped) distributions are indicators of
one (or more) processes, e.g.,

1. Incorrect specification of the fields. This will result in systematic trends in the dis-
crepancies in phase space. For example, an incorrect electric potential will shift all
points by a fixed amount in energy.

2. Particle scattering between the two points. This will evidence itself by discrepancies
localised to certain regions in phase space, with the observed distribution exhibiting
generally smoother or more rounded features than the mapped ones.

3. Particle Mirroring/Inacessible Regions of Phase Space. Some regions of phase space
may not be connected by trajectories which pass through both locations. For exam-
ple, if a field maximum lies between the two locations, particle trajectories around
90◦ will mirror and never reach the second location. The mapped distribution should
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therefore have holes, although the size and shape of such holes depends on knowl-
edge of the intervening structure. Holes also arise even in the case of spatially mono-
tonic fields due to the same mirroring arguments as shown in the example sketched
in Figure7.1. All of these holes are connected to locations beyond the second lo-
cation, and thus require specification of the phase space density there, rather than
at the first location. A corollary to this statement is that it is always safer to map
from low magnetic field regions to high ones rather thanvice versa, since trajecto-
ries move toward 90◦ in this case and such holes are avoided or at least minimised.
Electrostatic potentials also give rise to inaccessible regions in phase space.

Signatures of this behaviour include the appearance of holes in the mapped distribu-
tion, ridges along, e.g., lines of constant pitch angle which separate the accessible
regions (connected to the first location) from the inaccessible ones (connected to
points beyond the second location), parallel/anti-parallel symmetries in the observed
distribution caused by mirroring, and other similar features.

4. Lack of sufficient connection of trajectories between the two locations, lack of suf-
ficient time-synchronisation between the two measured distributions or knowledge
of the temporal and spatial of the behaviour of the fields during the measurement
interval, or some other aspect which makes the mapping inappropriate.

7.4 Liouville Mapping: Unknown Fields

In many cases, the intervening fields are not known, and are of interest. For exam-
ple, the electrostatic potential can be very difficult to measure directly in space. In these
circumstances, the mapping procedure can be used to determine the net field/potential
changes by inverting the procedure. That is, treat the unknown fields as free parameters
and adjust them to yield the best agreement between mapped and observed distributions.
This can be done either by trial and error or via a formalised approach having fit the
observed distributions with suitable functional forms and applying, e.g., a least squares
algorithm to determine the functional coefficients/constants which yield the best fit.

Note that this method can not determine the detailed spatial variation of the fields be-
tween the two locations, but only the net changes between the two locations. However, the
spatial variations could give rise to inaccessible regions in phase space, so that the mapped
distributions may not fit everywhere in phase space. These mis-matches actually provide
information about the intervening fields (e.g., magnetic field maxima, electric potential
barriers, or trapping regions). These possible intervening structures imply that some con-
siderable caution is required in applying simple mapping methods. Such problems may
be overcome to some extent by assumptions of stationarity, etc., which then provides a
whole sequence of distributions corresponding to relative motion between the spacecraft
and plasma. This sequence should map from one distribution to the next and to all oth-
ers, enabling some determination of the spatial variation of the fields corresponding to
the individual measured distributions. The prospect of three or more multipoint measure-
ments would allow, in perhaps fortuitous circumstances, a hybrid approach using multiple
mappings.
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7.5 Remote Sensing of Boundaries and Non-Local
Processes

In addition to sensing intervening field structure, kinetic features can be used to infer
global or distant morphology and events. For example, particles energised in a transient
event require a finite amount of time to reach their point of observation.A priori, neither
the event location nor initiation time are known. However, slower particles from the same
event take longer to travel the same distance. In its simplest form, one can write down the
trajectory as

xobs− xevent= v × (tobs(v)− tevent) (7.8)

Thus the time history of different velocity particle arrivals can be used to solve this set
of equations for the unknown event position,xevent and event timetevent. In the sections
which follow, we use similar arguments applied to more complicated situations. All of
them rely on Liouville’s Theorem, either explicitly or (as here) implicitly.

Additionally, such information is often used qualitatively to locate the observation
point with respect to remote boundaries. For example, the Earth’s bow shock is a copious
source of suprathermal electrons, accelerated at the shock itself or escaping in the form of
a broad heat flux from the hot magnetosheath. Thus the presence of such electrons implies
that the observation point lies on a magnetic field line which is connected to the bow shock.
In this regard, electrons have the advantage that their gyroradii are negligible and that their
speeds are higher than characteristic bulk flows, so that they essentially travel along the
magnetic field lines with, to lowest order, zero time delay.

In the realm of multi-satellite observations, each satellite then measures electrons on
different field lines. Treating such measurements as simple on/off indicators of connection
to the bow shock, the scientist could build an image of the bow shock with as many pixels
as satellites. Such an image, or sequence thereof, would provide information on the shape
and dynamics of the bow shock on scales which can be much larger than the spacecraft
separation depending on the geometry. The fact that field lines are neither straight nor
uniform complicates this analysis, but not fatally so in all cases.

7.6 Velocity Dispersion or “Velocity Filter”

Let us consider here a localised, time-stationary source of particles, by contrast with
the transient discussed in the preceding section. As an analogy, consider a pier at one side
of a body of water from which boats of different speeds travel toward the opposite shore.
If the supply of boats is maintained then they will all arrive at the same point at the same
rate with which they left. That is to say, the distribution in phase space at the arrival point
will be identical to that at the departure pier, via Liouville’s Theorem.

However, if the body of water is a flowing river, the boats will suffer a convective
drift in addition to their own cross-river velocity. (In the plasma case, this drift is usually
the E × B drift.) The fastest boats will still arrive close to their previous location, but
slower boats will be swept further downstream. Thus boats leaving the same point will be
“dispersed” along the opposite shore according to their velocities. At a given point on the
opposite shore, the convective flow has acted as a filter to allow only particles of a single
velocity to pass, hence the term “velocity filter” effect, which is also in common usage,
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along with “time of flight” signatures. This concept is embodied in equation7.8 together
with ay-drift equation

yobs− yevent= Vdrift × (tobs(v)− tevent) (7.9)

More common, perhaps, in the magnetospheric case is not a point source, but an ex-
tended one. Consider, then, the case of a semi-infinite line of piers extending downstream
from the single pier invoked above, as sketched in Figure7.2. If one approaches from
the upstream direction on the opposite bank, the first boats to be seen will be the fastest
ones which departed from the end pier. Downstream of this point, slightly slower boats
from the end pier will arrive together with the fastest boats from the second pier. As one
progresses further downstream, the fastest boats are always present and the distribution of
arriving boats extends progressively to lower speeds as shown in the Figure.

This is what happens at the Earth’s bow shock, or for that matter any shock of finite ex-
tent, such as slow mode reconnection shocks in the geomagnetic tail, and is known as the
“foreshock” region. Well upstream of the shock, the observer is disconnected magnetically
and sees no shock-related particles. Just downstream of the tangent field line (in the case
of curved shocks such as the bow shock) or separatrix (in the case of reconnection shocks)
the fastest particles, typically energetic electrons, will be found. As one moves deeper into
the foreshock, the electron distribution fills in to lower velocities down to some “cutoff”
velocity. This cutoff velocity can be related, via the simple kinematics described above, to
the geometry of the situation, to the extent that foreshock “coordinates” have been devised
based on distance from the tangent point of contact (or “X-point”) along the magnetic field
line to a point exactly upstream of the observer and a second distance from that upstream
point to the observer. Deeper still lies an ion foreshock to which the same considerations,
ignoring local acceleration processes, may be made. Similar reasoning has also been ap-
plied to the entry of particles into the cusp region and near the separatrix emanating from
the X-line on the dayside magnetopause.

These ideas can be applied to a subset of the particle distribution (e.g., the field-aligned
particles only) or to higher dimensional velocity space distributions, where magnetic mo-
ment conservation, or other trajectory considerations, must be included.

To date, the vast majority of applications have relied on data from a single spacecraft.
Multiple spacecraft can be used as a collection of single spacecraft, to effectively deter-
mine the geometry of a physical region. Additionally, well-placed spacecraft can be used
to apply some of the Liouville mapping techniques described above to map from source
region to distant observation point, thereby shedding light on the intervening local pro-
cesses which shape the distribution or provide local acceleration or scattering. Moreover,
multiple spacecraft enable one to distinguish a localised source which is switched on at
some time from a more extended source with a foreshock, as entering a foreshock yields a
spacecraft time sequence which is very similar to that for a temporal switch on.

7.7 Particle Anisotropies and Remote Sensing

7.7.1 The Gyro-Orbit

Charged particles in a magnetic field describe a circular orbit perpendicular to the
magnetic field vectorB, together with a motion parallel to the field producing a spiral
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Figure 7.2: Velocity dispersion due to convective drift. A semi-infinite set of piers on the
left all launch a range of boats whose velocity distribution function is shown to the left.
The fastest boats (thick solid lines) travel in nearly horizontal lines, while slower boats
(progressively thinner and more dotted lines) also suffer convection by the flow (broad
grey arrows). On the opposite side of the river, the observed distribution of boats arriving
depends on location. At the most upstream locations, no boats are seen. Moving down-
stream, first only the fastest boats are seen. Still further downstream slower boats from
more upstream piers, together with faster boats from the opposite piers, are seen. Liou-
ville’s Theorem forces the phase space density to be constant along trajectories, enabling
us to construct the observed distribution functions, as shown on the right for three loca-
tions. Note the cutoff at low velocities, and the way this cutoff systematically moves to
lower velocities with downstream position.
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trajectory. The frequency and radius of this “gyromotion” are given by

ω =
qB

m
(7.10)

Rg =
mv⊥

qB

=

√
2mE

qB
sinβ (7.11)

wherev⊥ is the particle velocity perpendicular to the magnetic field, andβ is the pitch
angle betweenv andB.

Equation7.11can also be written in vector form:

Rg =
m

qB2
v × B (7.12)

whereRg is the vector from the particle’s position to its gyrocentre.
For protons, one can write

Rg = 4569.4 km ·

√
E/keV

B/nT
sinβ (7.13)

Table7.1 lists some sample results from equation7.13, demonstrating that the gyroradius
of energetic protons is quite comparable to the scale lengths of magnetospheric processes.
For heavier ions, the gyroradius is even larger, scaling with

√
m (equation7.11). On the

other hand, electrons in these energy and field ranges possess gyroradii on the order of
100 km or less, too small for any observable effects normally.

Table 7.1: Sample proton gyroradii and periods

10 nT 100 nT

10 keV 1400 km 140 km

100 keV 4600 km 460 km

Period 6.5 s 0.65 s

7.7.2 Particle Anisotropies

One of the most straightforward particle observations is a measure of the particle
anisotropies, that is, the extent to which the distribution function deviates from isotropy
in velocity space. Anisotropies can arise due to the relative motion of the observer with
respect to the frame associated with an isotropic particle source, due to gradients in the
intervening medium, or to additional sources, sinks, or scattering of the particles en route
to the observer. First order directional anisotropies are most easily interpreted as net par-
ticle streaming. Here we outline the basic calculation of the expected anisotropies due to
two effects: a gradient in the particle density and intrinsic first order anisotropies due to
either constant velocity shifts (same for all particles) or more complex distributions. The
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Figure 7.3: Ions impinging an observation point (black dot) from several directions; the
gyrocentres of each orbit (open circles) are displaced byRg; the magnetic fieldB points
into the paper.

first is related to the finite extent of the particle gyro-orbit and to spatial inhomogeneities.
The second is purely a velocity-space property. If the mechanism(s) responsible for the
anisotropy are known, a measurement of the local particle anisotropy provides direct in-
ference of non-local characteristics (density gradients, source region velocity, etc.). We
return later to the question of which effects are likely to be observable, as often there are
competing processes which give rise to a reduced level of anisotropy.

The starting point for all such calculations is the basic conservation of particles. Let
us assume that there is a spatial gradient in the number of particles. Due to the rapid
gyromotion, the assumed spatial gradient will refer to particles’ gyrocentre (or “guiding
centre”) as in Figure7.3. Additionally, we assume that the particles’ velocity distribution
takes on a relatively simple, known form in a frame of reference moving with a bulk
velocityV with respect to the spacecraft frame.

Thus the problem commences by relating the phase space densityf (r, v) in the space-
craft frame to the spatially-dependent, velocity distributionfGC(rGC, v

′). The vectorrGC
is the position of the guiding centre of a particle whose instantaneous position and veloc-
ity are r andv. The velocity in the moving frame is denotedv′. In practice, the spatial
dependence offGC may be linked to the spatial dependencies of other parameters, such as
B, which we shall ignore here. Equating the number of particles in an elemental volume
in each coordinate system gives

f (r, v) d3r d3v = fGC(rGC, v
′) d3rGC d3v′ (7.14)

This deceptively simple statement reduces the entire problem, and many similar to it, to
one of coordinate transformation. In this case, the transformation laws are given by

rGC = r + Rg (7.15)

v′
= v − V (7.16)

Using equation7.12 and assumingB is uniform, it is straightforward to show that the
jacobian relating d3r d3v and d3rGC d3v′ is unity in this case. It therefore follows from
equation7.14that

f (r, v) = fGC(rGC, v
′) (7.17)
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Note that even iffGC(v′) is independent of gyrophase,f (r, v) contains a gyrophase de-
pendence through theRg dependence ofrGC .

We now Taylor expand the right-hand side of equation7.17about the point in phase
space(rGC = r, v′

= v). This results in

f (r, v) = fGC(r, v)− V ·
∂

∂v
fGC(r, v)+ Rg · ∇fGC(r, v)

+O
[(

Rg

L

)2

,
Rg

L

V

v
,

(
V

v

)2
]

(7.18)

whereL is the scale length of the spatial variation offGC . Now expand the velocity
dependence offGC(r, v) in spherical harmonics, i.e.,

fGC(r, v) = fo(r, v)
[
1 + v̂ · εo + v̂

TS v̂ + . . .
]

(7.19)

whereεo is the first order anisotropy (i.e., the first degree term in the spherical harmonic
expansion) andS is the second order anisotropy. We shall assume that|S| � |εo| � 1
and restrict our calculations to first order results. The various derivatives offGC(r, v) are
now easily calculated in terms of this expansion as

∇fGC(r, v) = ∇fo(r, v) [1 +O(εo)] (7.20)

∂fGC(r, v)

∂v
=

∂fo(r, v)

∂v
[1 +O(εo)]

= v̂
∂fo(r, v)

∂v
[1 +O(εo)] (7.21)

Substituting the results from equations7.19–7.21into equation7.18brings us finally to ⇒7.1

f (r, v) = fo(r, v)

[
1 + v̂ · εo + Rg · ∇ ln fo(r, v)− V · v̂

∂ ln fo(r, v)

∂v

+O
(
S,
Rg

L
εo,

V

v
εo,

(
Rg

L
εo

)2

,
Rg

L

V

v
,

(
V

v

)2
)]

(7.22)

Using equation7.12for Rg, swapping dot and cross product, and general tidying leads to

f (r, v) ≈ fo(r, v)
[
1 + v̂ · εo + v̂ · εC−G + v̂ · ε∇n

]
(7.23)

where

εC−G ≡ −
V

v

∂ ln fo
∂ ln v

(7.24)

is the Compton-Getting anisotropy and

ε∇n ≡
mv

qB2
B × ∇ ln fo (7.25)

is the density gradient-induced anisotropy.
The above forms are not the way these anisotropies are usually presented, because the

energetic particle detectors on which most observations are based do not measuref di-
rectly. The detector count rateNijk/tacc is proportional to the differential intensity, dJ/dE,
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which is the number of particles per unit area per second per steradian per unit energy (E)
travelling in the direction̂v (see Chapter5, particularly Section5.2.3). Relating dJ/dE to
f is easily accomplished by returning to an expression for the number of particles in an
elemental phase space volume, which in this case becomes

f (r, v) d3r d3v =
dJ

dE
dA dt d� dE (7.26)

Noting dA vdt = d3r, dE = mv dv (for non-relativistic particles), and d3v = v2 dv d�
leads to the conclusion thatf and dJ/dE are related by

v2

m
f (r, v) =

2E

m2
f (r, v) =

dJ

dE
(7.27)

Thus the expansion to first order anisotropies for dJ/dE is just that obtained by multiply-
ing equation7.23by the (isotropic) factorv2/m. In particular, all the first-order Compton-
Getting and density gradient anisotropiesεC−G andε∇n are unchanged. However, we
need to express them in terms of the measured parameter dJ/dE. The spatial variation is
simply∇ ln fo = ∇ ln(dJ/dE). Typically, dJ/dE is represented by a power law in energy
of the form

dJ

dE
∝ E−γ

For such a form and non-relativistic particle speeds

∂ ln fo
∂ ln v

=
v

f

[
−

2m

v3

dJ

dE
+
m

v2

dE

dv

(
−γ

E

)
dJ

dE

]
= −2(γ + 1) (7.28)

so that

εC−G = 2(γ + 1)
V

v
(7.29)

ε∇n =
mv

qB2
B × ∇ ln

(
dJ

dE

)
(7.30)

The Compton-Getting anisotropy arises because particles of fixed energy in the space-
craft frame correspond to different energies in the moving frame, depending on their di-
rection. So although the distribution in the moving frame may be isotropic, different parts
of the spectrum are being sampled at a single acceptance energy (spacecraft frame) and
only the direction in the spacecraft frame is scanned. The resulting anisotropy reflects the
spectral shape in the frame of bulk flow: if the spectrum were completely flat (∂fo/∂v = 0)
we haveγ = −1 andεC−G = 0; whereas if the slope of the spectrum goes positive, the
anisotropy becomes negative, meaning it is opposite to the bulk flowV . Normally the
slope is negative andεC−G ‖ V . Note that particles withv <

∼ |V | are excluded from the
present expansion. Treatment of these particles requires use of equation7.17without any
approximations.

The intrinsic first order anisotropy represented byεo could also contain a component
which would correspond likewise to a bulk velocity shift, and would incorporate the same
Compton-Getting factor 2(γ + 1)/v. It is more natural to include this component in the
bulk velocityV and reserveεo for first order anisotropies which are related to the internal
structure of the velocity distribution function.
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The density gradient anisotropy arises because there are more particle guiding centres
(for a given energy) on one side than the other. For example, if there are more particles
with guiding centres above the observation point shown in Figure7.3than below, there will
be a greater flux of particles arriving from the left than from the right at the observation
point; hence the observer will record an anisotropy. The anisotropy is perpendicular to
both the density gradient and the magnetic field.

7.7.3 When is an Anisotropy not an Anisotropy?

The derivation given in the preceding section assumed that the only effects present
were a frame transformation (and/or intrinsic first order anisotropy) and a density gradient.
In fact, with the exception of the Compton-Getting anisotropy, most effects are counter-
balanced by others, so that, e.g., an isolated density gradient anisotropy is rarely measured.

The fundamental argument rests with Liouville’s Theorem, which requires that phase
space density be constant along particle trajectories. If a distribution of particles is isotropic
at some location, and particle trajectories connect the phase-space regions measured by the
observer with that location, then the distortions inf are restricted to those implied by the
particle trajectory solutions. A simple bulk frame shift produces the Compton-Getting
effect derived above. Magnetic forces do not affect a particle’s energy, and thus move
particles along constant energy surfaces in velocity space which therefore cannot induce
any anisotropy. And conservative electric forces act oppositely but symmetrically on tra-
jectories coming from/going to the source location. That is, suppose particles of energy
E are accelerated by such a field in coming from the source, so they appear at a higher
energyE+1E when observed. Particles of the same observed energyE+1E travelling
toward the source will lose an identical amount of energy, and will arrive at the source
with an energyE. Since the source region corresponds, by assumption, to an isotropic
velocity distribution, these two sets of particles will have the same phase-space density at
the source and hence also, by Liouville’s Theorem, at the observer’s location. Thus the
observer will also see an isotropic distribution.

Therefore, before applying the density gradient anisotropy given in Section7.7.2 it
is important to examine the process(es) which have given rise to the density gradient in
the first place; such processes may themselves also lead to other anisotropies. Indeed, the
above invocation of Liouville’s Theorem insists that they will, and that the density gradient
anisotropy will not be observed at all.

While this is a valuable lesson in the power of applying Liouville’s Theorem, its naı̈ve
interpretation would suggest that first order anisotropies should be rarely observed and
limited to the Compton-Getting values. In fact, first order anisotropies are frequently
observed, and the reason is related to the restrictions necessary for Liouville’s Theorem to
hold. Some circumstances under which Liouville’s Theorem is violated include:

1. when there are sources or sinks of particles;

2. when there are collisional, dissipative, or other forces for which(∂/∂v) · F 6= 0;

3. when boundaries lead to particle trapping or exclusion, so that only portions of the
distribution can be mapped from source to the spacecraft;

4. when spatial inhomogeneities lead to velocity filtering (see Section7.6);
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Figure 7.4: Left: the gyro-orbit of a particle whose gyrocentre is more than one gyroradius
from an “absorbing” boundary. Right: snapshot of the boundary position, thick circles
represent ion orbits that do not cross the absorbing boundary and therefore exhibit high
intensities, while thin arcs are those parts of the trajectory connecting to the boundary, and
dotted arcs are non-existent trajectories on the other side of the boundary.

5. when temporal variability at the source or elsewhere similarly leads to non-simul-
taneous observation of oppositely-directed trajectories.

In the next sections we explore some applications of particle kinetic effects at physical
boundaries corresponding to some of these circumstances. Despite the breakdown of
applicability of Liouville’s Theorem (or indeed because of it), it is still possible to use
mapped particle trajectories in a quantitative way to infer remote plasma sources and struc-
ture.

7.7.4 Remote Sensing of Boundaries

In Section7.7.2, we show how a large-scale density gradient can produce a first order
anistropy in the ion distributions. However, if there are very sharp gradients, such as the
step function types at particle boundaries, the simple anisotropy formula of equation7.30
no longer applies; instead, we can obtain snapshots of the moving boundary.

The left side of Figure7.4illustrates the gyro-orbit of an ion detected on the spacecraft
(S/C) while approaching an absorbing boundary. The spacecraft is a distanceD from the
boundary, measured parallel to its normal, which is oriented at an angleψ to some arbitrary
reference azimuth. The ion is detected at velocityv, at phase angleφ; its gyrocentre is a
distanced0 from the boundary.

d0 = D − Rg sin(φ − ψ) (7.31)

High fluxes are measured only if the entire orbit is on the particle-rich side of the boundary,
for once an ion crosses the boundary on any part of it orbit, it is lost. In any real situation,
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Figure 7.5: Ion fluxes plotted for 3 different phase angles as a function of time (upper) and
gyrocentre distanced0 from boundary (lower).

the boundary may also be a source of detected ions but at different flux levels related to
the conditions on the other side of the boundary. For example, the magnetopause is an
example of an absorbing boundary, since the magnetic field (usually) changes is configu-
ration from one side to the other. This means that pure gyromotion cannot be maintained
if an ion crosses the boundary. The ion finds itself in a field of a different orientation
and adopts a new trajectory, which will not return to the spacecraft. Other ions from the
far side of the boundary may cross over in such a way as to adopt a gyration that brings
them to the spacecraft, giving rise to, e.g., lower flux measurements from certain arrival
directions. This is illustrated in the right side of Figure7.4, where the dotted arcs indicate
non-existent particle trajectories, thin arcs indicate trajectories which take particles to or
from the boundary, and thick circles indicate particle trajectories which do not intercept
the boundary and so do not have reduced fluxes. As the spacecraft approaches the bound-
ary, fluxes of particles on trajectories returning from the boundary reduce, beginning with
the higher energy particles due to their larger gyroradii (see also Figure7.6). The arrival
directions at which these reduced fluxes appear span an increasing angular range as the
boundary is approached. Thus, the ion flux, at a given energy and summed over all look
directions, changes progressively from high to low as the spacecraft (together with the
gyro-orbits arriving at the spacecraft) approaches and passes through the boundary. It is
convenient to take the location of the gyrocentre itself as the indicator for high or low flux.

Displaying the boundary motion with a time series of snapshots may be very illustra-
tive, but it would be desirable to have a more analytical method that can be reasonably
automated. Particle fluxes, when plotted against time, exhibit different profiles for differ-
ent phase angles, as shown in the upper plot in Figure7.5. This “azimuthal asymmetry”
results from the displacement of the various gyro-orbits. For each phaseφ, determine the
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time tx(φ) when its flux changes between high and low. We can now fit these switching
times to a model of the boundary motion.

To do this, represent the boundary motion asD = U(t − t0); for each phaseφ, solve
equation7.31for the timetx whend0 = 0, the time when the gyrocentre for that phase
crosses the boundary.

tx(φ) = t0 +
Rg

U
sin(φ − ψ)

= t0 +
cosψ

U
Rg sinφ −

sinψ

U
Rg cosφ (7.32)

Equation7.32is linear in the three unknownst0, (1/U) cosψ , and(1/U) sinψ . A linear
least-squares fitting procedure may be applied to find these unknowns from the actual
measurements of the{tx(φ)}.

Once the solution has been found, one can apply it to equation7.31to determined0
for each flux measurement. Plotting flux againstd0, as in the lower panel of Figure7.5,
should demonstrate that this is the parameter that best orders the high-low transitions for
all phases. Furthermore, snapshots like those on the right of Figure7.4can be drawn with
the solution for the boundary motion, as graphic evidence for its correctness.
Note: in the above example,U is negative, meaningD andd0 decrease with time, which
is why the flux increases to the right in the lower panel.
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7.7.5 Absorbing or Source Boundary?

In the above example, we have demonstrated remote sensing with a boundary that
empties gyro-orbits when the centres cross it, something that sounds very unphysical.
After all, the ion itself is never at the gyrocentre. Instead, one can imagine two types of
discontinuities that can lead to particles vanishing, shown in Figure7.6.

Absorbing boundary where the magnetic field changes configuration, so gyro-orbits are
disturbed; this type is described above. Ideally, if any part of the orbit crosses the
boundary, it must be empty. The magnetopause is such a boundary. There must of
course be a source of the population on the particle-rich side.

Source boundary where the magnetic field is unchanged across it, but the field line on
the boundary is the last one connecting to some remote source; ions can be injected
onto this last field line at such a phase that the gyrocentre is outside the source
region. Thus ions can be observed up to two gyroradii beyond the boundary. This
corresponds to plasma sheet boundaries, or to the division between flux transfer
events and their surroundings.

As long as one restricts oneself to a single gyroradius, there is no way remote sens-
ing can distinguish the two types: the derived boundary locations will be shifted by two
gyroradii depending on the model. However, with different gyroradii, either due to other
pitch angles or particle species, comparison of their behaviour could resolve this, as shown
in the plots in Figure7.6. (These are meant to be omnidirectional fluxes plotted against
position.)

In reality, there may be less difference between the two models than one thinks. The
absorbing boundary is not perfectly solid; the randomness of the magnetic field rotation
means many ions can indeed return from a boundary crossing, or there can be those re-
entering after scattering from other gyro-orbits. The source boundary too is not absolute,
for those ions populating the most external gyro-orbits would be originating from only
a limited range of gyrophases. When gyro-averaged, such orbits would show a reduced
density.

It is therefore best to maintain the gyrocentre itself as the determining criterion for full
or empty orbits, not because it is physical, but because it is an average of the fuzziness of
both models. One should, however, remain aware of the true causes of the changes in flux
levels at boundary crossings.

7.8 Example Applications

Numerous applications of the basic ideas presented in this chapter can be found in the
literature. A small subset are shown below by way of illustration.

7.8.1 1-D Mapping of Electrons at the Earth’s Bow Shock

The Earth’s bow shock represents a well-studied example of a collisionless shock. The
internal structure of the shock layer has received considerable attention. Thermal electrons
respond adiabatically to the changes in the magnetic field and to the (field-aligned) electric
field (e.g., as measured in the deHoffmann-Teller frame in which the bulk flow outside the
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Figure 7.7: Observed (solid) and mapped (shaded) field-aligned electrons at a collisionless
shock in which the fields have been determined experimentally. The innermost hatched
region is inaccessible from either direction, while the intermediate region is populated
by electrons originating from and returning to the downstream plasma. The outermost
shaded regions correspond to electron trajectories which connect from far upstream to far
downstream, and show the gross effect of the shock electrostatic field in accelerating the
incident electrons to positive values (note the shifted peak). [AfterScudder et al., 1986,
Figure 2B].

shock layer is field aligned). Figure7.7 is taken fromScudder et al.[1986], and shows a
cut of the electron distribution corresponding to field-aligned electrons. These electrons
respond only to the electrostatic potential which, in this case, is determined observation-
ally. The solid curve shows the measured distribution while the various shaded pieces are
the result of Liouville mapping in the measured fields. The outer segments correspond to
electron trajectories which connect from the asymptotic upstream to downstream states.
Note the shift in the peak to positive velocities due to the acceleration by the potential.
The innermost region is inaccessible from both the upstream and downstream regions (i.e.,
these trajectories are trapped near the vicinity of the shock), while the intervening regions
correspond to electrons which start in the asymptotic downstream region, have insufficient
energy to overcome the shock potential, and thus return to the downstream region. The
mapping shows how well the overall features of the distribution are the result of the shock
dc fields (the upstream distribution is much narrower in velocity, comparable to the width
of the shifted peak).

7.8.2 2-D Electron Mapping in the Earth’s Foreshock

An example of 2-D electron distributions is shown in Figure7.8. The points represent
measured electron distributions at several phase space densities taken in high field regions
(top) and low field regions (bottom) within ULF waves present in the Earth’s foreshock.
These measured points are fit with smooth contours, in this case ellipses shown as the
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Figure 7.8: Observed contours of constant phase space density (symbols) and fitted ellipses
(solid curves) in the field maxima (top) and minima (bottom) of electrons in the ULF
wave field upstream of the Earth’s bow shock. Dashed curves are circles to guide the
eye. Adiabatic electron behaviour results in nearly isotropic contours in the high field
regions, and a quantitative comparison between the fitted ellipses yields estimates of the
intervening magnetic field and electric potential. [FromChisham et al., 1996, Figure 6].

solid curves. Assuming adiabatic electron behaviour, equations7.6and7.7can be used to
show that ellipsoidal contours map to ellipses. Moreover, if the contours at the minimum
in the magnetic field are used, there are no regions inaccessible to mapped trajectories for
monotonic fields and potentials (although not all trajectories starting at the minimum reach
these regions). Thus the parameters of the ellipses at the same phase space density at field
minimum and maximum (or anywhere in between, if desired) can be used to deduce the
electrostatic field. This, together with the time variation throughout several wave cycles,
is reported byChisham et al.[1996]. The results show which range of electron energies
(i.e., phase space densities) participate in a relatively simple adiabatic response and which
regions where some other process(es) or breakdown in the assumptions occur. In principle,
this method could be used when neither the electric nor magnetic field were known.

7.8.3 Remote Sensing of the Earth’s Bow Shock by Field-Aligned
Energetic Electrons

The Earth’s bow shock is a copious emitter of suprathermal and energetic electrons
into the upstream solar wind. As discussed in Section7.6, dispersion in the foreshock re-
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gion due to the velocity filter effect results in only particles above a certain (field-aligned)
velocity being observed at any location behind the tangent line. The total electron popu-
lation is then the superposition of the solar wind thermal population and, above this local
cutoff velocity, the shock-associated energetic electrons. An example of such an electron
distribution is shown in Figure7.9. Since the cutoff velocity is related only to the geometry
of the situation and the “convection” velocity, a direct measurement of this cutoff velocity
and the localE × B convective drift enables one to reconstruct the geometry, that is, to
locate the observation point in relation to the field line which is tangent to the shock. By
assuming an empirical shape for the bow shock (see Section10.4.6on page259), its po-
sition and scale can thus be determined. Multiple satellite studies of this kind open up the
possibility to provide a more detailed, time-dependent picture of the bow shock position
and shape, including local deviations from the model shape. Since these electron beams
are unstable to Langmuir oscillations, direct observation of the electron beams and knowl-
edge of the bow shock geometry provide wave analysts with an estimate of the (resonant)
wave vector. This quantity can not be determined by direct wave measurements, and is
crucial in theories of the nonlinear wave development.

7.8.4 Ions in the Cusp

Dayside reconnection at the magnetopause leads to an injection of energetic particles
which travel along field lines and penetrate to low altitudes in the polar regions. The re-
connection is associated with anE × B convection which results in a velocity filtering
as the reconnected field lines convect poleward from the dayside. The consequence is
that only ions above a cutoff energy dictated by such time-of-flight considerations will be
observed at any location in the cusp. Assuming the reconnection yields a Maxwellian dis-
tribution moving along the field at the Alfvén speed in the rest frame of the field line (the
deHoffmann-Teller frame), the distributions observed in the magnetosphere will be drift-
ing Maxwellians truncated at the deHoffmann-Teller frame speed, referred to as Cowley-D
distributions. An example of such a distribution is shown in Figure7.10.

Moreover, an equatorward-moving spacecraft at low altitudes over the poles will see
ions down to a cutoff velocity determined by the ion velocity and the time of flight from the
reconnection site or, equivalently, distance behind the most recently reconnected field line.
This is just the velocity filter effect in the curved dipole geometry of the Earth’s magnetic
field rather than the straight geometry depicted in Figure7.2. An example of such a set
of observations together with a sketch of the velocity filter effect in curved geometry is
shown in Figure7.11.

7.8.5 Remote Sensing of a Flux Transfer Event by Finite Gyroradius
Effects

The passage of a flux transfer event (FTE) over the ISEE-2 spacecraft as observed
by the medium energy particle spectrometer has been extensively analysed byDaly and
Keppler [1983]. Figure 7.12 shows the proton intensities in various pitch angle ranges
during the passage into the FTE, from low to high intensity regimes: in the left diagram,
the data are plotted against time, in the right one, by the distance of the gyrocentre from the
deduced boundary. This diagram is the equivalent of Figure7.5 with real data. The FTE
boundary orientation and its speed are found from the best-fit solution of equation7.32.
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Figure 7.13: The proton gyro-orbits for 8 sectors over 6 spacecraft spins during the
entrance to the FTE. The central time of each spin is printed above each plot as UT
(hhmm:ss). Dashed circles are for particles of low intensities, solid ones for those of high
intensity. The boundary drawn is the best-fit solution of equation7.32. The high-intensity
side of the boundary is marked by shading. [FromDaly and Keppler, 1983, Figure 5].

The motion of the boundary is illustrated in snapshots over 6 spacecraft spins (≈4 s) in
Figure 7.13, where solid and dashed circles are used to indicate gyro-orbits with high
and low intensities respectively. This diagram confirms that the proton intensities switch
from low to high when the gyrocentre crosses the boundary. The speed of the boundary
was found to be 44 km/s along its normal, which translated into a speed for the FTE of
94 km/s, assuming it moves in the plane of the magnetopause.

Multi-spacecraft missions open up the possibility to extend such analyses from the
simplifying planar assumption to more complicated boundary shapes.
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8.1 Introduction

The main purpose of minimum or maximum variance analysis (MVA) is to find, from
single-spacecraft data, an estimator for the direction normal to a one-dimensional or ap-
proximately one-dimensional current layer, wave front, or other transition layer in a plasma.
In the present chapter, we will develop the method in the context of determination of such
a unit normal vector,̂n, from minimum variance analysis of magnetic field vector data
(MVAB) acquired by a spacecraft as it traverses a current sheet. This is the application
where the method was first employed [Sonnerup and Cahill, 1967]. Other applications, for
example the use of maximum variance analysis of measured electric field vectors (MVAE)
for determination of a normal direction, will be discussed briefly toward the end of the
chapter. In the context of current-layer traversals by several clustered spacecraft, MVA
can be used on data from each individual spacecraft as an initial step. The results can then
be used to establish stationarity of current-layer orientation and as a partial benchmark test
for more sophisticated analysis tools, e.g., those in Chapters11and15.

The presentation is organised as follows: in Section8.2, the physical and mathematical
basis of MVA is reviewed; in Section8.3error estimates are presented; in Section8.4other
applications are examined, and in Section8.5an overview and discussion of results from
a test case observed by the spacecraft AMPTE/IRM is provided. Finally, Section8.6
contains a summary of the main items and precautions that pertain to MVA.

8.2 Theory

8.2.1 Elementary Considerations

The minimum variance analysis technique, applied to magnetic field vector data mea-
sured during a spacecraft traversal of a transition layer, is based on an idealised one-
dimensional (1-D:∂/∂x = 0, ∂/∂y = 0) model of the layer so that only one of the
three terms remains in the cartesian expression for the divergence ofB:

∇ · B = ∂Bz/∂z = 0 (8.1)

In other words,Bz is independent ofz. Here (x, y, z) is a local cartesian coordinate
system—unknowna priori—with its z axis pointing along the sought-after vector,n̂, nor-
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mal to the layer. It follows from Faraday’s law,∇×E = −∂B/∂t , that the field component⇒8.1
Bz must also be time independent,∂Bz/∂t = 0, in such an idealised structure so that a
spacecraft traversing it would observe a strictly constant value ofBz. In that case, only
three distinct vector measurements,B(1), B(2), andB(3), are needed to determinen̂. Typ-
ically, B(1) andB(3) would be measured on opposite sides of the layer, andB(2) would be
measured somewhere near the middle of the layer. Since

B(1)
· n̂ = B(2)

· n̂ = B(3)
· n̂ (8.2)

the vectors (B(1)
− B(2)) and (B(2)

− B(3)) are tangential to the layer so that their cross
product, assuming it is not zero, is alongn̂:

n̂ = ±
(B(1)

− B(2))× (B(2)
− B(3))

|(B(1)
− B(2))× (B(2)

− B(3))|
(8.3)

Several features of this simple example are of interest:

1. The calculation is not based on the assumptionB · n̂ = 0, which is sometimes made,
but it allows determination of the actual value of the normal field component

Bn = B · n̂ = ±
B(1) · (B(2)

× B(3))

|(B(1)
− B(2))× (B(2)

− B(3))|

2. Exactly three vectors are needed to obtain a unique determination ofn̂ andBn,
provided the difference vectors (B(1)

−B(2)) and (B(2)
−B(3)) in equation8.3are not

aligned. This means that the three vector components tangential to the current layer
cannot be arranged as shown in Figure8.1a but must be as shown in Figure8.1b.
In the former case, the line ABC itself lies in the tangent plane of the layer but
any vectorn̂ perpendicular to ABC satisfies equation8.2. In such a situation an
additional condition, e.g.,B · n̂ = 0, is needed in order to obtain a uniquen̂ vector
(e.g.,n̂ ∝ ± B(1)

×B(3)). Note that in Figure8.1a the electric current in the layer is
unidirectional and perpendicular to the line ABC. In Figure8.1b, the current vectors
in the layer, which are perpendicular to the difference vectors, are not unidirectional
and a unique (except for sign)n̂ vector is obtained from equation8.3.

3. If the difference vectors are small, i.e., if two or all three of the measured vectors
are nearly the same, then equation8.3 approaches the form zero over zero so that
no reliable normal vector is obtained. In practice, this situation is avoided, to the
maximum extent that it can, by using one measured vector on each side of the layer
and one somewhere near its centre, as mentioned above.

4. If only two (non-aligned) vectors,B(1) andB(3) say, are measured then an additional
assumption, such asB ·n̂ = 0 for tangential discontinuities or coplanarity for shocks
(see Chapter10), is needed in order to obtain a normal vector. But it is noted that
(B(1)

− B(3)) still provides a vector tangential to the layer.

5. If more than three vectors are measured and the current is not unidirectional, then
more than onên vector determination can be made and, except in ideal circum-
stances, the resulting vectors are not exactly the same. This is the case to be ad-
dressed below.
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Figure 8.1: Projection onto the magnetosheath tangentxy plane of threeB vectors mea-
sured during spacecraft traversal of a 1-D current sheet. FieldB(1) is measured on one
side,B(3) on the other side, andB(2) somewhere in the middle of the sheet. Each field
vector has the same componentBn pointing along the normal vector, i.e., pointing into the
paper. Difference vectors such as (B(1)

− B(2)) and (B(2)
− B(3)) are therefore tangential.

(a) Difference vectors are colinear so that equation8.3 fails to yield a normal vector,̂n;
electric current is unidirectional and perpendicular to line ABC. (b) Difference vectors are
not colinear, current is not unidirectional, and equation8.3 yields a uniquên vector. The
eigenvector triad(x1, x2, x3), wherex3 = n̂, is shown.

6. A constant off-set vector in the measured vectorsB(1), B(2), andB(3) does not
influence the calculated normal direction. However, it influences the value ofBn,
except in the special case where the off-set vector lies in the tangent plane.

8.2.2 Derivation of Minimum Variance Analysis on Magnetic Field
(MVAB)

For real transition layers observed in space there are usually more or less pronounced
deviations from the ideal 1-D model described in the previous section. The layer is likely to
have 2-D or 3-D internal structures which evolve in time and to have temporal fluctuations
in the orientation of its normal as well. In some cases, a systematic temporal change in the
normal direction may occur during the spacecraft traversal time. To these effects must be
added random as well as systematic measurement errors. For modern magnetometers, the
former are usually negligible compared to other uncertainties but the latter can sometimes
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arise in the form of a zero-level offset of the magnetometer measuring the field component
along the spacecraft spin axis. As pointed out already, a constant offset of this type does not
influence the determination ofn̂ from equation8.3and this property will be seen to apply
to MVAB as well. Another feature of the real situation is that the high time resolution
available in many magnetometer experiments allows many vector measurements,B(m)

(m = 1, 2, 3 . . .M), to be made during a traversal.
The minimum variance technique is designed to deal with the situation where some or

all of the non-ideal effects mentioned above, except a systematic temporal change in the
normal direction,̂n, are present. As the estimate ofn̂, the method identifies that direction
in space along which the field-component set{B(m) · n̂} (m = 1, 2, 3 . . .M) has minimum
variance. In other words,̂n is determined by minimisation of ⇒8.2

σ 2
=

1

M

M∑
m=1

∣∣∣(B(m)
− 〈B〉) · n̂

∣∣∣2 (8.4)

where the average〈B〉 is defined by

〈B〉 ≡
1

M

M∑
m=1

B(m) (8.5)

and where the minimisation is subject to the normalisation constraint|n̂|
2

= 1. Using a
Lagrange multiplier,λ, to implement this constraint, one then seeks the solution of the set
of three homogeneous linear equations

∂

∂nX

(
σ 2

− λ(|n̂|
2
− 1)

)
= 0

∂

∂nY

(
σ 2

− λ(|n̂|
2
− 1)

)
= 0 (8.6)

∂

∂nZ

(
σ 2

− λ(|n̂|
2
− 1)

)
= 0

whereσ 2 is given by equation8.4 andn̂ is represented in terms of its three components
(nX, nY , nZ) along the cartesian coordinate systemX, Y , Z (e.g., GSE or GSM) in which
the field data{B(m)

} are given. When the differentiations in equation8.6 have been per-
formed, the resulting set of three equations can be written in matrix form as

3∑
ν=1

MB
µν nν = λ nµ (8.7)

where the subscriptsµ, ν = 1, 2, 3 denote cartesian components along theX, Y ,Z system
and

MB
µν ≡ 〈BµBν〉 − 〈Bµ〉〈Bν〉 (8.8)

is the magnetic variance matrix. It is seen from equation8.7 that the allowedλ values are
the eigenvaluesλ1, λ2, λ3 (given here in order of decreasing magnitude) ofMB

µν . Since
MB
µν is symmetric, the eigenvalues are all real and the corresponding eigenvectors,x1,

x2, andx3, are orthogonal. The three eigenvectors represent the directions of maximum,



8.2. Theory 189

intermediate, and minimum variance of the field component along each vector. Note that
the sense and magnitude of the eigenvectors remain arbitrary so that, for example,xi ,
kxi , −xi , and−kxi (i = 1, 2, 3) all are valid eigenvectors. The correspondingλ values
represent the actual variances in those field components and are therefore non-negative.
This point becomes clear by writing the matrixMB

µν in the eigenvector basis(x1, x2, x3)

where it is diagonal with diagonal terms given by

MB
ii = 〈BiBi〉 − 〈Bi〉〈Bi〉 = λi (8.9)

In summary, the minimum variance analysis consists of constructing the matrixMB
µν ,

defined by equation8.8 in terms of the measured field data and the cartesian coordinate
system in which the measured data are represented, and then finding the three eigenvalues
λi , and corresponding eigenvectorsxi , of the matrix. The eigenvectorx3 corresponding
to the smallest eigenvalue,λ3, is used as the estimator for the vector normal to the current
sheet andλ3 itself represents the variance of the magnetic field component along the esti-
mated normal. The eigenvectorsx1 andx2, corresponding to maximum and intermediate
variance, are then tangential to the transition layer and the set{x1, x2, x3} arranged as
a right-handed orthonormal triad provides suitable basis vectors for the local coordinates
(x, y, z) discussed in connection with equation8.1. More generally, for any measured
set of vectors{B(m)

}, not necessarily obtained from a spacecraft traversal of a transition
layer or wave front, the eigenvector set of the variance matrixMB

µν derived from the data
provides a convenient natural coordinate system in which to display and analyse the data.
Note also that the matrixMB

µν is independent of the temporal order of the measured vec-
tors.

If the data set used for the minimum variance calculation has its minimal size, i.e., if
it consists of exactly three vectors, as in Figure8.1, then one findsλ3 = 0. For the case
in Figure8.1a one would also findλ2 = 0, λ1 6= 0, andx1 would be parallel to ABC. In
this case the variance matrixMB

µν is said to be degenerate and all that can be said about
x2 andx3 is that they are perpendicular to ABC. This situation is discussed in detail in
Section8.2.5. In Figure8.1b, one would findλ2 6= 0, λ1 6= 0 and the triad(x1, x2, x3)

would be oriented as shown qualitatively in the figure.

8.2.3 Hodogram Representation

The magnetic hodograph is a curve in space constructed by drawing vectors from the
origin, the lengths and directions of which represent the members of the measured set
{B(m)

}, and then connecting the arrowheads of those vectors by line segments, following
the time sequence in which they were measured. It has become common practice to display
the hodograph in two projections, called magnetic hodograms. The projection onto a plane
tangential to the layer is a plot of the componentB1 = B(m) ·x1 versusB2 = B(m) ·x2 and
the side view projection is a plot ofB1 versusB3 = B(m) · x3, i.e., versus the normal field
component. Such a hodogram pair is shown in Figure8.2 for a particular AMPTE/IRM
magnetopause crossing that will serve as our test case in this chapter and also in Chapter9.
The data given below the plots consist of the eigenvalues(λ1, λ2, λ3), the eigenvector
components(xiX, xiY , xiZ), i = 1, 2,3, along the original (GSE) coordinate system, and
the average field components(〈B1〉, 〈B2〉, 〈B3〉) along (x1, x2, x3). It is seen that the
normal field component for this event fluctuates with standard deviation

√
λ3 =

√
7.08 =
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Figure 8.2: Hodogram pair for outbound magnetopause traversal by AMPTE/IRM on Oc-
tober 19, 1984, 05:18:20–05:19:26 UT. Units on axes are nT and high-resolution data have
been averaged over spacecraft spin period (∼4.35 s). Eigenvaluesλi (nT)2, eigenvectors
xi (GSE) and average field components〈B〉 · xi (nT) are given in the order of decreasing
λ value:x3 serves as estimator forn̂.

2.66 nT around an average value that is near zero (〈B3〉 = −0.58 nT) so that the current
layer appears to be a tangential discontinuity (TD), albeit one having substantial 2-D or
3-D internal substructures which produce the fluctuations in the normal component. These
substructures have been analysed in detail bySonnerup and Guo[1996]. As discussed in
Chapter9, there are also other reasons to believe that our test case is indeed a TD.

Illustrations of the convenience of using of the eigenvector basis for analytical purposes
are found in Sections8.2.4, 8.2.6, and8.3.1.

In the application to the dayside magnetopause given here, we have chosenx1 to corre-
spond to the maximum variance eigenvector andx3 to the minimum variance eigenvector,
directed northward and outward from the Earth, respectively. This choice is convenient be-
cause the ordered set{x1, x2, x3} is then similar to the boundary normal coordinate axes,
ordered as(L,M,N), which were introduced byRussell and Elphic[1979]. However,
the choice is not unique: ifx1 andx3 are interchanged and ifx2 → −x2, the result-
ing eigenvector basis corresponds qualitatively to the GSE or GSM systems(X, Y, Z) for
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Figure 8.3: The variance ellipsoid. Eigenvectors,x1, x2, andx3, are shown relative to the
system(X, Y, Z) (e.g., GSE) in which the magnetic data are given. The normal direction
is estimated to be alongx3.

magnetopause crossings in the subsolar region.

8.2.4 Variance Ellipsoid

The variance,σ 2, of the magnetic field component along an arbitrarily chosen direc-
tion, defined by the unit vector̂k, say, can be written in terms of the variance matrix as

σ 2
=

∑
µν

kµM
B
µν kν (8.10)

This result follows from equation8.4 with n̂ replaced byk̂. If the expression8.10 is
transformed to the eigenvector basis, it becomes

σ 2
= λ1 k

2
1 + λ2 k

2
2 + λ3 k

2
3 (8.11)

whereki = k̂ ·xi , i = 1, 2, 3. Equation8.11invites the definition of a “variance space” in
which the coordinates along the eigenvectorsx1, x2, andx3 areσi =

√
λi ki , i = 1,2, 3,

and in which the variance,σ 2
= σ 2

1 + σ 2
2 + σ 2

3 , is the distance from the origin. In terms

of these coordinates the normalisation condition,|k̂|
2

= k2
1 + k2

2 + k2
3 = 1, becomes

σ 2
1

λ1
+
σ 2

2

λ2
+
σ 2

3

λ3
= 1 (8.12)

This expression defines the variance ellipsoid, as shown in Figure8.3, the principal-axes
half lengths of which are

√
λ1,

√
λ2, and

√
λ3. The distance along an arbitrarily chosen

direction in variance space, from the origin to the intersection of a radial line along that
direction with the ellipsoid surface, represents the standard deviation of the magnetic field
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component along the chosen direction. However, note that because the transformation
from physical space to variance space involves unequal stretching along the three axes
(σi =

√
λi ki), directions in the two spaces do not agree, except for the principal directions.

If k̂ is chosen along one of the principal axes,k̂ = xi , thenσ 2
= λi as expected.

8.2.5 Degeneracy

When the three eigenvalues of the variance matrix are distinct, the matrix and the
variance ellipsoid it represents are said to be non-degenerate. This is the most common
situation in practice but there is also a significant number of cases where near degeneracy
occurs. Three types of degeneracy are possible:λ1 ' λ2; λ2 ' λ3; andλ1 ' λ2 ' λ3.
The first of these cases,λ1 ' λ2, corresponds to a discus-shaped (oblate) variance ellip-
soid; the minimum variance direction,x3, which is along the axis of the discus, remains
well determined but any pair of vectors perpendicular tox3, i.e., any vectors lying in the
equatorial plane of the discus, may serve asx1 andx2. This degeneracy, therefore, does
not limit the utility of MVAB for normal-vector and normal-field-component determina-
tions, providedλ3 � λ2 ' λ1.

The second type of degeneracy,λ2 ' λ3, corresponds to a cigar-shaped (prolate) vari-
ance ellipsoid with the axis of the cigar alongx1 and with the intermediate and minimum
variance directions,x2 andx3, being constrained to be perpendicular tox1 but otherwise
arbitrary. In this case, no valid direction normal to the layer is obtained from MVAB al-
thoughx1 remains a good vector tangential to the layer, providedλ1 � λ2 ' λ3. Near de-
generacy of this type has been found to be rather common in analyses of magnetopause and
geotail current layer crossings. A physical situation where it will occur is when the electric
current in the layer is unidirectional or nearly unidirectional so that not only the normal
(B1B3) hodogram, but also the tangential(B1B2) hodogram is a vertical line (B3 = const.,
B2 = const.) or approximately a vertical line, i.e., whenλ2 ' λ3 ' 0. This situation is the
generalisation to many measured vectors of the degenerate case of three measured vectors
with a common tangential component, shown in Figure8.1a, where equation8.2 fails to
provide a normal vector. By contrast, Figure8.1b corresponds to the non-degenerate case
whereλ1 > λ2 > λ3 = 0 (or in an exceptional case toλ1 = λ2 > λ3 = 0). In practice,
near degeneracy withλ2 ' λ3 6= 0 occurs more frequently than withλ2 ' λ3 ' 0.

The third case of degeneracyλ1 ' λ2 ' λ3 corresponds to a spherical or nearly spher-
ical variance ellipsoid. In this case no information about directions normal or tangential to
a layer is obtained. Ifλ1 ' λ2 ' λ3 ' 0, all measured magnetic field vectors are equal
while for λ1 ' λ2 ' λ3 6= 0 the measured field consists of a uniform component (which
could be zero) plus magnetic fluctuations having isotropic variance.

When two eigenvalues,λ2 andλ3 say, are nearly the same, the uncertainty in the cor-
responding eigenvectors is large with respect to rotation about the remaining eigenvector,
x1. In extreme cases, the orientation of the intermediate and minimum variance directions
may trade places, corresponding approximately to a 90◦ rotation ofx2 andx3 aroundx1,
in response to a minor adjustment of the number of data points or the data filtering used
in the analysis. Such behaviour seriously or completely compromises the use ofx3 as a
predictor of the direction normal to the layer. A case in point is a layer of nearly unidi-
rectional current which contains a string of tearing mode islands. In this situation both
λ2 andλ3 are small but non-zero. Depending on where, and at what angle, the spacecraft
trajectory intersects the layer and on how the data interval used for the MVAB is selected,
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Figure 8.4: Eigenvector flip. Eigenvectorsx2 andx3 are interchanged, approximately,
when 1 data point is deleted (in right hodogram pair) at each end of the original data inter-
val (shown in left hodogram pair). Data are from magnetopause traversal by AMPTE/IRM
on September 25, 1984, 05:58:21–05:59:44 UT.

the minimum variance direction,x3, may lie either along the normal to the layer or along
the average current vector which is tangent to the layer. An example of actual eigenvector
flipping for a noisy magnetopause traversal is shown in Figure8.4. We see that the eigen-
value ratio in part (a) of the figure is substantial:λ2/λ3 = 2.05. Nevertheless, removal of
only one point at each end of the data interval leads to a flip and to the result in part (b).

In summary, near degeneracy should result in large error estimates for the correspond-
ing eigenvectors and for the field components along those eigenvectors. Quantitative error
estimates having this property will be provided in Section8.3.

8.2.6 Constraint〈B3〉 = 0

In some circumstances, information may be available from other measurements or
from theory to indicate that the current layer should be a tangential discontinuity, i.e.,
that the average field component,〈B〉 · n̂, along its normal should be zero. In particular
for the degenerate caseλ2 ' λ3, it may be necessary to implement a constraint of this
type in order to obtain a useful normal vector prediction. The method often used is to
calculate the average of a set of field vectors measured on one side of the layer and the
average of another set measured on the opposite side and then use the cross product of the
resulting two vectors as the predictor of the normal vector,n̂. However, there is an alternate
approach [Sonnerup and Cahill, 1968] in which all field vectors measured within the layer
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Figure 8.5: Intersection of variance ellipsoid with the plane〈B〉 · n̂ = 0 (shown shaded).

The normal direction is estimated to be along the minor axis
(
λ

1/2
min

)
of the ellipse marking

the intersection.

as well as vectors measured on its two sides are utilised:n̂ is chosen such that the variance
of the field component along it is a minimum, subject to the constraint〈B〉 · n̂ = 0.
Geometrically, this condition requireŝn to lie in a plane perpendicular to〈B〉 (with the
directions ofn̂ and 〈B〉 converted to corresponding directions in variance space). The
intersection of this plane with the variance ellipsoid is an ellipse, as shown in Figure8.5,
the minor axis of which is used as the predictor forn̂.

The quantitative analysis is carried out most conveniently by minimising the expres-
sion [σ 2

− λ(|n̂|
2

− 1) − 20〈B〉 · n̂] whereλ and 20 are Lagrange multipliers used to
implement the constraints|n̂|

2
= 1 and〈B〉 · n̂ = 0, respectively. Partial differentiation

with respect to each of the three components ofn̂ then leads to the following set of three
linear non-homogeneous equations

3∑
ν=1

MB
µν · nν − λnµ = 0〈Bµ〉 µ = 1,2,3 (8.13)

whereMB
µν is given by equation8.8. Using the eigenvectors ofMB

µν as basis vectors and
assumingλ 6= λi , we find

ni = 0〈Bi〉/(λi − λ) i = 1, 2, 3 (8.14)

where(n1, n2, n3) and(〈B1〉, 〈B2〉, 〈B3〉) are the components ofn̂ and〈B〉 along the max-
imum, intermediate, and minimum variance eigenvectors, respectively. The normalisation
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constraint,|n̂|
2

= 1, then gives

0 = ±

[
3∑
i=1

〈Bi〉
2/(λi − λ)2

]−1/2

(8.15)

and, using equation8.14, the constraint〈B〉 · n̂ = 0 gives

3∑
i=1

〈Bi〉
2/(λi − λ) = 0 (8.16)

which is a quadratic equation for the Lagrange multiplierλ. The two roots of this equation
are denoted byλmax andλmin. The major and minor semiaxes of the ellipse of intersection
shown in Figure8.5 are

√
λmax and

√
λmin, respectively, so thatλmax andλmin represent

the maximum and minimum values of the variance of the set{B(m) ·n̂} when the constraint
〈B〉 · n̂ = 0 has been implemented. The sought-after normal vector,n̂, is obtained by sub-
stitutingλmin into equations8.15and8.14; the desired sense ofn̂ is obtained by properly
selecting the sign of0 in equation8.15.

In a more general formulation [A. V. Khrabrov, private communication], one can show
that a constraint of the form̂n · ê = 0, whereê is a known unit vector, leads to the
eigenvalue problemP · MB · P · n̂ = λn̂. HereP is the matrix describing projection
of a vector onto the plane perpendicular toê, i.e.,Pij = δij − eiej . By putting n̂ = ê

in the eigenvalue equation, it is then seen thatê is an eigenvector corresponding toλ =

0. In the application above, the other two eigenvalues are the same asλmin andλmax
from equation8.16with their corresponding eigenvectors being the same as those from
equation8.14.

An alternative approach to the problem of finding the vector normal to a tangential
discontinuity was described bySiscoe et al.[1968] who minimised the sum of the squares
of the individual normal field components, subject to the constraint|n̂|

2
= 1. In other

words, they extremised

1

M

M∑
m=1

(
B(m)

· n̂
)2

− λ
(
|n̂|

2
− 1

)
(8.17)

which leads to the problem of finding the eigenvalues and eigenvectors of the matrix

M̃B
µν = 〈BµBν〉

Table8.1contains a comparison, for the AMPTE/IRM event in Figure8.2, of normal
vectors and normal field components obtained (i) from minimum variance analysis without
constraint; (ii) from minimum variance analysis with constraint〈B〉 · n̂ = 0; and (iii) from
minimisation of〈(B · n̂)2〉. It is seen that, in this particular case where the actual normal
field component was very small or zero, all three calculations give very similar results, the
maximum angular deviation being less than 1.4◦. In cases where the actual normal-field
component is substantial, the results from the three methods differ significantly and only
method (i) is appropriate.

The method (iii) developed bySiscoe et al.has an alternate important application that
will be illustrated later on. It can be used to characterise a set of nearly aligned normal-
vector estimates in terms of their average direction (Siscoe et al.eigenvector corresponding
to the maximum eigenvalue) and the elliptical cross-section of their error cone (Siscoe et al.
eigenvectors and square roots of intermediate and minimum eigenvalues).
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Table 8.1: Predictions of normal vectorn̂ for magnetopause of tangential-discontinuity
type observed by AMPTE/IRM on October 19, 1984 (05:18:20–05:19:26 UT).

Method nx ny nz 〈B · n̂〉 (nT)

(i): Min. variance (MVAB) 0.8671 -0.4978 0.0187 -0.58

(ii): MVAB + 〈B · n̂〉 ≡ 0 0.8728 -0.4865 0.0386 0.00

(iii): Min. 〈B · n̂〉
2 0.8718 -0.4887 0.0349 -0.11

8.3 Error Estimates

Uncertainties in the orientations of the eigenvectors(x1, x2, x3) and in the values of
the average field components〈B〉 · xi can be either purely statistical in nature or can be
caused by lack of stationarity or quasi-one-dimensionality of the structure being studied.
The statistical errors can be estimated by use of standard analytical tools or by use of com-
putational techniques such as the bootstrap method. These approaches are illustrated and
discussed below. A comparison of normal vectors and of errors is provided in Section8.5.
Uncertainties associated with lack of stationarity or other systematic effects are more dif-
ficult to assess but can be addressed, at least in part, by use of nested data segments: this
approach is also presented.

8.3.1 Analytical Estimates of Statistical Errors

As mentioned already, it is difficult to estimate the actual error in the normal vector
obtained from MVA because, in reality, the error may have a systematic part in addition
to a part caused by finite sampling of a stationary noise component in the measured field
vectorsB(m). In what follows we assume that no systematic errors are present: we are
therefore concerned only with the noise component for which it is expected that the error
should decrease asM−1/2 as the number of measured field vectors,M, used in the analy-
sis, increases. Following a recent development byKhrabrov and Sonnerup[1998a] (which
was motivated by the preparation of this chapter), the uncertainties in the directions of the
eigenvectors(x1, x2, x3) of the variance matrix,MB

≡ M (the superscriptB is suppressed
for brevity), calculated from the measured field vectors, are estimated by performing per-
turbation analysis on the eigenvector equation8.7 around the unknown noise-free state
which is denoted by an asterisk:

(M∗
+ ∆M) · (x∗

i + ∆xi) = (λ∗

i + ∆λi)(x
∗

i + ∆xi)

Herei = 1, 2,3, correspond to maximum, intermediate, and minimum variance associated
with M∗, respectively. The linearised version of this equation becomes

1M · x∗

i + M∗
· ∆xi = ∆λix

∗

i + λ∗

i∆xi (8.18)

Equation8.18is now written in the unperturbed eigenbasis in whichM∗ is diagonal. Using
subscript notation (but not the summation convention), thej th component of equation8.18
becomes, after simple rearrangements,

(λ∗

j − λ∗

i )1xij = −1Mij −1λi δij (8.19)
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where1xij is the j th component of the vector1xi and where use has been made of
x∗

ij = δij . SinceM andM∗, are both symmetric matrices, we have1Mij = 1Mji . From
equation8.19, one then concludes that1xij = −1xji which expresses the fact that the
perturbed eigenvectors must form an orthonormal triad. The perturbed eigenvectors must
also retain unit length so that in the linear approximation1xii = x∗

i ·1xi = 0. Forj = i,
equation8.19gives1λi = 1Mii while the other components (j 6= i) give

1x31 = −1x13 = −1M13/(λ
∗

1 − λ∗

3)

1x32 = −1x23 = −1M23/(λ
∗

2 − λ∗

3) (8.20)

1x21 = −1x12 = −1M21/(λ
∗

1 − λ∗

2)

In the linear approximation, the quantities1x31 and1x32 also represent the angular rota-
tions (in radians) of the eigenvectorx3 towardsx1 andx2, respectively. Similarly,1x21
represents the angular rotation ofx2 towardsx1. Since the noise-free state represents an
ideal one-dimensional current layer of fixed orientation we haveλ∗

3 = 0 in equation8.20.
The next step is to evaluate the ensemble averages, denoted by the double bracket

〈〈. . .〉〉, of (1x31)
2, (1x32)

2 and(1x21)
2. As is seen from equation8.20these averages are

proportional to〈〈1M2
13〉〉, 〈〈1M2

23〉〉 and〈〈1M2
21〉〉, respectively. By ensemble average

we mean the average over a large number of realisations of the noise component of the
measured field. In reality, only one such realisation is available to us, namely the one
contained in the measured set of vectors,{B(m)

}. Furthermore, for this set we do not know
a priori what part ofB(m) is noise. Nevertheless, we can obtain a formal expression for
1Mij by replacingB(m) by (B(m)∗

+ 1B(m)) in the definition8.8 of M, where1B(m)

is the noise component. The noise is assumed to be stationary, isotropic, and spatially
uncorrelated (the final error formulas may in fact work under less restrictive conditions)
and, as a result, can be shown to have the following properties:

〈〈1B
(m)
i 〉〉 = 0 i = 1, 2, 3
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i 1B

(n)
j 〉〉 = δij δmn〈〈(1B

(m)
3 )2〉〉
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(n)
j 1B

(p)
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In the fourth property, we have used the notationδmnij = δij δmn; we have also as-
sumed the noise to be normally distributed. The second property indicates that the vari-
ance of each of the three vector components of the noise has been assumed to be the same
(isotropy) and that it is represented by the variance of the component alongx∗

3. Further-

more, the assumption of time stationarity means that〈〈(1B
(m)
3 )2〉〉 is, in fact, independent

of m. As shown byKhrabrov and Sonnerup[1998a], it is also equal to〈〈λ3〉〉M/(M − 1);
similarly, they show that〈〈λ2〉〉 = λ∗

2 + 〈〈λ3〉〉 and that〈〈λ1〉〉 = λ∗

1 + 〈〈λ3〉〉. Al-
though the ensemble averages,〈〈λ1〉〉, 〈〈λ2〉〉, and 〈〈λ3〉〉, deviate somewhat from the
corresponding eigenvalues,λ1, λ2, andλ3, calculated from the actually measured field
vectors,B(m), we will use the set(λ1, λ2, λ3) to replace the ensemble averages in the er-
ror estimates. The errors associated with this replacement can be estimated by evaluating
〈〈(1λi)

2
〉〉 = 〈〈(1Mii)

2
〉〉 for i = 1, 2, 3.

We may finally express the perturbed matrix elements,1Mij , in terms of1B(m) by use
of the definition ofM, then square1Mij , perform the ensemble average and do the sums
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overm. In this development the properties8.21are used. The detailed steps [Khrabrov
and Sonnerup, 1998a] are straight-forward but too lengthy to be given here. Neglecting
terms of orderε2

≡ [λ3/(λ2 − λ3)]
2/(M − 1)2 compared to unity, the result is

〈〈(1Mij )
2
〉〉 = 〈〈λ3〉〉

[
〈〈λi〉〉 + 〈〈λj 〉〉 − 〈〈λ3〉〉

]
(1 + δij )/(M − 1) (8.22)

so that the angular error estimates (in radians) become

|1ϕij | = |1ϕj i | = 〈〈(1xij )
2
〉〉

1/2
= 〈〈(1xji)

2
〉〉

1/2

=

√
λ3

(M − 1)

(λi + λj − λ3)

(λi − λj )2
, i 6= j (8.23)

Here|1ϕij | denotes the expected angular uncertainty of eigenvectorxi for rotation toward
or away from eigenvectorxj . It is noted that, except for very small values ofλ3/(M − ⇒8.3
1), the uncertainty becomes large for the nearly degenerate case,λi ' λj , discussed in
Section8.2.5. This is an expected and desirable property but it must be remembered that
the linear analysis used in producing the error estimate then breaks down. Such cases are
nevertheless of interest. For example, ifλ1 ' λ2 thenx3 remains a good normal vector
provided|1ϕ31| and |1ϕ32| are small. And ifλ3 ' λ2 � λ1 thenx1 remains a good
tangent vector to the current sheet provided|1ϕ12| and |1ϕ13| are small. An important
use of this tangent vector is discussed in Sections8.4.1and8.4.2. Another situation where
λ2 ' λ3 is likely to occur is in maximum variance analysis of electric field data (MVAE).
In this application, the maximum variance direction,x1, is normal to the current layer,
as discussed further in Section8.4.2. In reality, the orderingλ3 < λ2 � λ1, or even
λ3 � λ2 � λ1, is often found in MVAE, indicating a lack of isotropy of the noise
(defined as the deviations from a 1-D time-independent structure); in that case the error
estimate|1ϕ12| should be calculated withλ2 replacingλ3 in equation8.23. Additionally
it is noted that non-isotropic noise may lead to a bias (a systematic error) in the normal
vector estimate.

The statistical uncertainty in the component of the average magnetic field along the
eigenvectorx3 is composed of three parts: the uncertainty in the average associated with
the corresponding varianceλ3 and the two uncertainties associated with the angular error
estimates forx3. Assuming these errors to be independent, we can then write the compos-
ite statistical error estimate for〈B〉 · x3 as

|1〈B · x3〉| =

√
λ3

M − 1
+ (1ϕ32〈B〉 · x2)

2
+ (1ϕ31〈B〉 · x1)

2 (8.24)

Similar expressions can be written for the uncertainties in〈B〉 ·x1 and in〈B〉 ·x2 but these
error estimates are usually of less interest.

As an example, the error estimates for the magnetopause crossing depicted in Fig-
ure 8.2 have been calculated from equations8.23 and 8.24, with the following results:
1ϕ32 = 1ϕ23 = ±0.062 rad =±3.6◦; 1ϕ31 = 1ϕ13 = ±0.022 rad =±1.3◦; 1ϕ12 =

1ϕ21 = ±0.027 rad =±1.5◦; 1〈B · x3〉 = ±1.63 nT. A variety of other applications of
equations8.23and8.24will be given later on in this chapter.

8.3.2 Bootstrap Error Estimates

It has been proposed recently [Kawano and Higuchi, 1995] that the so-called bootstrap
method may provide superior error estimates for the minimum variance analysis in the
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Figure 8.6: Bootstrap distributions forN = 1000 bootstrap sets{B(m)
}
(i) wherem =

1, 2, . . . 16 andi = 1, 2, . . . 1000: (a) distribution of the normal field component,〈B(m) ·

x3〉
(i); (b) distribution of angular deviation (radians) ofx

(i)
3 from vectorx3 toward vector

x1 (rotation aboutx2), with (x1, x2, x3) given in Figure8.2; (c) same for angular deviation
of x

(i)
3 from x3 towardx2 (rotation aboutx1).
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sense that fewer assumptions are needed and that errors associated with time variance,
non-planar effects, etc., are automatically incorporated. Although the utility of the method
has not been tested extensively with real magnetopause data sets, it seems important to
describe the bootstrap procedure briefly.

As described byKawano and Higuchi[1995], the method is based on performing a
very large number of minimum variance calculations, using for each calculation a boot-
strap data sample generated from the measured vectors as follows. One vector is drawn
at random, with replacement, from the measured set ofM vectors. A second drawing is
made in the same fashion and the process is continued untilM drawings have been made.
The resulting bootstrap sample thus consists ofM vectors, all of which were measured but
some of which may be identical so that a sample usually does not contain all the measured
vectors. A large number (N ≥ 103, say) of bootstrap samples is generated in this fashion
and each sample is subjected to MVA thus producing a set ofN minimum variance eigen-
vectors{x3} and corresponding normal field components{〈B〉 · x3}. The distribution of
these quantities can then be characterised in terms of averages, variances, skewness fac-
tors, etc. The square root of the variance (the standard deviation) is the quantity that can
be directly compared to the error estimates in Section8.3.1.

As an illustration, we have analysed the 16 vector data samples that form the basis of
the minimum variance calculation illustrated in Figure8.2. A total ofN = 103 bootstrap
samples were generated from this data set and the MVA was performed on each. The
resulting distribution of normal field components and of the angular deviations of the min-
imum variance eigenvectors fromx3 toward the eigenvectorsx1 andx2, with (x1, x2, x3)

coming from the measured set and given in Figure8.2, are shown in Figure8.6along with
the averages and standard deviations. These quantities are found to remain relatively in-
sensitive toN , the number of bootstrap samples, at least forN ≥ 103 (rough estimates
can be obtained for substantially smallerN values). The bootstrap averages are close to
the single-sample averages in Figure8.2 and the bootstrap standard deviations forn̂ are
about the same as the estimates in Section8.3.1. It can be shown, based on [Khrabrov and
Sonnerup, 1998a], that this agreement is not coincidental. The bootstrap standard devia-
tion for {〈B〉 · n} (1.17 nT, see Figure8.6a) is smaller than the value obtained analytically
(1.63 nT, see Section8.3.1). Because questions remain concerning the proper applica-⇒8.4
tion of the bootstrap technique to MVA, we recommend use of the analytical results for
which the underlying assumptions are transparent. Further discussion and application of
the bootstrap technique may be found in Chapter9.

An estimator for the normal vector,n̂, can be obtained as the normalised component-
by-component average of the individual bootstrap normalsn̂

(i) (i = 1, 2, . . .1000). The
result isn̂ = (0.8669,−0.4982, 0.0182) which very nearly agrees with the vectorx3 from
Figure8.2, the angle between the two vectors being only 0.04◦. It follows from [Khrabrov
and Sonnerup, 1998a] that this agreement is not accidental but is correct including terms
of orderε (but notε2; ε was defined in connection with equation8.22). The bootstrap
average of the normal field component is−0.60 nT. An alternate estimator for the average
normal, 〈〈n̂〉〉, can be obtained from theN bootstrap normals by maximising the sum
of the squares of the individual componentsn̂

(i)
· 〈〈n̂〉〉. This procedure reduces to the

Siscoe et al.least-squares problem (equation8.17) with B(m) replaced bŷn(i) and with the
eigenvector of the largest rather than the smallest eigenvalue representing〈〈n̂〉〉. For our
event, this procedure leads to very nearly the samen̂ vector as above. The square root of
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the intermediate eigenvalue and of the smallest eigenvalue from the least-squares problem
considered bySiscoe et al.and the corresponding eigenvectors define an uncertainty cone
of elliptic cross section for the bootstrap normal vector. The size and orientation of this
cone is found to be consistent with the standard deviations shown in Figures8.6b and8.6c
and also with the results from equation8.23(for further discussion, see Section8.5). It is
concluded that the most convenient way to characterise the ensemble of bootstrap normal
vectors is to apply the procedure ofSiscoe et al.to them.

8.3.3 Other Error Estimates

Three other error estimates for MVAB can be found in the literature and will be men-
tioned briefly here.

Sonnerup[1971] proposed angular error estimates forx3 consisting of the angular
change produced by assuming the variance ellipsoid to remain unperturbed but changing
the minimum variance away fromλ3 by the amount1λ3 given by

|1λ3|
2

= 〈〈(1M33)
2
〉〉 =

1

(M − 1)M

M∑
m=1

[(
B(m)

· x3 − 〈B〉 · x3

)2
− λ3

]2

(8.25)

This expression for(1λ3)
2 is simply the variance ofλ3 divided by(M−1). From the two

conditions

(x3 +1x3) · MB
· (x3 + ∆x3) = λ3 + ∆λ3 (8.26)

(x3 +1x3)
2

= 1,

both carried to second order in1x3, one then finds the expression

|1λ3| =

3∑
j=1

(1x3j )
2 (λj − λ3) (8.27)

The termj = 3 is equal to zero in the sum so that equation8.27 defines a quadratic
relationship between the two components of1x3 that are perpendicular tox3. It de-
scribes an error cone of elliptical cross section with major axis of half length|1x32| =

|1ϕ32| = [|1λ3|/(λ2−λ3)]
1/2 alongx2 and minor axis of half length|1x31| = |1ϕ31| =

[|1λ3|/λ1 −λ3]
1/2 alongx1. In other words, we can express the principal semiaxes of the

cone of uncertainty as

|1ϕ3i | = |1ϕi3| =
√

|1λ3|/(λi − λ3) i = 1, 2 (8.28)

The values|1λ31| and|1λ32| from equation8.28can then be used in8.24to obtain|1〈B ·

x3〉|. For the magnetopause crossing depicted in Figure8.2 the resulting error estimates
are1λ3 = 3.06 (nT)2,1ϕ32 = ±8.8◦; 1ϕ31 = ±3.2◦; 1〈B · x3〉 = ±3.74 nT. It is seen
that the uncertainties predicted from this model are more than twice as large as those given
in Sections8.3.1and8.3.2.

Kawano and Higuchi[1995] have pointed out that when the field componentB(m) ·x3
is normally distributed the expression8.25 for |1λ3|

2 can be replaced by the simpler
formula

|1λ3|
2

= 〈〈(1M33)
2
〉〉 = 2λ2

3/(M − 1) (8.29)
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which can be obtained from equation8.22 by putting i = j = 3. For the magne-
topause crossing in Figure8.2, this expression leads to1λ3 = 2.59 (nT)2 which should
be compared to1λ3 = 3.06 (nT)2 from equation8.25. By comparison of the combi-
nation of equations8.28 and 8.29 to the estimate8.23 with j = 3 we see that the er-
ror obtained from equations8.28 and 8.29 is larger than that from8.23 by the factor
(1 − λ3/λ1)

1/2
[2(M − 1)]1/4. While the errors predicted by equation8.23 exhibit the

M−1/2 dependence expected from stationary random noise, those predicted by8.28have
a weakerM−1/4 dependence. The latter behaviour may perhaps be justified when signif-
icant systematic errors (assumed independent ofM) are present in addition to the noise.
But for stationary isotropic noise, equation8.23 has better theoretical justification than
8.28. Accordingly, with the caveats provided in Section8.3.5, we recommend that, in the
future, equation8.23be used. However, there is a need to perform benchmark tests of this
equation by use of a variety of synthetic data sets.

Hoppe et al.[1981] used qualitative arguments to motivate the following formulas for
the angular uncertainties inx3:

1ϕ31 = ± tan−1 [λ3/(λ1 − λ3)] (8.30)

1ϕ32 = ± tan−1 [λ3/(λ2 − λ3)]

These formulas do not containM, the number of data points used in the analysis. There-
fore, in contrast to the estimates in Sections8.3.1and8.3.2, these error estimates would not
approach zero asM → ∞, as expected for time-stationary statistical fluctuations. They
are directly inconsistent with equation8.23or with equations8.28and8.29. For the event
in Figure8.2, they produce the following error estimates:1ϕ31 = ±0.4◦; 1ϕ32 = ±3.1◦.
It appears that1ϕ31 is unrealistically small. Accordingly, we recommend against the use
of equation8.30.

A third, more extensive study of minimum variance errors was performed byLepping
and Behannon[1980]. It was based on a large number of simulated current sheet crossings
in which the unperturbed tangential magnetic field rotated by an angleω, but maintained
constant magnitude while the normal field component was strictly constant (either non-
zero or zero). To this unperturbed configuration was added isotropic noise of different
amplitudes. The number of data points used in the MVA was proportional to the angle
changeω, an assumption that is perhaps reasonable for solar-wind discontinuities but not
necessarily for other current sheets. They encoded their error estimate for the normal field
component,〈B〉·x3, in a complicated purely empirical formula that, because of the special
nature of the simulated structures, would seem to be of limited general use. If that formula
is nevertheless used to estimate the error in〈B〉 ·x3 for the event in Figure8.2, the result is
1〈B ·x3〉 ≡ ±1.9 nT, which is comparable to the error estimate in Section8.3.1. However,
the reader may wish to take note of Lepping and Behannon’s claim that the formulas8.25
and8.28usually underestimate the errors for the type of discontinuities they studied.

8.3.4 Stationarity

A partial check on time-stationarity and further testing of the error estimates can be
obtained by doing MVAB on sets of nested data segments centred at or near the middle of
the current sheet. Each larger member of a nest is generated by adding one data point at
each end of the preceding segment. The smallest member of a nest has three data points.
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Figure 8.7: Results of minimum variance analysis for nested data segments starting with
M = 3 vectors and then increasing toM = 27. The nest is centred at 05:18:50 UT. Each
vector is the (4.35 s) average ofQ ' 140 high-resolutionB measurements. Top panel
shows normal magnetic field components and error bars for eachM value. The quantities
1ϕ31 and1ϕ32 indicate angular deviations (radians) from the reference normalx3, toward
x1 andx2, respectively, where the set(x1, x2, x3) is specified in Figure8.2. Error bars
are calculated from equations8.23 and8.24. Plateau used for composite error cone in
Section8.5consists of theK = 9 largest segments.

The size of the largest member is limited by practical constraints such as the presence of
magnetic structures, e.g., unrelated wave modes or turbulence, adjoining the current layer
under study. If the normal vector and normal field component are strictly time stationary,
then the results from all the different nested segments should be the same. In reality a group
of the shortest and longest segments often gives results that are significantly different from
those obtained for segments of intermediate duration. Within the intermediate range, the
results of MVAB should be the same, or nearly the same, regardless of segment duration
if the crossing is to be considered approximately time stationary. In other words, if the
results of the MVAB (〈B〉 · x3 and the direction ofx3) are plotted as functions of the
segment lengthM (the segment duration isT = (M−1)τ , τ being the sampling interval),
a plateau region should exist for intermediateM values: the wider and flatter the plateau
the more nearly does the crossing exhibit time stationarity. The situation is illustrated in
Figure8.7 for the AMPTE/IRM event in Figure8.2. Also shown are the statistical error
bars calculated as described in Section8.3.1. These error bars define a lower and an upper
envelope curve for the expected values of the variable. Note that the error-bar lengths for
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〈B〉 · x3 and1ϕ32 do not decrease asM increases, indicating thatλ3 is not constant but
increases withM.

This result indicates that the noise is not time stationary. On the other hand, the near
constancy of the three variables plotted in Figure8.7forM ≥ 9 suggests that approximate
time stationarity of the average magnetopause structure is at hand. The plateau average
for the normal vector, calculated from theSiscoe et al. least-squares method, iŝn =

(0.8616,−0.5074,0.0096) and the average field along it is〈B〉 · n̂ = 0.90 nT. The vector
n̂ forms an angle of 0.97◦ with thex3 vector from Figure8.2; the error cone associated
with the plateau normals will be discussed in Section8.5.

8.3.5 Data Filtering and Optimal Analysis

Current layers observed in space often contain ELF magnetic fluctuations and vari-
ous short-duration substructures of substantial amplitude. Such fluctuations influence the
results of MVAB by increasingλ3 and sometimes also by introducing a bias (systematic
error) in the estimate for the normal vector,n̂. For this reason, it is desirable to examine the
results of applying MVAB to data that have been subjected to various amounts of low-pass
filtering. Such filtering can be performed in different ways and at various levels of sophis-
tication but for present purposes the simplest approach suffices. It consists of calculating
a set of consecutive non-overlapping means, each overQ high-resolution data points say,
thus generating a new smoothed data set containingM̃ = M/Q (or, more precisely, the
integer part ofM/Q) points. MVAB is then performed for each choice ofQ and the results
for n̂ are compared.

Figure8.8shows the results of such a study for the AMPTE/IRM event in Figure8.2.
The calculations are based on a data interval containing 2048 magnetic field vectors mea-
sured at 32 samples per second and centred at 05:18:53:03 UT. TheQ values used are
Q = 2n, n = 0,1,2 . . . 9, for which the corresponding̃M values areM̃ = 2m, m =

11, 10, 9 . . .2. The figure shows the resulting ten normal vectors as dots on a nominal
magnetopause tangent plane, defined by the vectorsx1 andx2 in figure8.2. Thus the ref-
erence normal vector in Figure8.8, based on the usual 4.35 s averages (Q ' 140) is the
eleventh dot, located at the origin and surrounded by its error ellipse (shown as a dashed
curve). It is seen that the normals forQ ≤ 32 are located in a tight cluster which is not
centred at the origin but is displaced by approximately one degree from it. ForQ > 32 the
normal directions start to scatter increasingly widely and without an apparent pattern. All
of the normals are consistent with the reference normal at the origin and its surrounding
error ellipse. However, the reverse statement does not hold: the reference normal at the ori-
gin falls significantly outside the error cones associated with the smallestQ values (ellipse
for Q = 1 is shown in the figure). We note that the tight clustering of the normal vectors
for Q ≤ 32 indicates that for instrumental and other reasons little noise is present in the
data at the corresponding frequencies. It follows that for this event theM−1/2 dependence
of the error estimates is inappropriate for the smallestQ values, i.e., for the largestM
values: it leads to analytical as well as bootstrap errors that are unrealistically small. For
Q = 32 the error ellipse has grown to include the point at the origin while remaining sig-
nificantly smaller than the (dashed) ellipse of the reference normal. Nevertheless, because
of the possible bias mentioned above it remains unclear whether the normal forQ = 32
and its ellipse represent better estimates than the reference normal and its ellipse.

Experiments of the type described above are useful as a way to establish how robust
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Figure 8.8: Influence of different averaging intervals,Q, on normal vectors obtained from
MVAB: Q is the number of high-resolution vector samples (32 samples/s) averaged to ob-
tain one of theB vectors used in the minimum variance analysis (Q ' 140 corresponds to
the standard averaging over 4.35 s used in Figure8.7and in all previous figures). Normal
vectors for differentQ values are shown as dots in thex2x1 plane withx2 andx1 from
Figure8.2 and withx3 from that figure represented by the dot at the origin (Q = 140).
Axes indicate angular deviations,1ϕ32 and1ϕ31 (radians), of a normal toward or away
from x2 andx1, respectively. Analytically derived error cones, shown as elliptical projec-
tions in thex2x1 plane, are given forQ = 1, 32 and 140. Average of all normals (except
Q = 140) is shown as a star surrounded by its ellipse of uncertainty.

is the normal vector estimate obtained from MVAB. Indeed, a possible “best” normal and
error cone may be obtained by applying the analysis ofSiscoe et al.[1968] to all of the ten
normal vectors obtained in the experiment. The result is shown by the star-shaped dot in
Figure8.8and the ellipse centred at it. The error cone obtained in this manner provides an
alternate result which can be used instead of, or in addition to, the analytical error estimates
from Section8.3.1or the bootstrap errors from Section8.3.2. From what has been said, it
is clear that the latter two estimates must be applied to high-resolution data with extreme
caution. It may also be desirable to extend the experimentation to include the use of
nested data segments, perhaps with various choices for the nest centre and including the
possibility of excising data segments taken within a current layer where there is evidence
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that a substructure was sampled that had orientation different from that of the main layer.
The hodogram pair provides an indispensable tool for the identification of such intervals
and also for the choice of optimal beginning and end points of the total data interval used
for MVAB.

8.4 Other Applications

The variance analysis technique developed in the previous sections also has applica-
tions to fields other than the magnetic field. In the context of finding the orientation of
a quasi-one-dimensional layer, the important requirement that must be satisfied is that ei-
ther the normal component or the two tangential components of the field analysed remain
constant across the layer. Two examples are given below, along with a brief discussion
of MVAB as it applies to two-dimensional structures, such as surface waves on a current
sheet or magnetic flux ropes.

8.4.1 Minimum Variance Analysis on Mass Flux (MVAρv)

The mass flux across a layer such as a shock or a rotational discontinuity should be
independent of the coordinatez perpendicular to the layer provided the structure of the
layer is time independent. In a frame moving with the layer, we then have

∇ · ρv′
= 0 (8.31)

which, assuming as before that∂/∂x = 0 and∂/∂y = 0, yields

∂

∂z
ρv′

z = 0 (8.32)

Hereρ is the mass density andv′ is the velocity vector in a frame moving with the
layer, i.e., for each measured velocity,v(m), in the spacecraft frame we have

v(m)′ = v(m) − unn̂ (8.33)

whereunn̂ is the unknown velocity of the moving frame. It is important to note that current
layers and other discontinuities in space are almost always in a state of motion: they are
observed as they move past an observing spacecraft at speeds that usually greatly exceed
the spacecraft velocity. Because there is a net mass flow across a rotational discontinuity
(RD) or a shock we have〈v〉 · n̂ 6= un so thatun and n̂ are both unknown; only for a
tangential discontinuity (TD) do we haveun = 〈v〉 · n̂. An additional complication that we
do not address here is that the current sheet may be in a state of acceleration or deceleration
so thatun is not constant during the crossing.

Because of the fact that the unknown normal vector,n̂, enters in the expression for the
vector fieldρv′ from which the variance matrix,Mρv, is constructed, one must now use
MVA in an iterative fashion. For example, one may first putun = 0 in order to obtain an
initial n̂ = x3 vector from MVA applied to the measured set{ρ(m)v(m)}; this n̂ vector is
then used with a chosen value forun (for RDs and shocks) or withun = 〈v〉 · n̂ (for TDs)
in order to produce a new set{ρ(m)v(m)′}. MVA applied to this set will then yield a neŵn
vector to replace the initial one. The calculation is then repeated untiln̂ no longer changes:
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usually only a few iterations are needed but for large values of|un| convergence problems
may arise. In that case, a stepwise approach can be adopted in which one first iterates
to obtain then̂ vector corresponding to a smaller|un| value and then uses that vector as
the initial guess for a larger|un|, and so on. Rapidly converging iterative schemes for
finding the smallest or largest eigenvalue of a matrix also exist and can be adapted to the
present situation. Since the problem is nonlinear, difficulties with uniqueness may arise.
For example, two iterations using the same value ofun but starting fromx3 and−x3,
respectively, generally do not converge to the same finaln̂ vector. However, it is usually
easy to decide which answer makes physical sense. ⇒8.5

For a TD, normal vectors for differentun values are calculated in the fashion described
above until theun value has been found for which the conditionun = 〈v〉 · n̂ is satisfied.
Making the proper choice ofun for RDs and shocks is a non-trivial task which requires
observational information beyondρ(m) andv(m). If a good minimum variance direction
has been obtained from MVAB, one may determineun by maximising error cone overlap
for the MVAB normal and the MVAρv normal and then choosing the normal at the centre
of the overlap region. If the MVAB normal is poorly determined but the maximum variance
eigenvector,x1, from MVAB has small errors, one may determineun from the condition
n̂ · x1 = 0. Other possibilities also exist. For RDsun could be chosen such that〈v′

〉 · n̂ =

±〈vA〉· n̂, vA being the measured Alfvén velocities; for shocks one could use the Rankine-
Hugoniot conditions, as discussed in detail in Chapter10. Alternatively, timing differences
from dual or multiple spacecraft measurements can be used to obtainun. Still another
possibility (incompletely explored to date) is that one or more of the eigenvalues,λ1, λ2,
λ3, may exhibit an extremum at the correct value ofun.

Providedλ2 � λ3, the process described above will provide a normal vector derived
from plasma data alone but the direction of this vector depends somewhat on the choice
of un, the magnitude of which remains unknown (unless there is other evidence to spec-
ify it as discussed above). Note that the sign ofun is usually known. For example, a
magnetopause crossing from the magnetosphere to the magnetosheath, such as the one in
Figure8.2, must haveun < 0.

As an illustration, the minimum variance analysis onρv described in this section has
been applied to the plasma data from the AMPTE/IRM magnetopause crossing in Fig-
ure8.2. The results, for current-layer normal velocityun = 0 and forun = −5 km/s, are
given in Table8.2; hodograms forun = −5 km/s are shown in Figure8.9. In this figure,
the mass fluxes have been converted to weighted velocities,ρv′/〈ρ〉 where〈ρ〉 = 19.4
particle masses per cm3. Information about plasma composition is required in order to
determine the mass density but was not obtained by the AMPTE/IRM plasma instrument.
If the composition ratios remain the same throughout the layer, then the normal-vector de-
termination fromρ(m)v(m) does not depend on the actual values of those ratios. However,
gradients in composition, which might be present across the magnetopause, would corrupt
the determination.

From the results in Table8.2one can calculate that, forun = 0, thex3 vector derived
from MVAρv forms an angle of 5.9◦ with the minimum variance direction forB given in
Figure8.2 while for un = −5 km/s the angle has increased to 7.2◦. Thus an attempt to
minimise the angle would lead toun > 0; this would be inconsistent with the fact that the
magnetopause was traversed in the direction from the magnetosphere to the magnetosheath
which requiresun < 0. This is also the case if the TD conditionun = 〈v〉·n̂, which should
be applicable to this event, is implemented: it leads ton̂ = (0.8584,−0.5096,−0.0577),
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Figure 8.9: Hodograms and minimum variance results for the weighted velocity,
ρv′/〈ρ〉 (km/s), for event in Figure8.2 with un = −5 km/s. The average density〈ρ〉

corresponds to 19.4 particles/cm3; the range is 9.2–26.2 particles/cm3.

un ' +6 km/s and to a decrease of the angle between the MVAB and the MVAρv normals
to 4.5◦. Further discussion of the inconsistent sign forun is given in Section8.5.

Because it is more difficult to accurately measureρ andv of the plasma (see Chap-
ter6) than to measureB, the measurement errors inv and, in particular, inρ are at present
sufficiently large so as to limit the ability of the analysis techniques described above to
produce an accurate normal vector based onρv or a reliable value ofun. It is emphasised
that by requiring MVAB and MVAρv error-cone intersection to occur in order forun to be
determined and by placing the final choice in the overlap region, this type of analysis will
lead to rejection of poor cases and will place more emphasis on the normal vector determi-
nation having the smaller error cone. In our example, this means placing more emphasis
on B data and less onρv data. A more sophisticated technique which incorporates sev-
eral conservation laws in one grand optimisation has been proposed recently [Kawano and
Higuchi, 1996] but remains untested. Such approaches hold considerable promise but they
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Table 8.2: Predictions from MVAρv for the event in Figure8.2

Quantity un = 0 km/s un = −5 km/s

x3 (0.8620,−0.4998,−0.0847) (0.8644,−0.4913,−0.1071)

1ϕ31 0.0407 rad 0.0402 rad

1ϕ32 0.1447 rad 0.1421 rad

1ϕ21 0.0472 rad 0.0466 rad

[〈ρv′
〉 · x3 ±1〈ρv′

〉 · x3]/〈ρ〉 0.8 ± 10.6 km/s 2.1 ± 10.4 km/s

may also encounter difficulties related to the limited quality of the plasma information. It
is important that any such procedure should allow greater weight to be placed on quantities
that are well determined with less weight on quantities that are less well determined.

Methods that utilise data on the two sides of the current layer but not in its interior are
discussed in Chapter10.

8.4.2 Maximum Variance Analysis on Electric Field (MVAE)

Faraday’s law requires that the two electric field components tangential to a one-
dimensional time independent layer remain constant throughout the layer and on its two
sides. It is important to note that the electric field is to be measured in a frame of reference
moving with the layer. There are certain classes of current layer for which this constancy
of the tangential electric field can be used for determination of a vector normal to the layer.
What is required is that the electric field component normal to the layer undergoes a large
change as it often does at the magnetopause where the tangential flow and/or the tangen-
tial B field components usually change direction and/or magnitude by substantial amounts
across the layer. In that case,λ1 is large and the maximum variance direction will serve as
a good predictor of the normal to the layer. The variance ellipsoid would ideally be cigar
shaped withλ1 � λ2 ' λ3 (in practice one is more likely to findλ2 > λ3 or evenλ2 � λ3
rather thanλ2 ' λ3).

The electric field observed in a frame moving with the layer is

E(m)′
= E(m)

+ unn̂ × B(m) (8.34)

whereE(m) is the field measured in the spacecraft frame. The maximum variance eigen-
vector,x1, of the matrix

ME
µν = 〈E′

µE
′
ν〉 − 〈E′

µ〉〈E′
ν〉 (8.35)

then becomes our predictor of the normaln̂. It is noted that, as in Section8.4.1, the
resulting normal vector depends on the choice ofun, which may itself be a function of
time, and that the calculation must be done iteratively sinceE′ itself contains the unknown
normaln̂.

To date, this type of maximum variance analysis has not been performed on actual
measured electric field vectorsE(m). Rather, the convection electric fieldE(m)

c = −v(m)×

B(m), calculated from measured plasma velocities and magnetic fields, has been used as
a proxy forE(m). (A variant of MVAE that remains untested to date is to use−v

(m)
e ×
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Figure 8.10: Hodograms and maximum variance results forE
(m)
c = −v(m)×B(m) (mV/m)

for the event in Figure8.2with un = −5 km/s.

B(m), v
(m)
e being the measured electron velocities, in place ofE

(m)
c .) It has been found

[Paschmann et al., 1986; Sonnerup et al., 1987, 1990] that the maximum variance analysis
often provides a robust predictor of the magnetopause normal even in some cases where
minimum variance analysis onB givesλ2 ' λ3 and therefore fails to produce a reliable
normal. Because the mass densityρ is at present less accurately determined from the
plasma measurements than is the component ofv perpendicular toB, the determination of
n̂ andun from MVAE may be expected to be considerably better than that from MVAρv.
The comments, given in Section8.4.1, concerning the determination ofun, apply to MVAE
as well.

We point out that, even when the correct value ofun is known, the normal vectors
obtained from MVAE are (usually weakly) frame dependent: if MVAE is performed for
the same event in two frames that move relative to each other along the current sheet, the
resulting normal vectors are not identical. This effect, which is caused by the noise, may
become large if one moves to a frame of reference in which the noise inE′ dominates the
convective field,−v × B.



8.4. Other Applications 211

Table 8.3: Predictions from MVAE for the event in Figure8.2.

Quantity un = 0 km/s un = −5 km/s

x1 (0.8911, -0.4533, 0.0197) (0.9017, -0.4309, 0.0361)

1ϕ31 0.0289 rad 0.0290 rad

1ϕ32 0.2943 rad 0.2913 rad

1ϕ21
∗ 0.0451 rad 0.0453 rad

〈E〉 · x2 ±1〈E〉 · x2 −0.25± 0.38 mV/m −0.13± 0.38 mV/m

〈E〉 · x3 ±1〈E〉 · x3 0.02± 0.25 mV/m −0.03± 0.25 mV/m

∗From equation8.23with λ3 replaced byλ2.

As an illustration of MVAE, we have applied it to the AMPTE/IRM magnetopause
crossing in Figure8.2 with the results shown in Figure8.10and in Table8.3. Note that
x1 from MVAE with un = 0 forms an angle of 2.9◦ with x3 from MVAB in Figure 8.2
while forun = −5 km/s that angle has increased to 4.4◦. Therefore an attempt to minimise
the angle between the maximum variance eigenvector fromE and the minimum variance
eigenvector fromB (Figure8.2) would again lead toun > 0, in conflict with the actual
direction of traversal of the magnetopause which requiresun < 0. The TD condition,un =

〈v〉 · n̂, leads toun ' −48 km/s but the resulting normal vector(0.9598,−0.2205, 0.1736)
is not believable: it forms an angle of 19.0◦ with x3 from MVAB.

An alternate approach to MVAE, in which a suitably defined residue of the integrated
Faraday equation is minimised to yield bothn̂ andun, has been described recently byTera-
sawa et al.[1996]. The method is based on the constancy ofB(m)·n̂ as well as ofE(m)′

×n̂;
minimisation of the variance of the tangential electric field plays a key role in the deter-
mination ofun. As stressed in Section8.4.1, caution should be exercised in accepting the
results from such combined calculations because it is not clear that they properly weight
information of high and less high quality. We have applied the method ofTerasawa et al.to
the AMPTE/IRM crossing in Figure8.2with the resultn̂T = (0.8945,−0.4465, 0.0247)
andun = −1.5 km/s. We also find〈v〉 · n̂T = −5 km/s and〈B〉 · n̂T = −0.24 nT. These
results are reasonable:〈B〉 · n̂T is near zero and bothun and 〈v〉 · n̂T are negative, as
required for an earthward moving TD. An inconsistency is thatun 6= 〈v〉 · n̂T but this
discrepancy is well within uncertainties. However, we find thatn̂T is close to thên vector
from MVAE with un = 0 (see Table8.3): the two vectors form an angle of only 0.4◦

whereas the angle betweenn̂T and the MVAB vectorx3 in Figure 8.2 is 3.3◦. In this
example, the method evidently puts most of the weight on the constancy of the tangen-
tial electric field,E(m)′

× n̂T , and relatively little weight on the constancy of the normal
magnetic field,B(m) · n̂T .

A number of items relative to MVAE and to the method ofTerasawa et al.remain
unexplored or incompletely understood at present. Included are the details of the inter-
relationship between the two methods and their mutual relationship to the existence and
quality of a so-called deHoffmann-Teller frame (see Chapter9), i.e., a moving frame of
reference in which the electric field is absent or small.
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8.4.3 Application to 2-D Structures

We now discuss briefly a quite different use of MVAB, introduced byWalthour and
Sonnerup[1995]. They applied this technique to magnetic field data obtained from remote
sensing of two-dimensional bulges, such as flux transfer events or surface waves on the
magnetopause, moving past an observing spacecraft. During the event, the spacecraft is
assumed to be located entirely on one side of the current layer; it cannot penetrate the
bulge or the layer. The details of this application are too lengthy to be presented here but
some of the results are of interest. Linear ideal MHD theory can be used to show that
the smallest eigenvalue ofMB

µν (defined by equation8.8) should be zero, i.e.,λ3 = 0,
and that the corresponding eigenvectorx3 should be tangential to the unperturbed layer,
forming a certain angle,θN , with the invariant direction (the axis) of the bulge. The angle
θN is obtainable from the direction of motion of the bulge relative to the unperturbed field
and the so-called stretching factor,R, which enters into the MHD perturbation analysis
of flow over small-amplitude bulges [Sonnerup et al., 1992]. A curl-free magnetic field
corresponds toR = 1 andθN = 0; in that special case the field component along the
invariant direction is exactly constant so thatx3 is along the bulge axis. In the general
case, it can also be shown [Khrabrov and Sonnerup, 1998b] that either the intermediate
variance eigenvector,x2, or the maximum variance eigenvector,x1, should be normal to
the unperturbed layer and that the ratio of maximum to intermediate eigenvalueλ1/λ2 =

R2/ cos2 θN in the former case andλ2/λ1 = R2/ cos2 θN in the latter case. Several actual
magnetopause events have been analysed for which these predicted properties ofMB

µν

were verified.
Another illustration is the case of a spacecraft traversing a force-free flux rope in which

the axial current, along thez axis say, is uniformly distributed over the circular cross
section of the rope. It is simple to show that magnetic data taken along a straight-line
trajectory through the interior of the rope will produceλ3 = 0 and a minimum variance
direction that is not along the rope axis but is instead perpendicular to it and is, in fact,
along the projection of the trajectory onto the perpendicularxy plane. Application of
MVAB to flux ropes is discussed further byElphic and Russell[1983] andLepping et al.
[1990].

From these examples the following lesson can be drawn. A nearly one-dimensional
current layer will produceλ3 � λ1 but the converse is not necessarily true: if one finds
λ3 � λ1 for a measured data set, it does not automatically follow that a 1-D current layer
has been traversed. Furthermore, if one seeks an interpretation in terms of a 2-D structure
instead, one cannot necessarily conclude that the minimum variance direction coincides
with the axis of the structure.

8.5 Discussion of AMPTE/IRM Event

In this chapter we have used one particular magnetopause crossing by the AMPTE/IRM
spacecraft in order to illustrate various applications of the minimum/maximum variance
analysis and associated error estimates. For benchmarking purposes, we provide, in the
Appendix, the 16 samples of fieldB, number densityN∗, and velocityv for this event that
were used in most of the calculations. We now compare the various results for the normal
vector estimate, the normal field and flow component estimates, and the error estimates
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for this event.
An overview of the normal vector orientations is given in Figure8.11 where each

normal vector is shown as a dot in the(x1, x2) plane. The axes of this plane are provided
by the maximum and intermediate eigenvectors in Figure8.2 and the distances along the
x1 andx2 axes represent angular deviations,1ϕ31 and1ϕ32, in radians. Thus the normal
vectorx3 from Figure8.2appears as point 1 at the origin with its error-cone cross section
(from equation8.23) being the dashed ellipse with major axis alongx2 and minor axis
alongx1. The minimum variance calculation with constraint〈B〉 · n̂ = 0 gives point 2 and
the normal vector ofSiscoe et al.(from the expression8.17) gives point 3 (no error cones
shown). The average bootstrap estimate ofn̂, calculated as the eigenvector corresponding
to the maximumλ value in the analysis ofSiscoe et al., applied to the bootstrap normals, is
point 4 which is very nearly coincident with point 1. It is surrounded by its slightly tilted
error-cone cross section, the major and minor axes of which are along the eigenvectors
corresponding to intermediate and minimumλ values in the analysis ofSiscoe et al.and
the semiaxis lengths of which are the square root of thoseλ values. This ellipse is nearly
the same as the dashed ellipse for point 1. Point 5, surrounded by its error-cone cross
section (or, more precisely, the projection of that cross section onto thex1x2 plane), is
similarly the normal vector obtained by applying the analysis ofSiscoe et al.to theK = 9
normal vectors on the plateau in Figure8.8. The ellipse is small and falls inside the dashed
error ellipse associated with point 1, suggesting that the latter error estimate is reasonable.
The clustering of all of points 1–5 within the dashed ellipse reinforces the view that the
error estimate from8.23is valid.

Points 6, 7 and 8, which are located along a straight line, are normal vectors from
MVAE with un = 0 km/s,un = +12 km/s (point of maximum error-cone overlap with
MVAB) andun = +20 km/s (from condition̂n·x1 = 0 withx1 from MVAB), respectively.
The elliptical error-cone cross section refers to point 6. For MVAE, the TD condition
un = 〈v〉 · n̂ yieldsun = −48 km/s; the corresponding normal vector is located outside
of the diagram atx1 = −0.13,x2 = −0.30. Points 9, 10 and 11, which are also located
along a straight line, are normal vectors from MVAρv with un = 0 km/s,un = +6 km/s
(from the TD condition,un = 〈v〉 · n̂) andun = +15 km/s (maximum error-cone overlap
and alsôn·x1 ' 0). The large elliptical error-cone cross section refers to point 10. Finally,
point 12 is the normal from Terasawa’s method. The relations〈B〉 · n̂ = 0 and〈v〉 · n̂ = 0,
calculated from the 16 data points in the appendix, are also shown in Figure8.11as lines
B–B and V–V, respectively. To the right of B–B〈B〉·n̂ < 0 and to the left of it〈B〉·n̂ > 0.
Similarly, 〈v〉 · n̂ > 0 above V–V and〈v〉 · n̂ < 0 below it.

Point 6 (un = 0 km/s, 〈v〉 · n̂ = −3.6 km/s) represents the best determination ofn̂

from MVAE that is approximately consistent withun ≤ 0 and with the structure being that
of a TD. The result has difficulties: (i) the true value ofun must in fact be negative and
must coincide with〈v〉 · n̂; (ii) the error cone for point 6 does not contain points 1–5 and
has only a small overlap with the error cone surrounding point 1. To bring about maximal
error-cone overlapun = +12 km/s is needed. Similarly, point 10 (un = 〈v〉·n̂ = +6 km/s)
represents the best determination ofn̂ andun from MVAρv for this TD. Againun has the
wrong sign. The error cone for this point is large enough to include points 1–5 but optimal
overlap would requireun ' +15 km/s. These results all suggest a systematic deviation
of the normals based on plasma measurements from the more reliable normals obtained
from the magnetic data alone: they indicate that the plasma velocity component alongn̂

may be too large. If that component is decreased by 12 km/s, say, point 6 from MVAE
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Figure 8.11: Overview of normal-vector determinations and errors for event in Figure8.2.
Thex2x1 plane is shown withx1 andx2 given in Figure8.2. The reference normal vector
x3 from Figure8.2is the point at the origin; deviations1ϕ31 and1ϕ32 (radians) are shown
as distances alongx1 andx2, respectively. The normal vectors, numbered from 1 to 12
are described in Section8.5. The line B–B corresponds to〈B〉 · n̂ = 0; on the left of that
line 〈B〉 · n̂ > 0 and on the right〈B〉 · n̂ < 0. Similarly, the line V–V corresponds to
〈v〉 · n̂ = 0; above the line〈v〉 · n̂ > 0 and below it〈v〉 · n̂ < 0. Both B–B and V–V are
calculated from the data set in the Appendix. Ellipses represent error-cone cross sections,
at unit distances from the cone vertex, projected onto thex2x1 plane.
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would move to the location of point 7 where maximum error-cone overlap with the MVAB
normal (point 1) occurs. Similarly, the TD point 10 from MVAρv would move to the
vicinity of point 11, again providing maximum error-cone overlap with the MVAB normal.
However, the actual values ofun for the TD points at their new locations would remain
at 0 km/s and+6 km/s, respectively which is inconsistent with the requirementun < 0.
Another indication of a systematic error in the plasma velocities is that the MVAB normal
vector (point 1) has〈v〉 · n̂ = 〈v〉 · x3 = +8 km/s, i.e., it is well above the line V–V at
which 〈v〉 · n̂ = 0. This result suggests that the measured normal velocity component
of the plasma is too large by at least 8 km/s and perhaps more, depending on how rapid
was the actual inward motion of the magnetopause past the spacecraft, i.e., depending on
how negativeun was. In Chapter9, the magnetopause velocityun is calculated as the
component of the deHoffmann-Teller frame velocityV HT alongx3, the MVAB reference
normal. When the data set in the Appendix is used to obtainV HT , the result is either
un = V HT ·x3 = (5.9± 3.9) km/s orun = (8.1± 4.2) km/s, depending on certain details
of the calculation. These results again suggest the presence of a small systematic error
(although, as noted in Chapter9, somewhat longer data segments for the calculation of
V HT do in fact yield the required negative values ofun).

Because of the likely presence in the plasma velocity data of such a systematic error,
perhaps caused by the plasma instrument being in its half-sweep mode as discussed below,
it does not appear possible to determine the actual negative value ofun for this event.
However, it seems to have been small, probably in the range 0> un > −10 km/s.

The reason for the discrepancy between the normals based purely onB (points 1–5 in
Figure8.11) and those based partially or wholly on the plasma measurements (points 6
and 10, say, in Figure8.11) is not understood. But it may be related, at least in part, to
the fact that the plasma analyser was in its so-called half-sweep mode during the crossing.
In this mode the ion energy range sampled is reduced from 20 eV/q< E < 40 keV/q to
150 eV/q< E < 5.3 keV/q. Simulations of the instrument under typical magnetopause
conditions indicate that systematic directional errors of the plasma flow velocity of a few
degrees may occur in the half-sweep mode, along with an overestimate of the velocity
magnitude and an underestimate of the density [G. Paschmann, private communication,
1996]. Some time aliasing is also likely to be present. Keeping these effects in mind, we
conclude that the approximate agreement, illustrated in Figure8.11, between the plasma-
based normal vectors from MVAρv and MVAE and the various magnetically-based normal
vectors from MVAB is rather remarkable.

8.6 Summary

We summarise the material presented in this chapter as follows.

1. The main application of minimum variance analysis (MVA) is to the task of esti-
matingn̂, the direction perpendicular to approximately one-dimensional structures,
such as current layers and plane wave fronts, from a set of magnetic field data mea-
sured by a single spacecraft during traversal of the structure.

2. MVA applied to magnetic field data (MVAB) consists of constructing the variance
matrix (equation8.8) and then finding its eigenvalues(λ1, λ2, λ3) and corresponding
eigenvectors(x1, x2, x3). The direction of minimum variance,x3, is used as an
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estimator ofn̂, the corresponding eigenvalue,λ3, being the variance of the field
component alongx3. A small value ofλ3, compared toλ2 andλ1, generally signals
a good determination of̂n. Extreme caution must be exercised in cases where the
separation between the minimum eigenvalue,λ3, and the intermediate eigenvalue,
λ2, is small: the matrix is then nearly degenerate and small changes in the data
interval used for the analysis may lead to an interchange of the eigenvectorsx3 and
x2 (Section8.2.5). The normal vector obtained is unreliable in such cases. A simple
rule of thumb isλ2/λ3 ≥ 10 for a good application of MVA to a relatively small
data set (M < 50, say).

3. Use of theSiscoe et al.formulation (equation8.17) in place of8.8for determination
of n̂ is not recommended, except perhaps for tangential discontinuities whenλ2/λ3
is not large; however, for such cases MVA with constraint〈B3〉 = 0 (Section8.2.6) ⇒8.6
gives similar results. Nevertheless, theSiscoe et al.analysis has been found useful
for characterising a cluster of normal vectors obtained from MVA bootstrap calcu-
lations or from analysis of nested data segments.

4. We recommend (Section8.3.1) that statistical errors be estimated by use of equa-
tions8.23and8.24and that a number of earlier estimates that have appeared in the
literature be discarded. For small errors, the formula8.23gives results that nearly⇒8.3
duplicate those obtained from the bootstrap technique (Section8.3.2). In that case,
the bootstrap average normal is also essentially the same as the minimum variance
normal obtained by a single application of MVA to the measured data set. Thus
there is no clear reason to perform the more time consuming bootstrap calculations
to obtainn̂ and its angular uncertainties. However, in cases where the signal-to-
noise ratio is small (λ3 is comparable toλ2 and perhapsλ1) and the number of data
points,M, used is not correspondingly large or when systematic errors are present,
the bootstrap calculation may possibly give more realistic error estimates than equa-
tion 8.23. There are modest discrepancies between the analytical error estimate
8.24 for the average normal-field component and the corresponding bootstrap re-
sult, calculated as described byKawano and Higuchi[1995]. The reasons for these⇒8.4
deviations are not clearly understood but, at present, our recommendation is to use
the results from equation8.24. It is also noted that the estimates given by equa-
tions8.23and8.24are inversely proportional toM1/2 so that very small errors may
result when large data sets are used. Although this behaviour is expected for random
noise, it may lead to the underestimation of uncertainties when data at high time res-
olution are used. It must also be remembered that in many applications additional,
systematic errors, not described by equations8.23and8.24, may be present as well.

5. It is recommended that MVA be performed on nested sets of data intervals, cen-
tred at or near the middle of the structure being measured. Time stationarity can
be checked in this manner (Section8.3.4) but care must be taken to avoid including
adjoining structures or turbulence that may degrade the quality of the normal vector
determination. Similarly, it may sometimes be important to perform low-pass fil-
tering of the data before MVA is applied (Section8.3.5) in order to remove higher
frequency wave activity in the interior of the layer. Such waves may have propaga-
tion vectors very different from̂n and therefore may degrade the determination of
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n̂. In most cases averaging the data over consecutive non-overlapping time intervals
will provide filtering of sufficient quality.

6. We have pointed out (Section8.4.3) that certain two-dimensional structures will lead
to a magnetic variance matrix havingλ3 equal to zero, ideally, and in reality having
λ3 � λ2, λ1. It must be remembered, therefore, that the existence of a direction
of low variance for a data set does not guarantee that the structure sampled by the
spacecraft was a one-dimensional current sheet or wave.

7. There are also relevant applications of MVA to vector fields other thanB. In partic-
ular, mass flow conservation (MVAρv; see Section8.4.1) across a one-dimensional
layer implies that the minimum variance direction forρv′, wherev′

= v − unn̂

is the plasma velocity in a frame moving with the layer, should be a good normal
direction. A difficulty with this application is that the value of the speed,un, of the
layer must be obtained separately from other measurements or conditions which is
a simple task only for tangential discontinuities. Similarly, the maximum variance⇒8.5
direction for the convection electric fieldE′

= −(v − unn̂)× B in the frame mov-
ing with the layer should be normal to the layer as a consequence of Faraday’s law
(MVAE; see Section8.4.2). Again, the value ofun must be obtained separately.
Experience indicates that this maximum variance analysis onE′ sometimes gives
a reasonably reliable normal vector, the requirement being thatλ1 � λ2, λ3, even
where minimum variance analysis onB does not. The error estimate8.23for |1ϕ21|

should be modified by replacingλ3 by λ2 in the application to the MVAE normal.

8. Recently, an analysis technique has been proposed in which the constancy of the
normal component ofB and of the tangential components ofE are both satisfied
in a single optimisation that yieldŝn as well asun [Terasawa et al., 1996]; an an-
alytical solution to this optimisation problem and associated error estimates have
been developed byKhrabrov and Sonnerup[1998c]. Although the utility of the
method byTerasawa et al.has not yet been widely tested, it performed well in
our AMPTE/IRM sample event. However, concerns exist that it does not always
provide the proper relative weighting of quantities that are measured or calculated
more accurately and less accurately. This concern has been addressed to some ex-
tent in a recent generalisation of MVA to include a variety of additional conserva-
tion laws [Kawano and Higuchi, 1996]. However, this method remains untested. At
present, we are therefore in favour of separate use of MVAB and MVAE (plus per-
haps MVAρv). The former yields a single optimal normal vector and an associated
error cone. The latter yields a distinct normal vector and error cone for each chosen
value ofun. For tangential discontinuities, the proper value ofun can in principle
be found from the conditionun = 〈v〉 · n̂ but there is no guarantee that the result
is reasonable. In other cases, the optimal choice forun should be that which leads
to maximal overlap between the MVAB error cone and that of MVAE (and perhaps
MVA ρv); the optimaln̂ could then be taken at the centre of the overlap region. If the
normal vector from MVAB has large errors, an alternate choice forun may be such
that the corresponding normal vector from MVAE or MVAρv is perpendicular to the
maximum variance direction from MVAB. Or, followingTerasawa et al., one may
search for theun value that gives a minimum in the sum(λ2 + λ3), obtained from
MVAE. One advantage of the separate use of MVAB, MVAE, and MVAρv is that
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inconsistencies in the various determinations ofn̂ may be revealed, as illustrated in
Section8.5. Such inconsistencies, which point to possible systematic errors in some
of the measured quantitites, may remain hidden if a single combined merit function
is optimised.

Appendix

The 16 AMPTE/IRM data points, from 05:18:20–05:19:26 UT on October 19, 1984,
used in Figures8.2, 8.6, 8.9, and8.10, are given in Table8.4 for use in benchmark tests
of MVA and other programs. It is noted that these data differ slightly from those used in
Sonnerup et al.[1990], probably as a result of round-off errors during coordinate transfor-
mations. Therefore normal vectors given in that paper differ slightly from those reported
here.

Table 8.4: The 16 AMPTE/IRM data points from 05:18:20–05:19:26 UT on October 19,
1984 used in various demonstrations in this chapter

T Bx By Bz vx vy vz N∗

0.00 −13.6 −24.7 54.6 −111.0 −211.0 57.0 12.18

4.38 −14.8 −24.9 58.7 −102.0 −213.0 41.0 9.22

8.75 −13.4 −17.2 62.4 −111.0 −196.0 34.0 9.92

13.12 −14.0 −25.0 43.8 −135.0 −229.0 54.0 18.08

17.49 −7.1 −4.5 33.5 −128.0 −252.0 54.0 20.39

21.87 −0.9 −5.0 44.4 −82.0 −237.0 51.0 15.00

26.24 −10.0 −0.4 44.6 −139.0 −228.0 77.0 20.19

30.61 −6.1 −4.8 21.1 −143.0 −241.0 57.0 23.53

34.98 1.2 1.6 21.0 −132.0 −226.0 80.0 24.31

39.36 −3.4 −3.9 4.1 −117.0 −217.0 79.0 25.91

43.73 −0.9 1.2 5.0 −112.0 −210.0 93.0 26.17

48.10 −1.0 −1.5 12.3 −98.0 −212.0 92.0 24.49

52.47 11.0 13.2 29.7 −90.0 −186.0 104.0 22.20

56.85 19.1 34.4 20.1 −83.0 −168.0 121.0 22.86

61.22 24.9 50.1 1.9 −82.0 −129.0 88.0 17.56

65.59 29.2 47.1 −10.6 −93.0 −123.0 53.0 17.86

Units:B (nT); v (km/s);N∗ (particles/cm3);

timeT (sec), starting at 05:18:20.49 UT.
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9.1 Introduction

In experimental and theoretical studies of space plasmas, the term “deHoffmann-Teller
frame”, hereafter referred to as the HT frame, has the established meaning of a galilean
frame of reference in which the electric field vanishes in the plasma. It was named after
the authors of the original work [deHoffmann and Teller, 1950] in which the concept was
utilised in analysing jump conditions across MHD shock waves. The existence of an HT
frame or, in the experimental context, an approximate HT frame, indicates that a coherent
quasi-stationary pattern of magnetic field and plasma velocity such as a wave or current
layer, is present. To first order, the observed time variation in such events would be due
to the steady motion of the pattern relative to the instrument frame. The utility of an HT
frame is that it allows one to identify the passage of such a moving quasi-static structure
and that it facilitates further analysis and interpretation of the data. We will be referring
to the procedure of identifying an HT frame as HT analysis. Its aim is to find the frame
velocity vector (HT velocity),V HT, that best agrees with the set of measured values of
magnetic field,B, and electric field,E, or magnetic field,B, and plasma bulk velocity,v,
in cases where the convection electric field,−v × B, can be used as a proxy forE. Thus,
the HT analysis is an attempt to characterise an experimental data set by a model that
has one vector as a parameter. A natural extension of the procedure, also to be discussed
here, is to allow for a constant acceleration of the HT frame as another parameter, in order
to obtain a better fit. HT analysis of experimental data was first performed byAggson
et al. [1983] by use of an iterative method aimed at optimising the agreement between
measured electric fields and the field−V HT × B. The purpose of the present chapter is
to review a non-iterative, least-squares analysis technique developed bySonnerup et al.
[1987, 1990] and its potential extensions. Also, a discussion will be given of how the
error in the experimentally determined value ofV HT can be estimated. The techniques
of the analysis, introduced step by step, will be illustrated using the same set of data as
in Chapter8 from a crossing of the magnetopause by the spacecraft AMPTE/IRM. In
view of the context of this handbook, it ought to be said explicitly that, in its existing
form described here, the HT analysis applies to sets of measurements acquired by a single
spacecraft. However, to be eventually able to gain in-depth, quantitative understanding of
the capabilities and limitations of various multiple-spacecraft techniques, it is essential to
gain such understanding for single-spacecraft methods first. This chapter provides a step
towards that goal.

221
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The chapter is organised as follows. In Section9.2, the concept of an HT frame and the
circumstances in which it may exist, are outlined. Section9.3contains a review of the pro-
cedure for finding an approximate value ofV HT from a set of measurements of magnetic
field and plasma bulk-velocity vectors or magnetic and electric field vectors. The proce-
dure is based on minimising the residual electric field in the least-squares sense. The use
of electron fluid velocities in place of the ion velocities is also discussed briefly. In Sec-
tion 9.4, where much of the practical work with actual data is performed, an assessment is
made of the uncertainty margins of the deHoffmann-Teller velocity vector obtained from
the minimisation procedure. The determination of uncertainty margins constitutes a new
and not yet firmly established element of the HT analysis. Analytical error estimates are
explored as well as those offered by the bootstrap approach that utilises multiple resam-
plings of the data set. The discussion of errors is also coupled with use of the HT analysis
on multiple, nested data intervals to test time stationarity. The choice of an optimal inter-
val is one of the topics addressed there. In Section9.5, an extension of the basic procedure
is presented that allows for a steadily accelerating HT frame. The mean square of the
residual electric field is minimised with respect to two parameters,V HT0 andaHT, which
accounts for a linear time-variation of the frame velocity. This version of the method is
relevant, for example, when the motion studied is oscillatory, as is frequently the case for
the magnetopause. Sections9.6and9.7contain discussion and summary.

The following connections exist between this and other chapters in this book. There
is a close commonality between the methodology of this chapter and Chapter8 on min-
imum/maximum variance analysis. Also, in relation to shock fronts, the HT frame is
discussed in Chapter10, where, essentially, the vector component ofV HT tangential to the
front is considered.

9.2 Existence and Properties of HT Frame

If the electric field measured in the instrument frame isE, then the electric field in the
HT frame, assuming such a frame exists, is

E′
= E + V HT × B = 0 (9.1)

It follows from Faraday’s law, expressed in the HT frame, that∇ × E′
= −(∂B/∂t)′ =

0, where the prime denotes quantities evaluated in the HT frame. In other words, the
existence of the HT frame implies that the magnetic field structure sampled is stationary
when viewed in that frame. However, the reverse claim cannot be made: many time-
independent structures exist for which no frame of reference can be found in whichE′

≡

0. In particular, a strictly perpendicular shock does not possess an HT frame: no single
frame of reference can be found in which the electric field vanishes on both sides of the
shock. The same situation arises for a tangential discontinuity having the special property
that the magnetic fields on its two sides are parallel or anti-parallel when the velocities
transverse to these fields are different. In both examples, a “proper” (but not unique)
frame of reference exists in which the current layer is stationary but these frames are not
HT frames and cannot be obtained by use of the methods developed in the main part of
this chapter. All other one-dimensional time-independent current layers, whether they are
shocks, tangential or rotational discontinuities, can be transformed to a “proper” frame of
reference in which the electric fields in the regions of uniform field and flow on the two
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Figure 9.1: Magnetic field and velocity in the “proper” frame of a time-independent tan-
gential discontinuity structure (a) when an intrinsic electric fieldE′(3) exists in the interior
of the layer; (b) whenE′(3)

= 0 so that the proper frame is also a true HT frame.

sides of the layer now vanish but where, nevertheless, an intrinsic electric field component
along the normal to the layer may remain in its interior. This proper frame is unique (except
in certain special cases) and is useful for observational and theoretical studies of the layer.
It can be viewed as the HT frame for the layer when its structure is left unresolved. But,
strictly speaking, it is not an HT frame when the structure is included. A simple illustration
in the form of a tangential discontinuity is shown in Figure9.1. It can be argued that, for
discontinuities having an intrinsic electric field along the normal, it makes sense to perform
HT analysis in which data points from the interior of the layer are excluded.

We emphasise that the existence of an HT frame is by no means limited to one-
dimensional discontinuities. It has been found to exist for data collected during distant
as well as close encounters with flux transfer events at the magnetopause [Papamastorakis
et al., 1989; Walthour and Sonnerup, 1995] and during crossings of magnetopause current
layers having significant internal 2-D or 3-D structure [Sonnerup and Guo, 1996]. Appli-
cations to travelling waves, plasmoids, current filaments and vortices appear feasible as
well.
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From an observational viewpoint it is interesting to ask what is the minimal amount
of measured information needed in order to exclude the existence of an HT frame. A
single measured electromagnetic vector pair,{E(1),B(1)

} is not sufficient because, from
equation9.1, one may then determine that

V HT =
E(1)

× B(1)

|B(1)
|2

+ V‖

B(1)

|B(1)
|

(9.2)

whereV‖ is an arbitrary velocity component alongB(1). Thus an HT frame exists but
is not unique. If two distinct measured electromagnetic vector pairs{E(1),B(1)

} and
{E(2),B(2)

} are available, equation9.1gives two conditions:

E(1)
+ V HT × B(1)

= 0
E(2)

+ V HT × B(2)
= 0

}
(9.3)

These two equations are generally inconsistent, as can be seen from the following argu-
ment. Without loss of generality, we may assume that the vectorsB(1) andB(2) lie in the
xy plane. Then the dot products ofẑ, the unit vector perpendicular to that plane, with
equations9.3give

E(1) · ẑ = V HT · (ẑ × B(1))

E(2) · ẑ = V HT · (ẑ × B(2))

}
(9.4)

Assuming thatB(1) andB(2) are not parallel, these two equations allow the two compo-
nents ofV HT in the xy plane to be uniquely determined. The cross product ofẑ with
equation9.3gives

B(1)(V HT · ẑ) = ẑ × E(1)

B(2)(V HT · ẑ) = ẑ × E(2)

}
(9.5)

These two equations requireE(1) · B(1)
= 0, andE(2) · B(2)

= 0, i.e., the two measured
electric field vectors must be perpendicular to their corresponding measured magnetic field
vectors, otherwise an HT frame does not exist (see also equation9.1). Furthermore, as-
suming these conditions onE to be met, the two equations9.5 give a single value of the
third component ofV HT, namely

V HT · ẑ =
ẑ · (E(1)

× B(1))

|B(1)
|2

=
ẑ · (E(2)

× B(2))

|B(2)
|2

(9.6)

if, and only if, the two right-hand members of equation9.6are the same. This compatibility
condition expresses an additional requirement for the existence of an HT frame, namely
that thez component of the electric drift velocity must be the same for the two measured
vector pairs{E(1),B(1)

} and{E(2),B(2)
}.

The above conditions for the existence of an HT frame are restrictive but, with the ex-
ceptions noted earlier, they are always satisfied if the vector pairs are measured in the two
uniform-field regions on opposite sides of a one-dimensional discontinuity having time-
independent structure but being perhaps in a state of motion. For a tangential discontinuity
ẑ is along the normal,̂n, to the discontinuity; for a shock it is tangential to the shock sur-
face, ẑ · n̂ = 0, as a result of the coplanarity condition (n̂, B(1) andB(2) are coplanar);
for a rotational discontinuitŷz is at an intermediate angle to the normal. The component
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Figure 9.2: Planar flow and field configuration at a shock, showing measured magnetic
fields, B(1) and B(2), as well as measured velocities,v(1) and v(2), in the spacecraft
frame. Also shown is the HT-frame velocity,V HT, and its normal component,V HT · n̂ =

un, which represents the motion of the shock. The plasma velocitiesv′(1) andv′(2) are
evaluated in the HT frame.

of V HT alongn̂, V HT · n̂, represents the velocity of motion of the discontinuity along its
normal. A simple planar illustration for a shock-like structure is shown in Figure9.2.

We note thatn̂ itself can in general not be obtained from the two measured vector
pairs: the constancy of the normal magnetic field component,B(1) · n̂ = B(2) · n̂, plus the
normalisation|n̂|

2
= 1 provides only two equations for the three unknown components

of n̂. The constancy of the tangential electric field in a frame moving with velocityunn̂

cannot be used to provide the missing equation because it is guaranteed by the existence
of V HT. As discussed in Chapter8, at least three distinct measurements ofB are needed
to obtainn̂, except for non-perpendicular shocks, where coplanarity (see Section10.4.2
of Chapter10) provides the missing condition, and for tangential discontinuities, where
B · n̂ = 0 provides the missing information. We conclude that, with the exceptions noted
already, two pairs of vectorsE andB, measured on opposite sides of a discontinuity and
satisfying equation9.6, permit determination ofV HT. But becausên is not obtained, the
nature of the discontinuity cannot be established without additional information.

When more than two distinct electromagnetic vector sets{E,B} are used in the anal-
ysis, the conditions discussed above must hold pairwise for all possible combinations of
measured vector sets. This is a rather restrictive set of requirements that is unlikely to be
satisfied as a chance occurrence. For real measured data sets, it is indeed unlikely ever to
be precisely satisfied; this is the situation to be dealt with in the remainder of this chapter.
If it is found to be reasonably well met, then it is likely that a quasi-stationary magnetic
structure moving past the observing spacecraft has been sampled. When the data to be
analysed have been collected within regions and structures where ideal MHD is approxi-
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mately valid so that
E + v × B ∼= 0 (9.7)

then the convective electric field,−v × B, calculated from measured values of the plasma
velocity, v, and magnetic field,B, can be used as a proxy for the electric field. This
approach can be taken whenE is not available or is not measured with sufficient accuracy.
To date, this has been the most common situation and it is therefore the one we will address
first, in Section9.3.

9.3 Determination ofV HT from Experimental Data

9.3.1 Minimisation of Residual Electric Field

To obtain an approximation toV HT from a set of experimental measurements of plasma
bulk velocity,v(m), and magnetic field,B(m), m = 1, 2 . . .M, one may seek a reference
frame in which the mean square of the electric field is as small as possible for the given
set ofM measurements. Denoting this quantity byD(V ), which is given by

D(V ) =
1

M

M∑
m=1

∣∣∣E′(m)
∣∣∣2 =

1

M

M∑
m=1

∣∣∣(v(m) − V )× B(m)
∣∣∣2 (9.8)

the HT velocity is the value of the frame velocity,V , that minimisesD. We will use the
symbolV HT to designate this approximate value. As a function of its vector argument,
the quantityD is a non-negative quadratic form which therefore must have a unique mini-
mum. The minimisation condition∇VD = 0 leads, after straight-forward analysis, to the
following linear equation forV HT:

K0V HT =

〈
K(m)v(m)

〉
(9.9)

AssumingK0 to be non-singular (see Section9.4.1), the solution is

V HT = K−1
0

〈
K(m)v(m)

〉
(9.10)

In these expressions, eachK(m) is the matrix of projection,P(m), into a plane perpendicular

to B(m), multiplied byB(m)
2
:

K(m)
µν = B(m)

2

(
δµν −

B
(m)
µ B

(m)
ν

B(m)
2

)
≡ B(m)

2
P (m)µν (9.11)

The angle brackets〈. . .〉 denote an average of an enclosed quantity over the set ofM

measurements, andK0 ≡ 〈K(m)〉. The formula9.10givesV HT in terms of the measured
quantities,v(m), andB(m).

Now we apply the procedure to an experimental data set, namely the magnetopause
crossing by the AMPTE/IRM spacecraft on October 19, 1984, 05:18:53 UT. This event
was originally examined bySonnerup et al.[1990] and is also discussed in detail in Chap-
ter 8, where Table8.4 (page218) lists the plasma and magnetic data for benchmarking
purposes. Here, we concentrate on the HT analysis. The mid-plane of the current layer
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Figure 9.3: Scatter plot of the GSE components ofE(m)
= −v(m) × B(m) versus the

corresponding components ofE
(m)
HT = −V HT × B(m) for AMPTE/IRM magnetopause

crossing. The correlation coefficient is 0.994.

corresponds to approximately 05:18:53 UT. The time interval chosen for the analysis of
the event bySonnerup et al.was from 05:18:20 to 05:19:26 UT. It comprised 16 measure-
ments with an average sampling interval of 4.35 seconds, which was the time resolution
of the plasma data. For the magnetic field, sampled with much higher time resolution than
the particle distribution functions, spin-averaged values corresponding to the plasma data
were used. Applying the formula9.10to this interval gives the following components of
V HT in GSE coordinates: ⇒9.1

V HT = (−122.8,−223.0, 76.0) km/s

This frame velocity is nearly tangential to the magnetopause: its component along the
outward directed magnetopause normal,n̂ = (0.8671,−0.4978,0.0187) in GSE, taken
from Figure8.2 (page190) of Chapter8, is un = +5.9 km/s. It is noted that the true
value ofun must in fact be negative because the spacecraft made a transition from the
magnetosphere to the magnetosheath. Only very small corrections in the estimated value
of V HT and/orn̂ are required in order to remove this discrepancy.

To give an impression of the quality of the HT frame, the two electric fieldsE
(m)
c =

−v(m) × B(m) andE
(m)
HT = −V HT × B(m) are plotted against each other, component by

component, in Figure9.3. The correlation between these two fields is seen to be very
good: the correlation coefficient isc = 0.994. Another measure of the quality of the
HT frame is the ratioD(V HT)/D(0) which is found to have the value 0.012 for this event.
Note that, since these quality measures are frame dependent, they are not suitable for inter-
comparison of the quality of the HT frames of different events. The quality parametersc
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andD(V HT)/D(0) are related by the formula

c2
+
D(V HT)

D(0)
= 1

which follows from equation9.10.
If directly measured electric field data,E(m), are used in place of−v(m) × B(m) for

determination ofV HT, the formula9.10is replaced by

V HT = K−1
0

〈
E(m)

× B(m)
〉

(9.12)

Finally, for structures described by ideal Hall MHD, the generalised form of Ohm’s law
yields

1

nee
∇pe + E + ve × B = 0 (9.13)

wherepe is the electron pressure,ne is the number density of electrons,e is the magnitude
of the electron charge, andve is the electron fluid velocity. It is seen from this expression
that−ve × B can now be used as a proxy, not forE itself, but forẼ ≡ (E + (∇pe/nee)).
Thus, if accurate measurements ofve are available, the calculation of a frame velocity by
replacingv by ve in equation9.10 or 9.14 becomes meaningful. It leads to a modified
HT frame in which〈Ẽ′2

〉 is made as small as possible. Such minimisation reflects the
fact that in a simple two-fluid model, the magnetic field is frozen into the electron fluid,
rather than the ion fluid. For a one-dimensional discontinuity having〈B〉 · n̂ 6= 0, the
intrinsic normal electric field mentioned in Section9.2 comes exclusively from the∇pe
term in equation9.13. Therefore, an HT-frame determination based onve will remove the
influence of the intrinsic electric field on the frame velocity. It will produce the velocity of
the “proper” frame of the discontinuity, mentioned in Section9.2.

We mention the following link to Chapter10. Suppose that one applies equation9.10
to two (M = 2) E, B pairs measured on opposite sides of either a shock or a tangential
discontinuity with a known orientation. Then, equation10.6(page252of Chapter10) can
be obtained by projecting the two sides of our equation9.10onto the discontinuity plane.

9.3.2 Minimisation of Residual Cross-Field Velocity

In principle, the best-fit approach to finding an approximation toV HT can employ any
merit function that is non-negative and whose value would be zero for a perfect HT frame.
For instance, one can minimise the mean square of the cross-field plasma velocity, rather
than the electric field, in the moving frame:

Q(V ) =
1

M

M∑
m=1

(
v

′(m)
⊥

)2
=

〈(
E

′(m)
⊥

B(m)

)2〉
=

〈∣∣(v(m) − V )× B(m)
∣∣2

B(m)
2

〉
(9.14)

The process of minimisingQwith respect toV differs from that forD in a straightforward
way: the factor multiplying the orthogonal projection operator in each matrixK(m) (see
equation9.11) would be unity instead of|B(m)

|
2. In other words,K(m) andK0 are replaced

by P(m) andP0 ≡ 〈P(m)〉 in equation9.10. For the case at hand, the minimisation ofQ

yields
V HT = (−120.9,−224.1, 72.9) km/s
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Figure 9.4: (a) Waĺen scatter plot of the GSE components ofv′(m)
= (v(m) − V HT), the

plasma velocity in the HT frame, versus the corresponding components of the Alfvén ve-
locity for AMPTE/IRM magnetopause crossing on October 19, 1984; (b) same for cross-
ing on September 8, 1984 but now including acceleration of HT frame as discussed in
Section9.5.

andun = +8.1 km/s. Sinceun must be negative for this event, the latter result is somewhat
further removed from the true value ofun than is the outcome of theD minimisation:
un = +5.9 km/s.

If a good HT frame exists for an observed MHD structure, one would expect different
merit functions to produce approximations toV HT that agree within their error bounds.
The HT frame is never perfect for any observed phenomenon, and the question arises how
error bounds can be placed on the value ofV HT obtained from the minimisation procedure.
This issue will be examined and illustrated in Section9.4.

9.3.3 Waĺen Relation in HT Frame

To illustrate the utility of the HT frame for purposes of data interpretation, we now
examine the plasma velocities,v′(m)

≡ v(m) − V HT, in the HT frame and their relation

to the local measured Alfv́en velocitiesV (m)
A = B(m)(µ0ρ

(m))
−1/2

, whereρ(m) is the
measured mass density (assuming all particles to beH+). A component-by-component
scatter plot of these two velocities, referred to as a Walén plot, is shown in Figure9.4a.
It is seen that the plasma velocities remaining in the HT frame are relatively small com-
pared to|V HT| itself and, except nearVA = 0, compared to|V A|. This behaviour is in
sharp contrast to magnetopause reconnection events wherev′(m) is typically proportional
to V

(m)
A with a constant of proportionality that is often in the range±(0.8 − 1.0). Such

proportionality is interpreted as an indication that the magnetopause had the structure of
a large-amplitude Alfv́en wave or rotational discontinuity for which〈B(m)

〉 · n̂ 6= 0 and
v′(m)

= ±V
(m)
A , where the sign on the right-hand side is the same as the sign of the prod-

uct (〈v′(m)
〉 · n̂)(〈B(m)

〉 · n̂). For such structures, the data points in the scatter plot fall
along one of the diagonals, as illustrated in Figure9.4b. The comparison of measured
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data to this predicted behaviour has become known as the Walén test. For the data set in
Figure9.4a, the Waĺen test is not successful: instead of falling along one of the diagonals,
the data are clustered aroundv′(m)

= 0. The conclusion can be drawn that the magne-
topause structure examined here was that of a tangential discontinuity,〈B(m)

〉 · n̂ ∼= 0,
rather than that of a rotational discontinuity (or shock). But the current layer did not have
purely one-dimensional structure. As shown in Figure8.2, 〈B(m)

〉 · n̂ was indeed nearly
zero but substantial fluctuations in the individual values,B(m) · n̂, were present. Because
a good HT frame exists, the majority of these fluctuations can be interpreted as being
caused by 2-D or 3-D quasi-stationary structures moving past the spacecraft with the HT
velocity. Furthermore, sincev′(m) is small, this motion is approximately describable as
frozen convection of magnetohydrostatic structures with the moving plasma. Details of
these structures have been examined recently bySonnerup and Guo[1996]. It is noted
that the tangential discontinuity structure observed for the October 19, 1984, event (see
Figures8.2, 9.3, and9.4a) is a good illustration of a point first emphasised byPaschmann
[1985]: from the existence of a good HT frame for a magnetopause crossing, it does not
follow that the structure observed is that of a rotational discontinuity.

9.4 Uncertainty in V HT Determination

9.4.1 Analytical Error Estimates

To produce a simple quantitative statement about the uncertainty ofV HT calculated
from the data, one can start by adopting the hypothesis that the imperfection of the HT-
frame is due to some kind of random fluctuations whose probabilities are time-stationary
and statistically independent between different measurements in the data series. A natural
approach would be to treat the residual electric fieldE′(m)

= −(v(m)−V HT)×B(m) itself
as such a random quantity. In other words, we assume that the values of the residual elec-
tric field, calculated for a given data set, are samples of stationary noise with the following
properties: (i)E′(m), which is perpendicular toB(m), has isotropic probability distribution
in the plane normal toB(m), and (ii) there is no correlation between values ofE′(m) at
different locations and times. Given (i) and (ii), the average expected electrical noise level
〈〈E′2

〉〉 is approximated by the minimum value ofD, computed for a sufficiently large
data set. Here the double angle brackets〈〈· · ·〉〉 indicate an ensemble average over a large
number of imagined repetitive realisations of the data set. Further, under the assumptions
made, the uncertainty in the experimental determination ofV HT can be characterised by
the variance matrixS, defined bySµν = 〈〈1VHTµ1VHTν〉〉, where the estimate of the
fluctuations,1V HT, for each member of the ensemble is obtained by differentiating equa-
tion 9.10. In this operation, variations inB(m) andK0 are not included but only those
in E(m). This restriction is not strictly justified but is motivated by a desire to obtain a
sufficiently simple result so as to be of practical use. We then obtain

1V HT = K−1
0

〈
∆E(m)

× B(m)
〉

(9.15)

where1E(m)
= E′(m)

= −(v(m)−V HT)×B(m). The process of evaluating the ensemble
averageSµν = 〈〈1VHTµ1VHTν〉〉, using equation9.15 to express1V HT, is somewhat
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lengthy; it is summarised in the Appendix. The result is simple, namely

Sµν =
D(V HT)

2M − 3
K−1

0 µν
(9.16)

For any chosen spatial direction, specified by a unit vectorn̂, the variance of the velocity
componentV HT · n̂ is

σ 2
n = nµSµνnν (9.17)

The eigenvectors,ei , of the variance matrixS are the same as those ofK0, and the respec-
tive eigenvalues are

3i =
D(V HT)

(2M − 3)λi
whereλi are the eigenvalues ofK0. The eigenvalues3i are the variances of the compo-
nents ofV HT alongei .

It is seen from equation9.16 that the matrixK0, which appears in connection with
minimisingD, also characterises the directional properties of the uncertainty of the HT
velocity. As an example, let us think of a situation where the observed magnetic field
B consists of a constant field,B0, and a small perturbation, a situation that arises in the
remote sensing of travelling bulges on the magnetopause [Walthour and Sonnerup, 1995].
We recall that each individual matrixK(m) is proportional to the operator of projection on a
plane perpendicular to the correspondingB(m). Therefore, for each matrixK(m), the field
vectorB(m) is an eigenvector with its corresponding eigenvalueλ

(m)
1 = 0. Further, for the

slightly perturbed uniform field we consider, the directional variation ofB is small. Hence,
one of the eigenvectors of the resulting matrixK0 = 〈K(m)〉 would be close in direction
to B0, and the corresponding eigenvalue,λ1, would be much smaller than the other two
(both of which would have values close toB2

0). In other words,K0 would be nearly
singular. Consequently, the largest standard deviation ofV HT would be in the direction
nearly alongB0: 31 = D(V HT)/(2M − 3)λ1. This large uncertainty in the component
of V HT alongB0 is directly related to the arbitrary parallel velocity component,V‖, in
equation9.2. The described directional distribution of the uncertainty should exist also
when the magnetic field is of a varying magnitude but still approximately unidirectional,
like in a one-dimensional current layer with no field rotation. This situation might be
encountered in the HT analysis of moving structures in the magnetotail.

To further describe the domain of uncertainty forV HT, we reduce the quadratic form
D to the principal-axes representation. First, we notice thatD(V ) can be written as

D = D(V HT)+ δV · K0 · δV

whereδV = V − V HT. Hence the matrix of the quadratic formD is K0, whose eigenvec-
tors specify the principal axes. In the eigenbasis,{ei}, the form becomes

D = D(V HT)+

3∑
i=1

λi(δVi)
2 (9.18)

In V space, we define an ellipsoid with principal axes directed alongei , and with the
semiaxes being the corresponding standard deviations,σi , for V HT:

σi =

√
3i =

√
D(V HT)

(2M − 3)λi
(9.19)
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Table 9.1: HT velocities and principal axes of error ellipsoids in velocity space for mag-
netopause crossing by AMPTE/IRM on October 19, 1984 (05:18:20–05:19:26 UT)

GSE Components MVAB* Components

V HT
† (VHTx VHTy VHTz) (V HT · x1 V HT · x2 V HT · x3)

i
√
3i

† exi eyi ezi ei · x1 ei · x2 ei · x3

Min. D: V HT (−122.8 −223.0 76.0) (248.5 93.8 5.9)

1 7.62 −0.2457 −0.3726 0.8949 0.8967 −0.4427 −0.0108

2 4.59 0.4225 0.7897 0.4448 −0.4428 −0.8965 −0.0184

3 3.94 0.8724 −0.4874 0.0366 0.0015 −0.0213 0.9998

Min. Q: V HT (−120.9 −224.1 72.9) (246.6 96.2 8.1)

1 8.19 −0.1870 −0.2206 0.9616 0.7956 −0.6043 −0.0443

2 4.85 0.4771 0.8371 0.2675 −0.6048 −0.7964 0.0020

3 4.21 0.8587 −0.5089 0.0609 0.0364 −0.0252 0.9990
†km/s
* MVAB components refer to principal axes derived from magnetic variance matrix

MB
µν = 〈BµBν〉 − 〈Bµ〉〈Bν〉 (See Figure8.2on page190of Chapter8)

The equation of this ellipsoid of uncertainty is

3∑
i=1

(δVi)
2

3i
= 1 (9.20)

or, using the relation between the eigenvalues,3i , of S and the corresponding eigenvalues
λi of K0,

3∑
i=1

λi(δVi)
2

=
D(V HT)

2M − 3
(9.21)

We see from equations9.18and9.21that the ellipsoid of uncertainty belongs to the family
of ellipsoidsD = constant, the particular value of the constant beingD(V HT)[1+1/(2M−

3)].
To illustrate the arbitrariness involved in the analysis of errors outlined here, we notice

that instead ofE′, another vector—for instance, the residual cross-field plasma velocity
v′

⊥
—can be treated as a stationarily distributed random quantity. In that case, the magni-

tude ofE′(m) would not be independent ofB(m), but would scale proportionally toB(m).
Recalling the discussion in Section9.3, a calculation of this type appears natural when
Q, the mean square of the residual perpendicular velocity (equation9.14) is chosen for
minimisation. In analogy with the preceding development forD, the variance matrix of
values ofV HT, computed by minimisingQ, is

Sµν =
Q(V HT)

2M − 3
P−1

0 µν
(9.22)

whereP0 ≡ 〈P(m)〉. Although the analytical error estimates depend on somewhat arbitrary
hypotheses concerning the nature of the underlying fluctuations, such estimates should
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be useful when a good HT-frame exists. We expect all estimates of the kind presented
above to produce error margins of comparable magnitude; this is indeed observed in our
worked example which is summarised in Table9.1. It is also seen from this table thate3,
the direction of minimum uncertainty, is nearly aligned withx3 = n̂, the magnetopause
normal from MVAB. Therefore the two values ofun = V HT·n̂ obtained from minimisation
of D(V HT) andQ(V HT) can now be given the following ranges of uncertainty:un =

(5.9 ± 3.9) km/s fromD(V HT) andun = (8.1 ± 4.2) km/s fromQ(V HT). Thus the two
estimates ofun are mutually consistent but both are inconsistent with the true value ofun,
which must be negative for this crossing.

TheV HT vectors and analytical error estimates in Table9.1 will also be compared to
V HT and uncertainties predicted by the bootstrap method in Section9.4.2.

9.4.2 Bootstrap Error Estimates

Another means of estimating the error bounds is offered by resampling methods. Un-
like the analytical estimates, methods of this class are aimed at recovering the actual prob-
ability distribution of the parameter being estimated (the HT velocity vector in the present
case) by creating a large number of simulated realisations of the data set. Also, these di-
rect methods do not rely on linearising the problem in question. However, when specifying
how the resampling is done, one still needs to make some assumptions about the statistical
properties of the noise. The need for such assumptions is therefore common for both direct
simulation and analytical approaches. For their implementation, the resampling methods
rely on computing power.

Among existing resampling techniques, the bootstrap has been shown to achieve the
best theoretical performance [Efron, 1979]. Its application to spacecraft data has been dis-
cussed recently byKawano and Higuchi[1995], who performed minimum variance anal-
ysis on an artificial set of magnetic field measurements and compared the error bounds
obtained with analytical estimates bySonnerup[1971]. The noise in the artificial mag-
netic data was Gaussian, isotropic, stationary and uncorrelated. Here, as in Chapter8, the
bootstrap will be applied to actual spacecraft data. We now describe the method from a
practical standpoint. The mathematical underpinnings and general discussion of the tech-
nique can be found in the original paper byEfron [1979], who is credited with inventing
the method and giving it the name, and in modern textbooks such asHjorth [1994]. The
bootstrap algorithm produces a simulated discrete approximation of the probability distri-
bution for a chosen parameter in the following manner. Suppose one has a prescription
(called an estimator) for obtaining an estimated value of some parameter for a given set of
measurements{X(m)} withm = 1,2 . . .M. This underlying rule itself is outside the scope
of the resampling method. In the present context, the parameter isV HT, the measurements
X(m) are pairs of vectors(B(m), v(m)), and the prescription to determine an estimated value
of V HT is that this value should minimiseD(V ). To simulate the ensemble of realisations
of the data set, a random sequence ofM integersi1, i2 . . . iM is generatedN times, where
N is a large number. The integers are uniformly distributed in the range from 1 toM. Each
such sequence,i1, i2 . . . iM , specifies a resample,m = i1, i2 . . . iM , of the measured data
set{X(m)}. For each resample, an estimated value of the parameter is obtained from the
available rule (equation9.10in the problem at hand). Then, a stepwise probability distri-
bution can be constructed by choosing an appropriate bin size in parameter space (theV HT
space in our context) and counting the number of realisations for each bin. Also, one can
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Table 9.2: Bootstrap determination of HT velocities and principal axes of error ellip-
soids in velocity space for magnetopause crossing by AMPTE/IRM on October 19, 1984
(05:18:20–05:19:26 UT)

GSE Components MVAB* Components

V HT
† (VHTx VHTy VHTz) (V HT · x1 V HT · x2 V HT · x3)

i
√
3i

† exi eyi ezi ei · x1 ei · x2 ei · x3

Min. D: V HT (−122.7 −223.2 74.5) (247.7 95.0 6.1)

1 7.88 −0.3188 −0.3688 0.8731 0.9106 −0.4063 −0.0765

2 5.29 0.6677 0.5664 0.4831 −0.3663 −0.8788 0.3060

3 4.62 −0.6727 0.7370 0.0657 −0.1915 −0.2507 −0.9489

Min. Q: V HT (−120.9 −224.0 72.1) (246.1 96.8 8.0)

1 8.18 −0.3437 −0.2569 0.9032 0.8623 −0.4827 −0.1532

2 5.37 0.6686 0.6085 0.4275 −0.4292 −0.8572 0.2848

3 3.41 −0.6595 0.7508 −0.0374 −0.2687 −0.1798 −0.9463
†km/s
* MVAB components refer to principal axes derived from magnetic variance matrix

MB
µν = 〈BµBν〉 − 〈Bµ〉〈Bν〉 (See Figure8.2on page190of Chapter8)

evaluate the moments of the distribution. The simplest way to proceed is to compute the
moments directly over the discrete set of samples; this will be done here for the average
and the variance matrix,Sµν , of the set ofN simulated HT vectors. In this fashion, the pre-
diction for V HT and its uncertainty offered by the bootstrap method can be obtained and
compared with the outcome of a single calculation (no resampling) and the correspond-
ing analytically estimated error bounds, as given in Table9.1. Further comments on the
bootstrap technique and on the analytical error estimates are given in section9.7.

Table 9.2 shows bootstrap results (N = 5000) for the AMPTE/IRM event studied
here, using bothD minimisation andQ minimisation. By comparison with the analytical
results in Table9.1, it can be seen that theV HT values from bootstrap are close to those
obtained from the deterministic calculation. The error ellipses are also similar, in terms of
size and, to a lesser extent, axes orientation (althoughe3 remains somewhat close to the
eigenvectorx3 from MVAB). The bootstrap ellipsoid is slightly larger than the analytically
derived ellipsoid. The values of the componentun = V HT · n̂ are(6.1 ± 4.7) km/s for the
D(V HT) calculation and(8.0 ± 3.5) km/s for theQ(V HT) calculation. Within estimated
uncertainties, theseun values are mutually consistent and are also consistent with the
results in Table9.1.

The actual distributions of theV HT components along the vectorsei , given in the top
half of Table9.2, are shown in Figure9.5for theD calculation.

9.4.3 Other Uncertainty Estimates

Previously, the issue of the errors in theV HT determination was addressed byWalthour
et al. [1993] andTerasawa et al.[1996]. The former employed the HT analysis in connec-
tion with identifying two-dimensional quasi-stationary structures moving along the mag-
netopause. Their argument for an error estimate was, in effect, intuitively based on equa-
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Figure 9.5: Bootstrap distributions (N = 105 minimisations ofD) for the components of
V HT along the principal axes,e1, e2, e3, of the variance matrix describing the spread in
the simulatedV HT vectors.
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tion (9.18), and can be presented as follows. Owing to the noise, the minimum value
of D fluctuates, and the uncertainty in the value of the minimum of the quadratic form
corresponds to a region of uncertainty inV HT according to

1D = 1V HT · K0 ·1V HT

For a fixed1D, this equation specifies an ellipsoid inV HT space. For1D, Walthour et al.
chose one estimated standard deviation ofD:

σD =

√√√√ 1

M(M − 1)

M∑
m=1

(
E′(m)2 −D(V HT)

)2
(9.23)

Thus, the uncertainty intervals forV HT along the principal axes ofK0 used byWalthour
et al. are

σi =

√
σD

λi
(9.24)

where, as before,λi are the eigenvalues ofK0. Thus their ellipsoid of uncertainty has the
same proportions and the same orientation of its principal axes as the error ellipsoid in
Section9.4.1but the size of the ellipsoid ofWalthour et al.scales, to the leading order,
like M−1/4, rather thanM−1/2. The latter scaling is expected for uncorrelated stationary
noise (implied, in fact, in the formula9.23for σD). Another conceptual difficulty with the
estimate byWalthour et al.is that it predicts zero error for an imperfect HT frame in the
(unlikely) event where the residual fieldE′(m) has the same magnitude for allm values.
For the AMPTE/IRM event studied here,Walthour et al.standard deviations are larger
than ours by a factor of 3.0 (forM = 16). We consider their values to be too large.

Terasawa et al.[1996] also assigned error margins to their estimation ofV HT. They
developed a new technique for inferring orientation and velocity of a one-dimensional
MHD structure, and needed to know the uncertainty in order to compare the predicted ve-
locity against the value obtained by minimisingD. The ellipsoid of uncertainty adopted by
Terasawa et al.was defined so that, on its surface,D(V ) equals twice the minimum value.
This ellipsoid too has the same geometrical shape and orientation as the one introduced in
Section9.4.1. However, with the definition used by these authors, the size of the ellipsoid
does not decrease in proportion to the inverse square root ofM, the number of data points
in the set, which should be the case, at least in theory, when the errors are independent and
identically distributed random quantities. In practice, the errors are not purely statistical
andM may not be sufficiently large for the error estimates from Sections9.4.1and9.4.2
to display this asymptotic inverse square root behaviour. For the AMPTE/IRM event, with
M = 16, the standard deviations byTerasawa et al.are

√
2M − 3 ∼= 5.4 times larger than

the31/2
i values given in Table9.1 for theD calculation. We consider their values to be

excessive.

9.4.4 Stationarity

A partial check on the time stationarity of the estimated value ofV HT and a further
check of the error estimates can be obtained by applying the HT analysis to a set of nested
data segments, centred at or near the middle of the current sheet. This process is also of
help in searching for an optimal data interval for the analysis. The approach is to examine
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whether a plateau exists in the predicted values ofV HT as a function of the interval length,
M. The occurrence of a plateau, where the variations of theV HT values fall within the
estimated error bars, indicates that approximate time stationarity of the event itself may
be at hand; an optimal choice ofV HT may be the average value on the plateau or may be
chosen at theM value, on the plateau, where the uncertainty is a minimum.

Figure9.6displays the results of the calculations, using minimisation ofD. The three
components ofV HT with error bars are plotted versusM, the number of data points in-
cluded. The valueM = 16 corresponds to the interval used up to this point in the present
chapter. The chosen fixed basis vectors onto which the components ofV HT are projected
are the magnetic variance-matrix eigenvectors(x1, x2, x3) for this original interval. This
reference basis is given in Figure8.2of Chapter8 (page190). It allows one to visualise the
orientation ofV HT relative to the magnetopause current layer: the vectorsx1 andx2 are
tangential to the magnetopause and the minimum variance eigenvectorx3 approximates
the normal. The error bars for each component ofV HT in Figure9.6show plus/minus one
standard deviation calculated as(xi ·S ·xi)

1/2, i = 1, 2, 3, with S given by equation9.16.
The three deviations are not uncorrelated, since the eigenbasis ofS is not the reference
basis. However, as noted already, the minimum variance directions forV HT andB almost
coincide for the event studied as a consequence of its property of havingB(m) · n̂ ∼= 0.

The sizes of the error bars in Figure9.6 appear plausible: except for smallM val-
ues, there is significant overlap between the regions of uncertainty for values ofV HT
corresponding to adjacentM values. Statistical as well as systematic errors are likely to
contribute to the large scatter forM < 10. The presence of, not one, but two plateau
regions is evident in the component ofV HT along the magnetopause normal,x3. It is in
this component that the uncertainties inV HT are the smallest. The first plateau occupies
the range 20≤ M ≤ 32 and the second plateau the range fromM = 34 to the end of
the plot (atM = 50) or beyond. The transition from the first to the second plateau is
abrupt inV HT · x3 and is accompanied by an abrupt increase in the error-bar lengths.
In the componentV HT · x1, the first plateau is less flat and the transition to the second
plateau is gradual rather than abrupt. In the remaining component,V HT · x2, there is no
clear distinction between the two plateau levels. If only the error-bar lengths are consid-
ered, theV HT components on the first plateau might be considered representative for the
event; in fact, the errors are smallest forM = 26. However, in an overall sense the sec-
ond plateau, appears flatter and could be selected as optimal on that basis. Note, however,
that the existence of two plateau levels inV HT · x3 is associated with temporal changes
in the orientation and perhaps other properties of the actual magnetopause that become
incorporated forM ≥ 33.

As mentioned already, the sense of the magnetopause transition (from the magneto-
sphere to the magnetosheath) requiresV HT · x3 < 0. It is seen in Figure9.6 that this
requirement is not satisfied forM = 16, whereV HT ·x3 = 5.9 km/s, but that it is satisfied
for M ≥ 20: the average value on the first plateau isV HT · x3 ∼= −1.6 km/s and on the
second plateauV HT · x3 ∼= −10.8 km/s. Even though all error bars on the first plateau
extend to positive values ofV HT · x3, the consistently negative individual estimates of
V HT · x3 on it suggest that the actual value ofV HT · x3 was negative.

Stationarity of the noise is not evident on the first plateau, where the lengths of the
error bars forV HT · x3 do not decrease with increasingM, indicating thatD(V HT) itself
increases with increasingM. On the second plateau, the error bars are longer but they
do decrease approximately asM−1/2 with increasingM. In an overall sense, the results
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Figure 9.6: Analysis results for nested data segments in the range 4≤ M ≤ 50, using min-
imisation ofD and the error estimate in equation9.16. The nest is centred at 05:18:53 UT.
Components,V HT · xi , i = 1,2,3, along the principal axes from MVAB withM = 16
(given in Figure8.2in Chapter8) are shown. Note that the magnetopause normaln̂ = x3.
First plateau inV HT · x3 plot is in the range 20≤ M ≤ 32; a second plateau occurs for
M ≥ 34.
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Figure 9.7: Analysis results for nested data segments, with the central 10 points of the nest
excluded. Format is the same as in Figure9.6.

in Figure 9.6 suggest that, in order of magnitude, equation9.16 provides a reasonably
realistic basis for estimation of the uncertainties in the determination ofV HT. The presence
of a single well-defined plateau of substantial length would permit a reduction of the error
estimate below the value given by equation9.16but, in the present case, the appearance of
two plateau levels casts doubt on such a reduction.

The results of nested data-segment analysis, using minimisation ofQ, are qualitatively
similar to those based onD, except for the fact thatV HT · x3 is positive (+2.6 km/s) on
the first plateau and about zero on the second. Also, the error bars are slightly shorter than
in Figure9.6 and the quantityQ(V HT) displays a plateau for 10≤ M ≤ 28, indicating
stationarity of the noise. But no generalisations can be made as to whether the velocity
noise is more likely to be stationary than the electric noise, or whether either of the two
should be stationary; the nature of the noise has to be addressed individually for each
experiment. Also, even for the specific event we study, the quasi-stationarity ofv

′(m)
⊥

does
not mean that minimisingQ is better than minimisingD. Preference for one procedure
over another may depend on physical factors, and such factors could be different from
those responsible for the fluctuations in the system. For instance, in minimisingD, the
data points with large|B| are more emphasised than those with weaker magnetic field,
while in minimisingQ, only the direction of eachB(m) is important. Since in weak-field
regions the MHD description is more likely to be violated,D might prove preferable toQ.

In Section9.2, it was suggested that, for current-layers that have an intrinsic electric
field as part of their internal structure, it may be desirable to exclude internal data points
from the HT analysis. The results in Figure9.6 also invite this approach. If the central
10 points of the event, where the scatter is large, are excluded, the results forV HT · x3,
shown in Figure9.7, are obtained from minimisation ofD. The error estimates in the
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figure are calculated from equations9.8and9.16with M replaced byM ′
= M − 10 and

x3 = x3(M = 16). The errors shown in Figure9.7 are slightly larger than those in the
corresponding panel of Figure9.6. This is a consequence of using(M−10) rather thanM:
the actualD(V HT) values for Figure9.7 are somewhat smaller than those for Figure9.6.
Two plateaus remain present in Figure9.7but the average value ofV HT ·x3 has decreased
somewhat, compared to Figure9.6, and is nowV HT · x3 ∼= −3.9 km/s and−12.7 km/s on
the first and second plateau, respectively.

9.5 Accelerating HT Frame

In this section, we review the extension of the minimisation procedure to account, to
the lowest order, for a possible non-steady motion of the HT frame. In the expression9.8
for D(V ), one can formally allow for a time-dependent velocity,V = V (t), whereupon
D becomes a functional. Then, with a suitable parametrisation of the functional space,
minimisation ofD can be carried out to obtain a corresponding approximate function
V (t) = V HT(t). In practice, going beyond a simple two-term linear approximation would
seldom be justified, given the experimental uncertainties and the usually short duration of
the spacecraft traversal of a quasi-stationary structure. The linear approximation means
fitting the data with a steadily accelerating HT frame:V (t) = V 0 + at . The parameter
valuesV 0 = V HT0 anda = aHT that minimiseD, are found from the following set of
linear equations [Sonnerup et al., 1987]:

K0V HT0 + K1aHT =

〈
K(m)v(m)

〉
(9.25)

K1V HT0 + K2aHT =

〈
K(m)v(m)t (m)

〉
(9.26)

The matricesKq , q = 0, 1, 2 on the left-hand side are defined as

Kq =

〈
K(m)[t (m)]

q
〉

whereK(m) is given by equation9.11. The time= t (m) is the time at which them-th
measurement is performed, witht (1) = 0. As before, the brackets〈. . .〉 designate an
average over the specified interval of observation,m = 1, 2 . . .M. The explicit solution
for V HT0 andaHT is

aHT =

(
K−1

0 K1 − K−1
1 K2

)−1 (
K−1

0 〈K(m)v(m)〉 − K−1
1 〈K(m)v(m)t (m)〉

)
(9.27)

V HT0 = K−1
0

(
〈K(m)v(m)〉 − K1aHT

)
(9.28)

For the purpose of numerical treatment, it is practical to write the above linear equa-
tions as a single set characterised by a 6× 6 matrix. This representation, written in trans-
parent block form, is(

K0 K1
K1 K2

)(
V HT0
aHT

)
=

(
〈K(m)v(m)〉

〈K(m)v(m)t (m)〉

)
(9.29)
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The (symmetric) 6× 6 matrix on the left-hand side and the 6-component vector on the
right-hand side can be fed directly into a numerical solver. From the representation (9.29)
it is also seen how the procedure can be generalised to obtain a least-squares polynomial
approximation ofV HT(t) of an arbitrary degree. For the AMPTE/IRM event studied here,
the numerical results forM = 16 are ⇒9.2

V HT0 = (−102,−204, 21) km/s

aHT = (−0.62,−0.54, 0.88) km/s2

which leads toD(V HT)/D(0) = 0.010 rather than the value 0.012 from Section9.3. It is
evident that, for this event, the introduction of a non-zero, constant acceleration produces
only a modest improvement in the least-squares fit. However, in some other events much
larger improvements were found: for the case in Figure9.4b D/D(0) was reduced from
0.040 foraHT = 0 to 0.020 withaHT determined as described above.

FromV HT = V HT0 + aHTt , the HT velocity at the end of the data interval (t = 66 s)
is found to be

V HT(66 s) = (−143,−240, 79) km/s

The average HT velocity is then

V HT = (−123,−222, 50) km/s

which should be compared to the result from Section9.3:

V HT = (−123,−223, 76) km/s

The component of the acceleration in the direction of the magnetopause normal,n̂ = x3,
is aHT · n̂ = −0.25 km/s2, indicating that the magnetopause is accelerating inwards
(towards Earth). The initial and final normal velocities areV HT0 · n̂ = +13.5 km/s and
V HT(66 s) · n̂ = −3.1 km/s with an average valueV HT · n̂ = +4.8 km/s. These numbers
should be compared toV HT · n̂ = +5.9 km/s from Section9.3. As discussed already,
V HT0 · n̂, V HT(66 s) · n̂, andV HT · n̂ must all be negative so that a systematic offset in
the normal magnetopause velocities obtained forM = 16 appears to be present.

9.6 Discussion

In this chapter, we have used one particular AMPTE/IRM magnetopause crossing to
illustrate the least-squares approach to determining the velocity,V HT, of the deHoffmann-
Teller frame and to illustrate various error estimates for the resulting frame velocity. We
now compare and discuss the results from these calculations.

An overview of the directions of the variousV HT vectors arrived at in the chapter is
given in Figure9.8where eachV HT appears as a numbered dot in the plane of the figure.
The orientation of this plane is defined by its two axes,(Vx, Vy). The vertical axis,Vy ,is
along the magnetopause normal,n̂ = x3(M = 16), determined for M=16 and given in
Figure8.2 of Chapter8; the horizontal axis,Vx , is alongx3 × V HT1, whereV HT1 is the
deterministic estimate of the HT frame velocity shown as point 1 in the figure and obtained
from minimisation ofD with M = 16 (data are in upper half of Table9.1). Thus point 1
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Figure 9.8: Summary ofV HT orientations and error ellipses. Each numbered dot, with its
centred surrounding ellipse, represents one particular determination ofV HT and its region
of uncertainty. For details, see text. TheVy coordinate of a dot representsV HT · n̂ (km/s)
with n̂ = x3(M = 16).

is located on theVy axis atVy = V HT · n̂ = +5.9 km/s. It is surrounded by an elliptical
region of uncertainty, obtained as the intersection of its variance ellipsoid (set at one-
standard deviation) with the plane of the figure. Similarly, point 2, with its surrounding
ellipse, corresponds to the deterministic result of theQ minimisation forM = 16 (data
are in lower half of Table9.1). The corresponding statistical (bootstrap) estimates (data in
Table9.2) are represented by points 3 (fromD) and 4 (fromQ) and their corresponding
ellipses. It is seen that the deterministic and the statistical-simulation error ellipses agree
well and that each of the points 1, 2, 3, and 4 lies inside all four ellipses. The conclusion to
be drawn is that the four determinations ofV HT are consistent and that the error estimates
are consistent as well as reasonable. In other words, the determination ofV HT from the
16 data points, which describe the main part of the magnetopause, appears robust. But it
is also seen that all fourV HT vectors are inconsistent with the requirementV HT · n̂ < 0,
obtained from the fact that the spacecraft crossed the magnetopause in the direction from
the magnetosphere to the magnetosheath. This discrepancy could of course be caused by
errors inn̂ as well as inV HT.

Point 5 in Figure9.8represents the average over the first plateau region in Figure9.6,
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i.e., it corresponds to usingM values between 20 and 32 for determination ofV HT from
minimisation ofD (n̂ = x3(M = 16) is retained). The small ellipse surrounding this
point represents, not the total estimated uncertainty, but only the spread in the individual
V HT values on the plateau. The plateau result appears to be significantly different from
the results forM = 16: There is now a small, but persistently negative value ofV HT · n̂, as
required. The results for the second plateau (M ≥ 34) are shown as point 6 in Figure9.8.
They are again significantly different from those forM = 16 as well as from those for
20 ≤ M ≤ 32. In particular, the value ofV HT · n̂ is now even more negative. The presence
of two plateaus must be the result of temporal changes in the system. The corresponding
results when 10 points at the centre of the magnetopause have been removed are shown as
points 7 and 8 for the first and second plateau, respectively.

We conclude that optimal separate determinations ofn̂ andV HT may require use of
differentM values for the minimum variance analysis onB, to obtainn̂, and for the HT
analysis. In Chapter8, evidence is presented, indicating that a systematic error may be
present in the plasma velocity measurements during this event. The predicted sense of
this error is such as to produce a spurious positive (outward) addition to the magnetopause
velocity,un = V HT · n̂, so that the data analysis may lead to a positive value ofun even
though its true value is negative. It must be concluded that, for the event studied here,
the actual negative value ofun cannot be established with certainty from the data. We
believe this statement to apply, not only in the context of separateV HT and normal vector
calculations, as discussed here, but also for the combined data analysis technique proposed
by Terasawa et al.[1996]. However, we are in a position to conclude that the magnitude
of un was relatively small: the data are not consistent with rapid inward magnetopause
motion.

Finally, we mention briefly how a “proper” frame could exist and be determined for
two-dimensional time-independent structures for which no true HT frame exists. By
“proper” frame we mean a frame that moves with the structure. In such a frame, the
electric field component along the invariant direction of the structure, thez direction say,
is constant, while strongly varying electric field may remain in a plane perpendicular to
ẑ. The frame velocity,̃V HT, is not unique in this situation because any arbitrary velocity
component alonĝz can be added to it without changing the propertyE′

z = const= E0.
Thus it is convenient to put the frame velocity along the invariant direction equal to zero.
Except for this constraint, the orientation and magnitude ofṼ HT, as well asE0 and the
orientation of the invariant axis,̂z, are unknown,a priori. But ẑ, Ṽ HT, andE0 can in
principle be found by minimisation of

D̃(Ṽ , ẑ, E0) =
1

M

M∑
m=1

(
E′(m)

· ẑ − E0

)2

=
1

M

M∑
m=1

(
[(v(m) − Ṽ )× B(m)

] · ẑ − E0

)2
(9.30)

where we impose the conditions|ẑ|2 = 1 andṼ · ẑ = 0. Because the GSE components
of Ṽ are multiplied by those of̂z in the expression forE′(m), the minimisation of̃D does
not produce linear equations. Therefore, the extremum may be found most conveniently
by some trial-and-error process. This type of calculation could be of potential importance
for 2-D structures where there is in fact no need for a true HT frame to exist: it is suffi-
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cient to be able to find a frame which moves with the structure and in which the structure
appears time-independent. An application of the technique of finding a proper frame of
2-D structures is currently under study. Proper frames of one-dimensional structures with
intrinsic electric fields (i.e., not removable by galilean transformations) can be found by
the methods developed byKawano and Higuchi[1996] andTerasawa et al.[1996]. Such
structures include perpendicular shocks. We have also shown that, within the framework
of the HT analysis, all these structures can be accommodated by allowing for a constant,
possibly non-zero, residual fieldE′

0 on the right-hand side of equation9.1, and minimising
D with respect to bothV andE′

0. This extension of the HT method will be presented in
detail elsewhere.

9.7 Summary

1. DeHoffmann-Teller (HT) analysis is a means to identify, from first principles, the
frame of reference (HT frame) in which the electric field associated with an ob-
served structure in a magnetised plasma is as small as possible (ideally zero) and
in which the structure therefore appears as close as possible to being stationary. In
other words, the method fits the data with a model in which the observed tempo-
ral variations and electric fields are caused entirely by the motion of the sampled
structure with a velocityV = V HT relative to the instruments. Steady motion of
the HT frame is considered in the main part of the chapter but an extension to the
case of steady acceleration is also given. An HT frame may exist, not only for one-
dimensional current layers but for other moving two- and three-dimensional struc-
tures as well. However, for perpendicular shocks and other structures possessing a
strong intrinsic electric field, the HT frame concept is not useful and the HT frame
velocity obtained as described in the main part of this chapter does not coincide with
the “proper” frame in which the structure is stationary. Such cases are not dealt with
here.

2. As described in Section9.3, the deHoffmann-Teller (HT) frame velocity,V HT, can
be determined from measured plasma velocity vectors,v(m), and magnetic field vec-
tors,B(m), m = 1, 2 . . .M, by minimisation of eitherD(V HT) or Q(V HT). Here
D(V HT) andQ(V HT), defined by equations9.8 and9.14, are the averages of the
square of the convection electric fields,E

′(m)
c , and ofv′(m)

⊥
, the velocities transverse

to B(m), respectively, remaining in the HT frame. The minimisation ofD(V HT)

leads to the explicit expression9.10for V HT, where the matricesK(m) andK0 are
defined by equation9.11. Small modifications of these expressions are needed when
Q(V HT) is minimised. If actual measured electric field vectors,E(m), are used in
place of the convection fieldE(m)

c = −v(m) × B(m), then equation9.10is replaced
by 9.12.

3. The validity of the HT velocity as a prediction of the “proper” frame velocity of a
current layer or other structure becomes violated if an electrostatic field is present
in this proper frame. However, provided that the large-scale behaviour is MHD,
the non-ideal effects causing the residual field can manifest themselves only in thin
layers. The measurements acquired inside the layers comprise but a small portion
of the total data set and then should not strongly influence the result. Also, one
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can eliminate the effect of such transition layers by excluding the corresponding
measurements from the analysis (Section9.4.4). An attempt to account for non-
ideal effects in the model can be made by use of electron velocity measurements
v
(m)
e in place ofv(m) (see end of Section9.3.1), but this latter approach has not been

practically tested. For two-dimensional or three-dimensional structures possessing
an intrinsic electric field in their proper frame, the situation is more complicated.
An, as yet untested, approach to two-dimensional cases is discussed in Section9.6.

4. A useful measure of the quality of the HT frame thus determined is provided by
the relative residualD(V HT)/D(0) = 1 − c2 (or the corresponding expression for
Q(V HT)/Q(0)), c being the correlation coefficient betweenE

(m)
HT = −V HT × B(m)

andE
(m)
c = −v(m) × B(m) (betweenV (m)

HT⊥
andv

(m)
⊥

for theQ(V HT) minimisation

or betweenE(m)
HT andE(m) when actual measured electric fields are used). High

quality HT frames will havec ≥ 0.99. However, these quality measures are frame
dependent, i.e., they depend on the actual magnitude ofV HT; for this reason they
are not suitable for inter-comparison of different events.

5. The utility of the HT frame for the observational study of internal structures in cur-
rent layers and other moving field configurations is discussed and is illustrated by a
test of the so-called Walén relation, i.e., the extent to which the plasma flow speed in
the HT frame agrees with Alfv́en speed in a magnetopause current layer (Figure9.4).

6. When an accurate normal directionn̂ can be derived for a current layer, e.g., as
described in Chapter8, thenV HT · n̂ represents the velocity of motion of the layer
along the normal. This velocity allows determination of the thickness of the layer.
Similarly, the components ofV HT tangential to the layer permit determination of
the spatial scales of two-dimensional and three-dimensional structures within it.

7. A simple analytical estimate of the error ellipsoid forV HT (at one standard-deviation
level) is provided by equation9.16 for theD(V HT) minimisation and by a small
modification thereof, equation9.22, for theQ(V HT) minimisation. These error
estimates are frame independent and are therefore suitable for inter-comparison of
different events. In special cases, the error ellipsoid may be very elongated.

8. At least in the illustrative example presented in this chapter, the above analytical
error estimates are very similar to those obtained from a simplified application of the
numerically intensive bootstrap method, as discussed in Section9.4.2. A systematic
inter-comparison of the two techniques, as applied toV HT analysis, is not available
at present.

9. A few words of warning are in order concerning the error estimates. The analytical
approach is based on a number of standard assumptions concerning the nature of the
noise, as well as on linearisation. These simplifications permit analytical formulas
to be derived and they lead to the usualM−1/2 scaling as the number of the data
points,M, increases. This behaviour is not always observed and it appears likely
that in such cases one or more of the assumptions concerning the error sources are
invalid. In particular, systematic errors caused by temporal and spatial variations
are likely to be present in some cases. The bootstrap technique, while based on the
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same statistical assumptions as the analytical ensemble-averaging, can in principle
recover the entire probability distribution of the parameter in question and obtain
error estimates without linearisation (on the other hand, an approximation inherent
in bootstrap but not in analytical averaging is the Monte Carlo approximation of the
statistical ensemble). But, for theV HT determination, it is not entirely clear how the
technique should be applied: in principle, not the signal but only the noise should
be resampled [H. Kawano and T. Higuchi, private communication], a rule that is not
observed in the bootstrap application presented here (or in Chapter8). ⇒9.3

10. Because of the potential difficulties with the error estimation techniques mentioned
above, it is particularly important to check the stationarity of theV HT results and
of the associated noise. Such checks can be performed by analysis of nested data
segments (including shifts of the centre of the nest) as discussed in section9.4.4. The
scatter ofV HT vectors obtained from such experiments provides an additional basis
from which uncertainties in the results can be estimated. A significant conclusion
from the sample event studied in the chapter is that the optimal data segment for
determination ofV HT does not necessarily coincide with the optimal segment for
MVAB, MVAE, or MVA ρv analyses discussed in Chapter8.

11. The method for determining an initial velocity,V HT0, and a constant acceleration,
aHT, of the HT frame is described in Section9.5in terms of the inversion of a 6× 6
matrix equation. Because the Earth’s magnetopause is often in a state of oscillatory
inward-outward motion, acceleration effects may be important in that application.
Experience indicates that their inclusion can in some cases lead to substantial im-
provements of the quality of the HT frame, as measured byD(V HT)/D(0), as well
as to significant changes in the outcome of the Walén test.

Appendix

Here, we document the calculation of the matrixSµν = 〈〈1VHTµ1VHTν〉〉, utilised
in Section9.4to characterise the uncertainty ofV HT, under the assumptions stated in that
section. The matrixS is the variance matrix of all possible realisations ofV HT. Proceeding
from equation9.10, we write

V HT = K−1
0

〈
K(m)v(m)

〉
= K−1

0
1

M

M∑
m=1

B(m)
2
v
(m)
⊥

Therefore, using the summation convention, we have

Sµν = 〈〈1VHTµ1VHTν〉〉 =
1

M2
K−1

0µγK
−1
0νξ

M∑
m,n=1

B(m)
2
B(n)

2
〈〈1v

(m)
⊥γ 1v

(n)
⊥ξ 〉〉 (9.31)

The (frame-independent) velocity fluctuations1v⊥ are related to the electric field fluctu-
ations1E, which we identify withE′

⊥
, the residual field in the HT frame:

1v
(m)
⊥

=
E

′(m)
⊥

× B(m)

B(m)
2

(9.32)
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TheE′

⊥
field is postulated to possess a stationary probability distribution, isotropic in the

plane normal toB, and uncorrelated from one measurement to another:

〈〈E
′(m)
⊥µ E

′(n)
⊥ν 〉〉 =

〈〈E′2
〉〉

2
δmn

(
δµν −

B
(m)
µ B

(m)
ν

B(m)
2

)
(9.33)

We use equations9.32and9.33to calculate the ensemble average〈〈1v
(m)
⊥γ 1v

(n)
⊥ξ 〉〉 needed

in equation9.31. From9.32, it is seen that, ifE′

⊥
is distributed isotropically in the plane

normal toB(m), then so is1v
(m)
⊥

, and thus the velocity correlation writes in the same form
as equation9.33:

〈〈1v
(m)
⊥γ 1v

(n)
⊥ξ 〉〉 =

〈〈E′2
〉〉

2B(m)2
δmn

(
δγ ξ −

B
(m)
γ B

(m)
ξ

B(m)
2

)

=
〈〈E′2

〉〉

2B(m)4
δmnK

(m)
γ ξ (9.34)

Substituting equation9.34into 9.31gives

Sµν =
〈〈E′2

〉〉

2M2
K−1

0µγK
−1
0νξ

M∑
m=1

K
(m)
γ ξ =

〈〈E′2
〉〉

2M
K−1

0µγK
−1
0νξK0γ ξ

=
〈〈E′2

〉〉

2M
K−1

0µν (9.35)

Next we calculate the ensemble average ofD(V HT). From equations9.8 and 9.10, it
follows that

〈〈D(V HT)〉〉 = 〈〈E′2
〉〉 −K0µνSµν = 〈〈E′2

〉〉

(
1 −

3

2M

)
(9.36)

where the second of the two equalites is obtained with the aid of equation9.35. From9.35
and9.36, it follows that

Sµν =
〈〈D(V HT)〉〉

2M − 3
K−1

0µν . (9.37)

Finally, the average expected value ofD(V HT) is approximated by the one obtained for
the actual realisation of the data set, whereupon the uncertainty estimate9.16results.
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Queen Mary and Westfield College
London, United Kingdom

10.1 Introduction

Shocks and other boundaries provide key sites for mediating the mass, momentum,
and energy exchange in space plasmas, and have thus been the subject of considerable
research. The transient, non-planar nature of the Solar-Terrestrial interaction, however,
complicates any interpretation of data from a single spacecraft. The importance of such
complications, together with the importance of the boundary layer physics, is a prime
motivation behind any multi-spacecraft mission. In this chapter we review the basic ter-
minology and methodology for the determination of the most basic of parameters, such
as the Mach number and the shock/discontinuity orientation. These parameters need to
be established before any detailed investigation can proceed, and before any of the results
thereof can be set into their proper context.

While we concentrate mainly on shocks, the methods described below apply to most
“discontinuities” encountered in space plasmas, such as rotational or tangential disconti-
nuities.

10.2 The Shock Problem: Rankine-Hugoniot Relations

The overall shock problem consists of a surface through which a non-zero mass flux
flows and which effects an irreversible (i.e., entropy-increasing) transition via dissipation
of some sort. At the macroscopic level, the shock must conserve total mass, momentum,
and energy fluxes, together with an obeyance of Maxwell’s equations. Adopting a partic-
ular macroscopic framework, such as time-stationary ideal MHD, the governing equations
can be written in conservation form to reveal expressions for these fluxes in the planar
(1-D) case. For example, starting from the mass continuity equation

∂ρ

∂t
+ ∇ · (ρV ) = 0 (10.1)

only then̂ d/dxn operator is non-zero. In a frame in which the shock is at rest, this implies
conservation of the normal mass flux and is given by

ρu(V u · n̂) = ρd(V d · n̂) (10.2)

249
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wheren̂ is the shock normal and subscriptsu andd denote quantities measured up- and
downstream of the shock. Similar expressions can be derived for the three components of
momentum carried through the shock, the energy flux, the normal magnetic field, and the
two components of the tangential electric field. To these are added the frozen in field rela-
tions for the two tangential electric field components. The resulting system is 10 equations
in the 10 parametersρ, V , P (the plasma thermal pressure),B, andE tangentialon either
side of the shock. This set of relations between upstream and downstream parameters is
known as the Rankine-Hugoniot relations (sometimes referred to as the “shock jump con-
ditions” although they apply across any discontinuity). If the upstream state is completely
specified, these relations can be solved for the downstream state. In the case of a more
complicated system, e.g., two-fluid or multi-species, there are in general fewer equations
than parameters, and further assumptions concerning energy partition, etc., are required to
close the system. Even in MHD, the energy conservation equation requires some closure
assumptions (e.g., zero heat flux) which at best mimic the consequences of the dissipation
at the shock.

10.3 Shock Parameters

There are several basic plasma parameters which characterise the media on either side
of a shock. These are usually based on plasma fields and moments. This section introduces
the essential parameters and shock nomenclature.

10.3.1 Shock Geometry

In a plasma permeated by a magnetic field, there are several vectors which play a
role in the analysis of a shock transition. These include the bulk flow velocity,V , the
magnetic field,B, and the shock normal,̂n. It is customary to orient the normal vector
so that it points into the unshocked medium. In a frame in which the shock is at rest, this
normal points “upstream” and the term upstream is often interchanged with “unshocked”.
This use of upstream and downstream can cause confusion in the case of interplanetary
shocks, however, since in the spacecraft rest frame a shock propagating in the anti-sunward
direction (a “forward” shock) has its unshocked medium down-wind of the shock location.
Nonetheless, we will follow common practice and use the terms upstream and downstream
as seen in a frame in which the shock is at rest. Accordingly, subscriptsu andd will be
used to denote quantities measured in the upstream and downstream media respectively.

The basic shock geometry is sketched in Figure10.1. The various angles betweenV u,
Bu, andn̂ are typically denoted by a subscriptedθ , e.g.,θBnu is the angle betweenBu

and n̂. Usually only the acute angles forθBnu andθV nu are required, but the user must
be careful in analysing any given situation or in writing a generalised algorithm to cope
with a rotation through 180◦ of the magnetic field or a normal vector which points into
the downstream direction. The vector forms of the transformation velocities given below
avoid such problems.

The transformation of a velocity measured in an arbitrary frame,V arb, (e.g., the space-
craft frame of reference) to one in which the shock is at rest is accomplished by subtracting
the shock velocity in the arbitrary frame of interest. Only the normal component of the
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Figure 10.1: Sketch of the various vectors which enter into shock analyses. These are
shown in a shock rest frame.

shock velocity,V arb
sh , is unique, so we shall use

V

Shock
Rest

= V arb
− V arb

sh n̂ (10.3)

All the velocities subscriptedu shown in Figure10.1are such shock rest frame velocities.
Section10.5 provides methods to determineV arb

sh . There are, in fact, a multiplicity of
shock rest frames, since any translation along a (planar) shock surface leaves the shock at
rest. Two frames are useful:

The Normal Incidence Frame (NIF) is such that the upstream flow is directed along the
shock normal. As we shall see below, it is only this component of the flow which
enters into the shock Mach number.

The deHoffmann-Teller (HT) frame is such that the upstream flow is directed along the
upstream magnetic field. This frame has the advantage that theV u × Bu electric
field vanishes. Additionally, due to the constancy of the tangential electric field
across any plane layer, the flow and field are also aligned in the downstream region.

The transformation into the NIF frame from another shock rest frame is achieved via a
frame velocity

V NIF = n̂ ×
(
V u × n̂

)
(10.4)

so that in the NIF frame the upstream bulk velocity is

V NIF
u = V u − V NIF (10.5)

It is straightforward to verify thatV NIF
u is parallel ton̂ and that the transformation velocity

V NIF lies in the shock plane. These vectors are shown in Figure10.1.
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Figure 10.2: Sketch showing the various field, flow, and normal vectors in the Normal
Incidence Frame (NIF) (left) and deHoffmann-Teller (HT) frame (right).

The transformation into the HT frame from another shock rest frame is achieved via a
frame velocity

V HT =
n̂ × (V u × Bu)

Bu · n̂
(10.6)

so that in the HT frame the upstream bulk velocity is

V HT
u = V u − V HT (10.7)

Note that this prescription for the velocityV HT is restricted to transformations only from
another shock rest frame, whereasV HT in Chapter9 provides the transformation from
an arbitrary (e.g., spacecraft) frame. It is straightforward to verify thatV HT

u is parallel
to Bu and that the transformation velocityV HT lies in the shock plane. These vectors
are also shown in Figure10.1. For highly oblique magnetic fields (i.e.,θBnu ≈ 90◦) the
transformation into the HT frame requires relativistic treatment, and cannot be achieved at
all whenθBnu = 90◦.

The resulting geometries in these two frames are shown in Figure10.2. Note that
the flow and magnetic field vectors in the HT frame are aligned with one another in both
the upstream and downstream regions. Also note that by the coplanarity theorem (see
below) there is a single plane, the Coplanarity Plane shown in the figure and defined by
the magnetic field and normal vectors, which contains the flow, magnetic field, and normal
vectors on both sides of the shock surface. This plane is also shaded in Figure10.1.

This discussion of various shock frames reveals that there is only one geometric pa-
rameter which enters the shock problem, namelyθBnu. Shocks with large values ofθBnu
are called quasi-perpendicular, while those with values near zero are quasi-parallel. In the
case of fast mode shocks, the separation between quasi-perpendicular and quasi-parallel
is usually taken atθBnu = 45◦, as this value divides the behaviour of reflected ions which
participate in the shock dissipation.
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10.3.2 Mach Numbers

The Mach number of a shock in an ordinary fluid is the ratio of the speed of the shock
along the shock normal (i.e.,

∣∣V u · n̂
∣∣ in our notation) to the speed of sound in the medium

upstream of the shock. In a magnetised plasma, there are three low frequency modes: the
fast and slow magnetosonic waves and the intermediate (Alfvén) wave. The intermediate
mode is incompressive and might not be expected to lead to a shock solution, although
there has been some discussion about possible intermediate shocks in the theoretical liter-
ature. The intermediate mode does give rise to non-compressive sharp transitions, known
as rotational discontinuities, in which the field (and flow) are rotated through some angle
about the normal. Both the fast and slow magnetosonic waves give rise to shock solutions,
known as fast and slow shocks.

Thus there are several Mach numbers of interest. The plasma counterparts to the sonic
Mach number in fluids are obviously the fast Mach number,Mf , and slow Mach number,
Ms , which are the ratios of the normally incident flow speed to the fast and slow MHD
wave speeds in the upstream medium. These speeds are complicated by the non-isotropic
nature of the MHD modes, so that the wave speeds depend on propagation direction (i.e.,
θBnu). Thus an additional Mach number, the Alfvén Mach number,MA, is often used
to characterise a shock. This Mach number is calculated without regard to propagation
direction, i.e.,

MA =

∣∣V u · n̂
∣∣

|Bu| /
√
µoρu

(10.8)

The intermediate Mach number,MI ≡ MA secθBnu, is useful as it represents an upper
limit to the slow Mach number. There is no upper limit to the fast Mach number, although
in this case there is a “critical” Mach number,Mc, above which simple resistivity cannot
provide the total shock dissipation.Mc is a function of the various shock parameters, but
is at most 2.7 and usually much closer to unity. Thus many fast mode shocks in space are
supercritical.

10.3.3 Important Ratios

In addition toθBnu and the relevant shock Mach number, two more ratios are useful in
parameterising shocks. One is the upstream plasmaβ, i.e., the ratio of plasma to magnetic
pressure. The value ofβ controls the relative importance of the magnetic field and the
level of turbulence amongst other things. At the MHD level,θBnu,MA, andβu completely
specify the shock problem.MA can be replaced by any other Mach number, as they are all
related viaθBnu andβu.

The other ratio of interest is the electron to ion temperature ratio, as this controls the
expected micro-instabilities.

10.4 Determination of Shock and Discontinuity
Normals

There are numerous techniques aimed at determining shock normals, shock speeds,
and the values of upstream and downstream plasma and field parameters which best de-
scribe the shock. Many of them rely heavily on magnetic field data, which generally
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provides good time resolution together with small experimental uncertainties. The field
alone, however, cannot provide the shock Mach number, heating, and other parameters,
and solutions which include plasma observations are thus required. In the case of trav-
elling interplanetary discontinuities the shocks are often weak, implying that only small
changes occur in the plasma properties. This, coupled with the rather short transit time
of the spacecraft in relation to the shock, increases the difficulty of the task. In the case
of standing planetary bow shocks, the upstream state is the solar wind flow, which ap-
pears to the ion instruments as a collimated beam, while the downstream state is a much
broader, heated population. Under such circumstances, it can be difficult to resolve both
states within a single instrument to the necessary precision, and combining data from two
separate instruments imposes severe cross-calibration problems which must be overcome.

In the sections which follow, we describe a variety of approaches to this problem.
There is a continual trade-off amongst ease of applicability, completeness, and accuracy
which must be balanced.

10.4.1 Variance Analyses

A single spacecraft passing through a 1-D structure will see variations in the magnetic
field. Since∇ ·B = 0, the normal component of the field must remain constant. It follows
that if a unique direction can be found such that the variations in magnetic field along
that direction are zero (or at least minimised to a sufficient extent), then this direction
corresponds to the normal direction. This method fails for pure MHD shock solutions or
other cases where the variance direction is degenerate (see Chapter8). When considering
the electric field, an opposite argument holds: the tangential components ofE should
be continuous through such a layer, so the normal direction will correspond to that of
maximum variance inE. These variance techniques are described in greater detail in
Chapter8 and extended in Chapter11to multiple spacecraft encounters of curved surfaces,
and will not be repeated here.

It is worth remembering here that, unlike all the other methods described below, the
variance techniques deal with variationswithin the transition rather than the observations
taken well up- and downstream of the transition. There may well be fluctuations in the
upstream or downstream regions which do not lie along the shock normal (such as waves
propagating along the magnetic field direction) which can give rise to difficulties if the
interval selected for variance analysis is not carefully chosen and tested.

10.4.2 Coplanarity and Related Single Spacecraft Methods

The normal to a planar surface can be determined if two vectors which lie within the
surface can be found. Several subsets of the Rankine-Hugoniot relations can be used
to determine suitable vectors. The most widely used method relies on the Coplanarity
Theorem which insists that, for compressive shocks, the magnetic field on both sides of
the shock and shock normal all lie in the same plane. A corollary to this, since the only
possible tangential stresses arise from the magnetic tension, is that the velocity jump across
the shock also lies in this plane (as shown in Figure10.2). The dominant change in velocity
is usually along the shock normal, especially at moderate and higher Mach numbers.

Thus there are a variety of vectors which lie in the shock plane. These include the
change in magnetic field (which also lies in the coplanarity plane), the cross-product of
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the upstream and downstream magnetic fields (which is perpendicular to the coplanarity
plane), and the cross-product between the upstream or downstream magnetic field or their
difference with the change in bulk flow velocity. These vectors give rise to constraint
equations for the shock normal:

(1B) · n̂ = 0 (10.9)

(Bd × Bu) · n̂ = 0 (10.10)(
Bu ×1V arb

)
· n̂ = 0 (10.11)(

Bd ×1V arb
)
· n̂ = 0 (10.12)(

1B ×1V arb
)
· n̂ = 0 (10.13)

We have introduced the1 notation to indicate the jump (downstream minus upstream) in
any quantity, e.g.,1B ≡ Bd − Bu. In equations10.11, 10.12and10.13we have used the
superscriptarb (see equation10.3) on the velocity jump to indicate that this jump can be
measured in any frame (e.g., in the spacecraft frame) and not just in a shock rest frame. In
principle, any pair of vectors which are dotted withn̂ in the above constraints can be used
to find the shock normal. (A third constraint to uniquely determinen̂ is to make it a unit
vector. The sign of̂n is arbitrary and can be adjusted if required to maken̂ point upstream.)
For example, the magnetic coplanarity normal uses the vectors in equations10.9and10.10
to give

n̂MC = ±
(Bd × Bu)× (1B)

|(Bd × Bu)× (1B)|
(10.14)

Magnetic coplanarity is easy to apply, but fails forθBnu = 0◦ or 90◦. Three mixed mode
normals requiring both plasma and field data are also commonly used:

n̂MX1 = ±

(
Bu ×1V arb

)
×1B∣∣(Bu ×1V arb
)
×1B

∣∣ (10.15)

n̂MX2 = ±

(
Bd ×1V arb

)
×1B∣∣(Bd ×1V arb
)
×1B

∣∣ (10.16)

n̂MX3 = ±

(
1B ×1V arb

)
×1B∣∣(1B ×1V arb
)
×1B

∣∣ (10.17)

There is also an approximate normal, the velocity coplanarity normal, given by

n̂VC = ±
V arb
d − V arb

u∣∣∣V arb
d − V arb

u

∣∣∣ (10.18)

which is an approximation, valid at high Mach numbers and forθBnu near 0◦ or 90◦ for
which magnetic stresses are unimportant, to an exact relationship based on the Rankine-
Hugoniot relations.

Applying the Algorithms

All of these single spacecraft normals can be evaluated using the same overall proce-
dures:
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1. Select data intervals in both the upstream and downstream regions and find the “av-
erage” values of the required quantities.

2. Compute the normal using the formula. Adjust the sign ofn̂ to point upstream if
desired.

3. [Optional but recommended] Compare normals computed from different methods,
using different averaging intervals, etc.

An alternative approach, which has been applied to both minimum variance analysis
and computations ofθBnu, is to compute normals,θBnu’s, or whatever quantity of interest
from pairs of individual upstream and downstream data points and then to average the
result over an ensemble of such pairs. The data points for any given pair can be chosen
at random from the relevant upstream or downstream set, with subsequent replacement
prior to the next choice. This approach has the advantage of providing, via the ensemble
statistical deviation, an error estimate of the result.

Caveats

There are several pitfalls here, including:

1. All single spacecraft methods rely on time stationarity by assuming that upstream
and downstream quantities measured at different times correspond to the same shock
conditions.

2. Selecting different intervals for “average” values can lead to different results. Care
should be taken to ensure that the shock layer itself is entirely excluded from these
intervals.

3. Many methods fail when close to the singular casesθBnu = 0◦ or 90◦.

4. All methods assume planar, 1-D shock geometry.

10.4.3 Multi-Spacecraft Timings

If the same boundary passes several spacecraft, the relative positions and timings can
be used to construct the boundary normal and speed, since

(V arb
sh tαβ) · n̂ = rαβ · n̂ (10.19)

whererαβ is the separation vector between any spacecraft pair andtαβ the time difference
between this pair for a particular boundary. Thus given 4 spacecraft, the normal vector and
normal propagation velocityV arb

sh ≡ V arb
sh · n̂ are found from the solution of the following

system:  r12
r13
r14

 ·
1

V arb
sh

 nx
ny
nz

 =

 t12
t13
t14

 (10.20)

This problem is also addressed elsewhere within this book, e.g., in Chapters12 (Sec-
tions12.1.2and12.2), 14 (Section14.5.2) and the entire Chapter11.
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Algorithm

Solve the system10.20for n̂/V arb
sh (to within the± sign arbitrariness for̂n) by any

standard linear algebra technique, e.g., by inverting the matrix on the left containing the
separation vectors.

Caveats

1. If the separation vectors are large, the assumption of planarity may breakdown.

2. Spacecraft positions are often given in non-stationary systems, such as GSE. Since
the origin of such systems moves (especiallyyGSE) with time, spacecraft positions
should be placed onto a common coordinate system.

3. The method fails if the spacecraft are nearly coplanar. This is discussed further in
Chapters12and14, and illustrated numerically in Chapter15.

10.4.4 Combined Approaches

Provided some multi-spacecraft timings are available, it is possible to add to the system
10.20any (or all) of the constraints given in Section10.4.2. For example, consider the
system

A · (n̂/V arb
sh ) ≡


r12
r13
r14
1B

1B ×1V arb

 ·
1

V arb
sh

 nx
ny
nz

 =


t12
t13
t14
0
0

 (10.21)

which makes use of equations10.9and10.13.

Algorithm

The system10.21of equations is over-determined. The least squares solution which
minimises the residuals on the right-hand side can be obtained by multiplying on the left
throughout by the transpose of the matrix of coefficientsA and solving the resulting 3× 3
square system for̂n/V arb

sh (to within the± sign arbitrariness for̂n). This approach has
the advantage in that it can fold in more information and can be used when not all the
quantities are known (e.g., when one spacecraft is missing).

Caveats

1. The least squares solution as described above takes no account of the relative errors
or confidence in the various coefficients contained inA. More general inversion
techniques (e.g., singular value decomposition) provide some error analyses, and
can weight the different constraint equations differently to reduce the residual er-
rors. There are probably methods which can include the possibility of different
error estimates for individual components ofA, but they have not yet been applied
to these kinds of problems.
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2. Some caution should be taken to ensure that the same information is not included
many times in extending the system of equations to be solved.

3. The nature of the information contributed by multi-spacecraft timing depends upon
the spatial geometry of the polyhedron defined by the spacecraft (see Chapter12).
The effect of this upon the combined approach merits further study.

10.4.5 Shock Jump Conditions

The previous methods use a small subset of the Rankine-Hugoniot relations and/or
multi-spacecraft timings to determine the shock normal. A potentially more reliable ap-
proach is to take more of the Rankine-Hugoniot relations into account in order to establish
a full set of upstream and downstream quantities (including the shock normal direction)
which best satisfy these physical laws. Since the thermal properties of the shock processes
often involve kinetic and anisotropic processes, multi-species, etc., it is probably best to
avoid as much as possible those relations that involve the plasma pressure, namely then̂-
momentum equation and the energy flux equation. The pressure jump can then be used to
verify that the resulting solution does in fact represent a compressive, entropy-producing
shock.

Lepping and Argentiero first put such a scheme together in 1971, although their method
still relied on magnetic coplanarity to establish the shock normal direction. Viñas and
Scudder (VS) overcame this difficulty in 1986. Although the method is too lengthy to be
repeated here, we describe the overall philosophy and approach for reference.

VS begin with a set of pairs of measurements of the plasma parameters (ρ, V , B) on
either side of the shock in an arbitrary frame of reference. Equation10.3is used to write
the Rankine-Hugoniot relations for mass flux, normal magnetic field, tangential stress, and
tangential electric field in an arbitrary frame of reference. The shock speed,V arb

sh , enters
linearly in the mass flux balance equation and can be eliminated. Treating the plasma
parameters as known (from the observations) leads to a system of 7 equations in which the
only unknowns are the two angles which define the shock normal direction. This nonlinear
system is solved via a least squares method for these two angles. Once the normal is found,
the shock speed can be found from the mass flux equation as the average of the shock
speed inferred from individual pairs of up- and downstream measurements. This solution
minimises in a least squares sense the residuals from the shock speed as inferred by the
individual pairs.

Next, in a manner identical to that used to findV arb
sh , the conservation constants for

the mass flux, normal magnetic field, tangential stress, and tangential electric field can be
evaluated as the averages of their values deduced from individual pairs of observations.

Next, using these conservation constants, VS set up a least squares problem to establish
the self-consistent asymptotic states via two vector equations forV andB parameterised in
terms of the mass density. The value ofρ which minimises the residuals in these equations
then determines the asymptotic values of the various parameters.

Finally, the normal momentum equation can be used to test that the inferred jump in
thermal pressure, as demanded by the asymptotic values of the other parameters, has the
correct sign.
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Algorithm

See the VS reference for a more detailed account of the algorithm.

Caveats

1. These methods also rely on the selection of suitable upstream and downstream in-
tervals of data, and on pairing an upstream observation with a downstream one.

2. The usual caveats concerning stationarity and planarity apply.

3. The potential advantage of bringing more plasma parameters to bear on the problem
has the potential disadvantage that it places more emphasis on quantities, such as
the plasma mass density, which may not be particularly accurate.

10.4.6 Model Boundary Equations

In the case of the Earth’s bow shock and magnetopause and, to perhaps a lesser extent,
those at other planets, the large number of spacecraft encounters enables us to define the
shape of the boundary surface on a statistical basis. Such statistical data sets can be fit by
simple geometrical forms, from which the normal direction can be computed analytically.
This method is straightforward, and the algorithm is described below. In many instances,
such normals are likely to be as accurate as any of those computed above.

To begin, choose an appropriate model. Most are cylindrically symmetric conic sec-
tions which can thus be represented in the form

L

rabd
= 1 + ε cosθabd (10.22)

in whichL is the semilatus rectum andε the eccentricity of the conic. The variablesrabd

andθabd are polar coordinates in the natural system for the conic. This natural system
is aberrated by an angleα from GSE by, e.g., the Earth’s orbital motion (30 km/s so that
tanα = 30 km/s/Vsolar wind) and then perhaps displaced from the Earth’s centre. Thus the
relevant variable transformation is xabd

yabd

zabd

 =

 cosα − sinα 0
sinα cosα 0

0 0 1

 ·

 x

y

z

−

 xo
yo
zo

 (10.23)

wherero is the displacement of the focus of the conic in the aberrated frame andr is
a position vector in the relevant observational frame (e.g., GSE). This configuration is
sketched in Figure10.3.

Different models give different values forε, L, andro. Some popular models are
tabulated in Table10.1. These models are also shown in Figure10.4for comparison. In
any application, it may also be necessary to scale the distances (L andro) which appear
in the models. For example, the bow shock and magnetopause respond to changes in the
dynamic pressure in the solar wind. The expected spatial variation is proportional to the
dynamic pressure to the power−1/6, due to the balance with the magnetic pressure which
the Earth’s dipole field is able to exert. An alternative approach is to scale the distances to
make the model pass through an observed location.
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Figure 10.3: Observational (e.g., GSE) coordinate system(x, y) and aberrated-displaced
system(xabd , yabd) for model boundaries. For simplicity, only a two-dimensional system
is shown. Note that the direction ofα is defined such that positive values correspond to
the aberration due to the Earth’s orbital motion, which is in the−ŷ direction.

Algorithm

1. Choose an appropriate model. For measurements under unusual circumstances or at
high latitudes, consider the parameterised 3-D models byPeredo et al.andRoelof
and Sibeckfor the bow shock and magnetopause respectively.

2. Calculate the aberration angle as given in the model or via a measurement of the
solar wind speed. If solar wind data is not present, a typical value of 450 km/s,
corresponding toα = 3.8◦, is usually adequate.

3. ScaleL and ro as necessary. One way is by the−1/6 power of the solar wind
ram pressure, normalised to the model mean as given in Table10.1. This process
is not particularly accurate and produces far less variation in, say, the bow shock
position than is actually observed. Thus well upstream of the bow shock the absolute
position of the bow shock can be uncertain by severalRE . Alternatively scale these
parameters so that the model passes through a given position vectorr crossing. This
process can be reduced to the substitutionsL → σL, ro → σ ro, andr → r crossing
in equations10.22and10.23and solving the resulting quadratic equation forσ . In
the case of hyperbolic (ε > 1) models, the larger of the two roots corresponds to the
correct branch of the hyperbola.

4. Calculate the gradient,∇S, to the surface given by the model. This surface may be
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Table 10.1: Parameter values for various model surfaces

Source ε L xo yo α ρV 2
sw

Units RE RE RE
◦ nPa

Terrestrial Bow Shock Models
Peredo et al.,z = 0 0.98 26.1 2.0 0.3 αo-0.6 3.1
Slavin and Holzer mean 1.16 23.3 3.0 0.0 αo 2.1
Fairfield Meridian 4◦ 1.02 22.3 3.4 0.3 4.8 ?
Fairfield Meridian No 4◦ 1.05 20.5 4.6 0.4 5.2 ?
Formisano Unnorm.z = 0 0.97 22.8 2.6 1.1 3.6 3.7
Farris et al. 0.81 24.8 ≡ 0 ≡ 0 3.8 1.8

Terrestrial Magnetopause Models
Roelof and Sibeck (F00 only) 0.91 11.2 4.82 ≡ 0 αo 2.1
Fairfield Meridian 4◦ 0.79 13.1 3.6 0.4 -0.3 ?
Fairfield Meridian No 4◦ 0.80 12.8 3.9 0.6 -1.5 ?
Farris et al. 0.43 14.7 ≡ 0 ≡ 0 3.8 1.8
Petrinec et al., (Bz > 0) 0.42 14.6 ≡ 0 ≡ 0 αo ∼ 2.5
Petrinec et al., (Bz < 0) 0.50 14.6 ≡ 0 ≡ 0 αo ∼ 2.5
Formisano

Unnorm.z = 0 0.82 12.5 4.1 0.1 4.2 3.7
Norm. z = 0 0.69 13.5 0.9 -0.4 6.6 3.7

Notes: The above table shows aberration angles positive when in the nominal sense for
the Earth’s orbital motion, as shown in Figure10.3. The valueαo indicates that each data
point was aberrated by the amount corresponding to the prevailing solar wind speed. The
average solar wind dynamic pressure, where available, is also shown. All models have
zo ≡ 0. Non-axially symmetric models have been reduced to polar form after setting
z = 0 in the model equation.

written

S(rabd(x, y, z)) ≡

(
rabd + εxabd

)2
− L2

= 0 (10.24)

This gradient, expressed in terms of the aberrated coordinatesrabd but rotated back
into the unaberrated coordinate frame can be written(

rabd

2L
∇S

)
=

 [
xabd

(
1 − ε2

)
+ εL

]
cosα + yabd sinα

−
[
xabd

(
1 − ε2

)
+ εL

]
sinα + yabd cosα

zabd

 (10.25)

5. The normaln̂ is parallel to this gradient, i.e.,

n̂ = ±
∇S

|∇S|
(10.26)
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Figure 10.4: Dayside portions of model terrestrial bow shocks (left) and magnetopauses
(right) based on the parameters given in Table10.1. The models have not been scaled and
have been aberrated by the amount shown in the table withαo = 3.8◦. For the purposes of
estimating shock normals, most models agree to a fair degree. The magnetopause tailward
of the terminator (x = 0) and/or at high latitudes is more complex, and varies most with
interplanetary conditions. Some models include non-axially symmetric terms. These are
shown in the ecliptic plane only (see the bibliography for more details).
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Caveats

1. There may be ripples or transients which distortn̂ from the model value.

2. Scaling the distances can be imprecise when the spacecraft is not at an actual cross-
ing.

3. There are a multiplicity of models although, as shown in Figure10.4, there is not
a large variation in the normal direction at a given position, at least for the dayside
portions and under nominal interplanetary conditions.

4. At greater tailward distances the bow shock models need to be modified to asymp-
tote to the fast mode Mach cone (see Slavin, J. A., Holzer, R. E., Spreiter, J. R., and
Stahara, S. S., Planetary Mach cones: Theory and observation,J. Geophys. Res., 89,
2708–2714, 1984).

10.4.7 Tangential Discontinuities

In the case of pure tangential discontinuities, it is possible to find the normal to the
discontinuity by simply noting that both upstream and downstream magnetic field vectors
are parallel to the shock plane and, unlike the case of a perpendicular shock, are not in
general parallel to one another. Thus in this case the normal is given by

n̂ = ±
Bu × Bd∣∣Bu × Bd

∣∣ (10.27)

Caveats

The problem here is to use sufficient plasma and field variations, particularly the pres-
sures, to establish that the discontinuity in question is indeed a tangential discontinuity
and not a rotational discontinuity or a slow shock. Since all the pressures rise across a fast
shock, it is usually easier to distinguish these from the pressure balance structures required
by tangential discontinuities, although weak shocks may again prove difficult.

10.4.8 Rotational Discontinuities

If sufficient field resolution is present, minimum variance analysis of the magnetic
field, or maximum variance of the electric field, provides an estimate of the normal direc-
tion. The caveats given above concerning the identification of tangential discontinuities
also apply here.

10.5 Determination of the Shock/Discontinuity Speed

The shock speed along the normal,V u · n̂, is a vital parameter, as it determines the
shock Mach number. There are a variety of methods in use to calculate this speed from
observational data, or to calculate the shock speed relative to an arbitrary observational
frame,V arb

sh n̂, which are summarised here. These velocities are related by equation10.3.
Most of the following methods also require knowledge of the shock normal.
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10.5.1 Mass Flux Algorithm

Writing the shock mass flux conservation equation in terms of quantities measured in
an arbitrary frame yields

ρu(V
arb
u − V arb

sh n̂) · n̂ = ρd(V
arb
d − V arb

sh n̂) · n̂ (10.28)

This equation can be solved forV arb
sh to give

V arb
sh =

1(ρV arb)

1ρ
· n̂ (10.29)

Caveats

The only difficulty applying equation10.29 is its reliance on good plasma density
measurements on both sides of the shock.

10.5.2 Shock Foot Thickness Algorithm

Quasi-perpendicular supercritical collisionless shocks initiate their dissipation process
by reflecting a portion of the incoming ion distribution. Under these geometries, such
reflected ions gyrate around the magnetic field in front of the main shock ramp and return
to the shock. The extent of this foot region in front of such shocks is directly related to
these reflected ion trajectories which, in turn, are simply related to the incident normal
velocity (in a shock rest frame), the strength of the field, and the shock geometry. The
shock foot is clearly visible as a gradual rise in the magnetic field, and can also be found
in the commencement of ion-acoustic-like noise upstream of the shock ramp. Assuming
the incident ions are specularly reflected at the shock, and neglecting their thermal motion,
the reflected ions reach their maximum upstream excursion and turn around after a time
tturn which is the solution to

cos(�t turn) =
1 − 2 cos2 θBnu

2 sin2 θBnu
(10.30)

where� is the ion gyrofrequency. At this time, their distance,d foot, along the normal
from the shock ramp is

d foot

(V u · n̂)/�
≡ f (θBnu) = �t turn

(
2 cos2 θBnu − 1

)
+ 2 sin2 θBnu sin(�t turn) (10.31)

Knowing the time1t foot taken for the foot to pass over a point in an arbitrary observa-
tional frame (e.g., the spacecraft frame) then provides the additional information required,
resulting in

V u · n̂ =
V arb
u · n̂

1 ∓ (f (θBnu)/�1t foot)
(10.32)

The upper (−) sign is used when the observed transition is from upstream to downstream
and the lower (+) when the observed sequence is downstream to upstream.
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Algorithm

1. Measure the foot passage time1t foot. DetermineθBnu from the data by either find-
ing n̂ andBu or by an algorithm given below in Section10.6.

2. Computef (θBnu).

3. Apply equation10.32.

Caveats

1. This is quite a good method for these shocks, but requires a good methodology for
identifying the foot region.

2. The method requires that the relative shock/observer motion be steady during the
passage of the foot.

10.5.3 Multi-Spacecraft Timing Algorithm

This approach for determining shock speeds is detailed above in Sections10.4.3and
10.4.4.

10.5.4 Smith and Burton Algorithm

Smith and Burton have derived an algorithm to determine the shock speed which does
not require an explicit calculation of the shock normal. Their algorithm is derived from
the Rankine-Hugoniot relation which represents continuity of the tangential electric field
[−n̂ × (V u × Bu) = −n̂ × (V d × Bd) in our notation]. Some manipulation and implicit
use of the coplanarity theorem yields

∣∣V u · n̂
∣∣ =

∣∣1V arb
× Bd

∣∣
|1B|

(10.33)

Caveats

1. This algorithm requires a good vector determination of1V arb.

2. The algorithm works for all shock geometries, including parallel “switch on” shocks,
but breaks down for parallel acoustic shocks, which haveBd = Bu.

10.5.5 Generalised deHoffmann-Teller Transformation

Chapter9 shows how the transformation velocity from an arbitrary spacecraft frame
to the deHoffmann-Teller frame can be found if there are good determinations of the flow
velocity and field on both sides of the shock transition. The shock velocity along the
normalV arb

sh is simply the normal component of the generalised HT-frame velocity, as
shown in Figure9.2(page225) of Chapter9.
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Algorithm

1. Use the methods in Chapter9 to determine the velocity of the deHoffmann-Teller
frame with respect to an arbitrary (e.g., spacecraft) frame.

2. Take the normal component of this velocity

10.5.6 Velocity of a Tangential Discontinuity

Since a tangential discontinuity has, by definition, zero mass flux through the disconti-
nuity layer, in a rest frame moving with the discontinuity the flow velocities on either side
have only tangential components. Thus in an arbitrary frame of reference, the component
of the flow velocity normal to the discontinuity must equal the speed of the discontinuity,
i.e.,

V arb
TD = V arb

· n̂ (10.34)

This should produce the same result regardless of whether the upstream or downstream
flow velocity is used.

Algorithm

1. Apply equation10.34using a measured flow velocity and a normal vector deter-
mined by, e.g., equation10.27.

2. [Optional] Apply equation10.34for flow velocities measured both upstream and
downstream of the discontinuity to provide some estimate of the error.

Caveats

1. The difference between values computed using upstream and downstream values
may be due to either errors in the measured flow velocities, in the discontinuity
normal determination, or both.

10.6 DeterminingθBnu

10.6.1 Application of the Shock Normal

Algorithm

1. Determinen̂ via one of the algorithms given in Section10.4.

2. DetermineBu in a manner consistent with that used forn̂. That is, if averages of
upstream parameters are used to findn̂, use the sameBu.

3. θBnu = cos−1(n̂ · Bu/ |Bu|).
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Figure 10.5: Normal directions based on several of the methods given in this chapter as
applied to a particular crossing of the Earth’s bow shock. The normals are given in terms
of their spherical polar angles in the GSE frame:θ = 0◦ is alongẑ while φ = 0◦ is the
sunward direction. Open symbols use the same methods as their solid counterparts but
use input up- and downstream parameters averaged over fewer observational data points.
Note the failure of magnetic coplanarity in this case due to the near perpendicular shock
geometry (θBnu ∼ 80◦ in this case). The right panel shows in detail the spread of the other
methods and reveals a typical uncertainty of 5− 10◦ or more.

10.6.2 EnsembleθBnu

Algorithm

1. Apply the previous algorithm (e.g., usinĝn) to pairs of upstream and downstream
data points.

2. Ensemble average the results to provide〈θBnu〉 together with its standard deviation.

10.7 Application

As an example of many of the above methods, we present here the results of normal de-
termination for a particularly well-studied example of the Earth’s bow shock. Figure10.5
shows the results of several coplanarity-like techniques, the Rankine-Hugoniot solution of
Vi ñas and Scudder, and a bow shock model normal. Most methods agree to within 5−10◦,
although the magnetic coplanarity technique fails badly here due to the near perpendicular
orientation of the upstream field in this case. Of course, the determination ofθBnu itself
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varies with the different normals, and thus has a similar uncertainty. The choice of method
may depend on the particular case. Ideally, different methods should be compared with
one another.
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11.1 Introduction

In this chapter we discuss the shape, orientation, and motion of discontinuities in the
magnetic field, as sampled by an array of closely separated spacecraft. Our central purpose
is to introduce an established analysis method, designed to determine these properties. We
describe the use of the technique and its application to simulated as well as real data.
We first discuss the methodology adopted and then briefly present the application to both
planar and non-planar event models in situations of linearly accelerating motion. The
ability of the analysis to distinguish between non-constant motion and surface curvature is
discussed. It is stressed that this chapter concentrates on the analysis of magnetic field data
alone, since methods which incorporate multi-instrument data are predominantly limited
to single spacecraft techniques at the present time (see, for example, Chapters8 and9).

Discontinuity analysisis used generically to describe the set of multi-spacecraft mag-
netometer analysis methods, which are best used in situations when the dominant, or most
interesting, event scale length is much shorter than the spacecraft separation distances
(the boundary structure is thin). As we discuss below, for such events where the spatial
sampling is well below the effective Nyquist sampling rate, one first seeks parameters
describing macroscopic properties of the event. As a secondary aim, one can assess the
possibility of a more detailed analysis of structure. In ordering the data set, the analysis
relies on an interpretation of the spatial content in the individual time series of each space-
craft in terms of its variance, and via the solenoidality of the field [Sonnerup and Cahill,
1967]. The thin boundary regime allows this coordination, within each spacecraft data
set, to be made independently from comparisons across the spacecraft array. Additionally,
boundary structure here is typically assumed to be quasi-static in its own frame, but mov-
ing with respect to the spacecraft (we refer to this as “the degree of stationarity”). Thus,
macroscopic analysis requires two things: firstly, a limit on the degree of time dependence
in the data to be useful, and secondly, that the data can be characterised in terms of a “thin
boundary”.

It is interesting to note in passing that an opposing data regime occurs when the event
scale length of variation is well in excess of the spacecraft separations. Direct differencing
of inter-spacecraft measurements can then usefully approximate the differential changes in
the field locally between spacecraft. In other words, the spatial content in the time series
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for any one spacecraft is then less critical and coordination of the data is primarily across
spacecraft (and is purely a multipoint analysis for each quantity).

In fact,Dunlop et al.[1988] have identified three broad characterisations of magnetic
field analysis pertinent to a Cluster-like mission; namely, the Curlometer, the Wave Tele-
scope and the Discontinuity Analyser. The curlometer method (covered in detail in Chap-
ter 16, for example) is an analysis technique best used when high spatial sampling rates
can be achieved. On the other hand, when event scales are of the order of the spacecraft
separations, Fourier domain analysis techniques play an important role, such as the wave
telescope or mode filter (see, for example, Chapters3 and4, for current analysis methods
applying to space data). Such techniques rely on successful coordination of the data across
both spacecraft positions and channels (instruments and components) simultaneously. To-
gether with the discontinuity analyser, these techniques correspond to the three ranges of
spacecraft separation distances relative to scale lengths of the physical structure sampled.

The Discontinuity Analyser formerly existed only in outline [Dunlop et al., 1988] un-
til Mottez and Chanteur[1994] described the possibility of using the Cluster array to
determine local geometric properties relating to the surface of a discontinuity. Although
there are few other direct references to a discontinuity analyser for a phased array such
as Cluster, an early design of discontinuity analysis was made byRussell et al.[1983],
who describe a method of accurate determination of shocks using four widely separated
spacecraft, averaging the normals determined at each different spacecraft while assuming
constant velocity of the planar discontinuity. (See section10.4.3for a discussion of this
method.)

Boundary structures, including shocks, current sheets and other forms of discontinu-
ities at plasma boundaries, have been studied extensively in the past (particularly, the
Earth’s bow shock and magnetopause), predominantly using single spacecraft data and
sometimes by using multiple data sets from different instruments. A few dual spacecraft
studies have been carried out, namely the ISEE-1 and -2 probes and the AMPTE/UKS
and IRM pair, and some for special events covered fortuitously by largely separated and
uncoordinated spacecraft.

It is known from single and dual spacecraft studies that the complexity of the physical
structure (microscopic properties), together with its evolution in time, limits the macro-
scopic features which can be obtained from data on the boundary (its shape, orientation
and motion). Typically, under assumptions of local planarity and some degree of stationar-
ity [Bendat and Piersol, 1986] for the sampled event, little more than the orientation of the
discontinuity, or perhaps simple motion for particular events, can be obtained with single
spacecraft.

Additionally, the quality of these estimates depends upon the detailed microstructure
in the sampled discontinuity. These include the presence of natural noise, wave or other
properties, which can confuse simple model assumptions for the boundary unless either
the structure is sampled fortuitously or judicious spectral filtering is possible. The latter
will depend upon the degree to which the properties are in some sense conflicting in their
effect.

Furthermore, no unambiguous check on consistency, if the assumptions are wrong,
is available from single spacecraft information, except in special circumstances. Single
spacecraft analysis usually combines data across measurement channels (field and plasma
quantities and components). For example, minimum variance analysis (MVA) is over
the components of the magnetic field through the requirement of solenoidality, and when
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planarity is assumed MVA yields the boundary normals (Chapter8).
The effect of extra anomalous physical structure in the boundary therefore provides

a context for the analysis and needs to be known at some level of detail. The general
problem posed in extending the analysis to multi-spacecraft data is how to combine the
information self-consistently when the single spacecraft assumptions on the macroscopic
behaviour are relaxed.

11.2 Methodology

11.2.1 General assumptions

The specific technique applied in Section11.4 is currently built on a method which
seeks to find a planar discontinuity (local to the spacecraft configuration), or to determine
the degree of non-planarity, based on limited knowledge of the boundary motion. This
application of discontinuity analysis is termed the planar-DA. The method emphasises,
and can determine, motional properties when the boundary is found to be planar. Other-
wise, only qualitative indications of curvature result, in the limit of small deviations from
planarity (on the spacecraft separation scale).

Whether any analysis is able to distinguish between non-constant motion and surface
curvature is a more subtle issue and needs some interpretation (this point is discussed later
in Section11.5). A determination of the surface properties, curvature and orientation, in
fact requires an assumption of boundary motion; typically of constant velocity, and is the
approach discussed in Section11.5.2. Such an assumption is extremely difficult to check,
however, and is one reason the planar-DA approach is taken.

Another important aspect driving the cautious approach adopted here is that low noise
levels on the data signature (arising from either instrument effects or additional signal) are
required to show the significance of either non-constant motion or curvature. The role of
noise is demonstrated and discussed below in Section11.4.3and11.5.5.

This form of the Discontinuity Analyser has been tested with simple event modelling
tools, which reflect a number of structural properties of the field and form part of the
software tools. We also employ a number of simple, geometric models for static fields.
These are functions in space, in the form of: discontinuities with or without constant field
magnitude, current sheets and 2-D curved boundaries based on scalar potential functions.
We have simulated data from these using a number of trajectories of up to four spacecraft,
and with a constant acceleration on the motion. In the absence of truly coordinated, multi-
spacecraft data, such event models are a key test for the technique, but are not integral to
the method. We describe, in Section11.A, the models used here to simulate data, together
with (in Section11.4) results arising from a variety of runs with these.

In addition, during real event selection, it may enhance performance to filter any
anomalous (to the basic boundary structure under investigation) signal if possible. Any
filtering applied to the data will depend on the event properties (or assumptions of these),
but may not necessarily help analysis quality. This, and other forms of preparation of the
data to enhance the analysis quality, is important, but is only briefly treated here. We re-
gard it as a single spacecraft analysis for which there is much description in Chapter2 and
elsewhere.
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Figure 11.1: Conceptual flow for the boundary analysis.

11.2.2 Method outline

In view of the above assumptions in Section11.2.1, we have developed a hierarchically-
based methodology, consisting of four principal stages. These are an initial data pre-
selection phase, a normal stability analysis, determination of crossing times, and finally a
combined analysis of boundary normals. The principal components of the analysis proce-
dure are identified in Figure11.1and are described below:

1. Data Pre-selection:
This process, represented by the second (from the top) box in the flow chart, serves
to identify candidate data intervals which may possess the signature of a disconti-
nuity detected on all spacecraft present. Predominantly, this depends on recognition
of the event in the individual spacecraft data and selection is little different when
only one spacecraft samples the structure. Clearly, however, the character of the
event should show similarities amongst the spacecraft and this can often help dis-
tinguish between the signatures in complex encounters, such as the case of multiple
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crossings. Since here we concentrate on demonstrations of the technique using sim-
ulated events, and most event identification methods are commonly known from
single spacecraft studies, we do not discuss these explicitly now. Routines such as
variance or spectral analysis, cross-correlations, tests for planarity [Farrugia et al.,
1990] and stationarity [Chapman and Dunlop, 1993] are used here.

2. Normal Stability:
The third box in Figure11.1 represents a set of single spacecraft methods which
potentially can be used to determine the principal directions (local to each space-
craft) for the boundary structure; the intention being to reveal the boundary normal
directions. Since we analyse only magnetic field data and hence current based dis-
continuities, the stability of the boundary (surface) normals is determined, by initial
choice, using minimum variance analysis (MVA) on a set of nested data intervals.
Furthermore it is assessed for each spacecraft data set separately. Clearly, this analy-
sis on the individual spacecraft, allows very few initial assumptions on the nature of
the crossings to be made. Equivalent inspection of the boundary (for example, com-
putation of tangential discontinuity normals) and analysis of the degree of planar
ordering is then contained within a secondary diagnostic analysis. These diagnos-
tics allow the stability of the normals to be traced over repeated computation when
the selected interval is varied. Failure to detect a stable normal requires a return to
the data pre-selection process. Either further pre-selection or pre-filtering is then
carried out, or rejection of that particular interval of data. A wave propagating along
a boundary, for example, will affect the result obtained from normal determination,
but may often be suppressed or the effect on MVA clarified, by suitable high or low
pass filtering [Dunlop et al., 1996].

3. Crossing Times:
The fourth box in Figure11.1represents the procedure which seeks times at which
the boundary, identified in step2, crossed each spacecraft. In order to identify these
times, the centre of the boundary signature for each spacecraft data set has to be lo-
cated by curve fitting, or otherwise (for example, by inspection). Note that the suc-
cess of MVA provides a canonical (natural) coordinate system which best represents
the boundary in the data and this is taken advantage of in the current procedure. If
the boundary is revealed clearly, inspection often provides the most accurate method
of identification, if intensive, since it does not require presumptions on the form of
the signature in the data. Modern visualisation tools are sufficient to make this user
interaction very feasible, and are used in the software tools described in this chapter.

4. Boundary Properties:
The bottom two boxes in Figure11.1presume that, in principle, the motion and/or
topology of the boundary can be analysed. The core, multi-spacecraft technique
is represented by this part of the flow chart, with the details of application hidden,
since they are described in detail below for each key encounter situation. As men-
tioned above, this core technique is currently based on an assumption of planarity,
but where deviations from planarity can be identified. In general, any interpretation
of the spatial structure has to be made in the context of self-consistency between
the normal directions and the motion or topology of the boundary. The form of any
check on consistency depends upon the implied properties of the boundary (whether
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it is planar or non-planar, or has constant or non-constant motion). A planar bound-
ary is consistent with colinear normals (within the implied error from the variance
analysis), but non-planarity is not necessarily the only source for significantly non-
colinear normals. For instance, the differences between the spacecraft normals may
arise from other than simple boundary structure, and then further pre-filtering must
be attempted, or there may exist no physical significance to the differences between
the spacecraft normals, and then the analysis is ambiguous. The interpretation may
also be obscured when the relative timing in step3 arises from a combined effect of
non-constant motion and curvature.

The procedural loop(s) implied by the checks on consistency in steps3 and4, assume
some interaction between the interpretation of the normal analysis in step2 (single space-
craft) and the choice of combined analysis in step4. As stated there, strong, consistent and
closely colinear normals imply good planarity, and then allow more detail on the bound-
ary motion to be determined in principle (noise permitting). Non-planar boundaries are
implied by significantly non-colinear (stable) normals; but the significance needs to be
established (see section11.4.1). Quantitative analysis in the presence of curvature will be
addressed in section11.5.

If the whole process is successful, the results will yield parameters characterising the
boundary. Note, however, that the independent determination of the normals at each space-
craft is what allows the other macroscopic properties (shape, orientation and motion) to
be checked during the subsequent analysis, rather than assumed. These two stages are
pursued rather independently in the current technique, requiring caveats on their interpre-
tation to be considered (as above). In principle they could be combined self-consistently,
but then a problem of weighting each stage arises (as is considered in Section11.5.6and
is touched on in Chapter10).

11.3 Pre-Selection Issues

11.3.1 Assumptions

In the issues discussed below, stationarity and planarity are addressed in terms of the
particular event properties and as part of the pre-selection procedure, although both of
these properties enter into the development of the discontinuity analysis. For example,
the basic planar-DA technique described below allows a degree of motional analysis to be
made, but strict planarity of the field is not required for multi-spacecraft analysis. On the
other hand, stationarity is generally assumed as a basic assumption of the analysis. For
instance, non-dispersive structures, at least, are required for planar analysis, and for quan-
titative determination of parameters some assumptions of convective motion of a quasi-
static structure must be made. General assumptions governing methodology have been
presented above in Section11.2.

11.3.2 Boundary Normal Analysis

Since we limit the analysis here to magnetic field data in the technique described below,
it is natural to make use of the variance properties of magnetic vector. The behaviour of
the magnetic field is constrained by the condition of solenoidality∇ · B = 0. In terms
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of the magnetic field variations, this constraint effectively links the direction of minimum
variance to the boundary normal for simple, 1-D structures [Sonnerup and Cahill, 1967].
Chapter8 discusses the various detailed forms of this method, which essentially differ in
their approach to the statistical analysis which is employed to find the minimum variance
direction. We briefly recall here the governing equations for MVAB, defined there, in order
to compare to the procedure for the planarity test which is introduced in the next section.

The variance (computed over some data interval in time, represented by the sum over
n in the equations below) of the component of the magnetic field vector along some direc-
tion, x̂, is defined by

σ 2
x =

1

N

∑
n

(
Bn

· x̂ − 〈B〉 · x̂
)2

, 〈x̂〉 = 1

The minimisation procedure for this quantity is identical to solving the eigenvalue
equation for the matrixM, defined below, where the minimum eigenvalue defines the di-
rection of minimum variance through its corresponding eigenvector. Thus,M satisfies

Mx̂ = λx̂ , Mij ≡
1

N

∑
n

(
Bni B

n
j − 〈Bi〉〈Bj 〉

)
The diagonalisation of this variance matrix, which contains all information on the com-

ponent variances, generally can always be performed and gives the principal values and
axes which characterise the variance ellipsoid. The association of these principal values
with the boundary normal of a discontinuity is a physical interpretation of the event being
sampled, however. The quality of the final result, therefore, has a physical component as
well as a component relating to the nature of the measurements. The former describes how
accurate the model of the event is and how the presence of additional real structure may
affect the calculation, while the latter is reflected in the statistical variations, which, never-
theless, arise also as a result of the detailed properties of the event. The way in which these
contribute to the uncertainty in the determination of boundary normals, and the stability of
the result, has therefore received much attention (see Chapter8).

Although the common choice for normal determination is MVA in magnetic field based
analysis, inconsistencies arising from particular properties of the boundary may require
alternative methods for estimating the normals. For example, the procedure would re-
spond differently when applied to both tangential and rotational discontinuities, particu-
larly with regard to the planar ordering of the magnetic field. Various alternative methods
of determining boundary normals for shocks and other discontinuities, often using multi-
instrument data or the presence of additional particular properties, are given in Chapters8
and9.

The use of the deHoffmann-Teller frame, possible in all other boundaries except purely
tangential discontinuities (for which Sonnerup MVA is particularly suited), forms the basis
of other single spacecraft techniques. For shocks other conditions can be employed across
the boundary, through the Rankine-Hugoniot relations and coplanarity (see Chapter10).
These are often employed preferentially since analysis through the shock is often confused
by waves and other fluctuations either side of the shock which do not relate closely with
the normal.
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11.3.3 Planarity

In the event of magnetic structure taking the form of a 1-D boundary, which is crossed
by a spacecraft, the solenoidality property of the magnetic field is equivalent to

B · n̂ = const

wheren̂ is the normal to the boundary. This is the physical starting point for the variance
method outlined above (Section11.3.2). Since we primarily have in mind tangential field
structures (discontinuities) to demonstrate the DA technique, even for cases which deviate
from planarity (modelled as shown in Section11.A), it serves clarity to use the tangential
form of the above condition,

B · n̂ = 0 ⇒
B · n̂

|B|
= 0 (11.1)

This equation has the strong geometric interpretation that the magnetic field vector always
lies on the surface of the plane defined byn̂. A consequence of this is that the cross
product of (average) field vectors on either side of the discontinuity surface is parallel to
the normal to the surface, and thus this provides a simple way to find such normals (see
equation10.27on page263). However this estimate can be inaccurate, particularly in the
case of nearly parallel field vectors.

Another method of normal determination which derives from equation11.1is as fol-
lows. For purely transverse variations (|B| = const), equation11.1has an easy generalisa-
tion to that of conical order, when the non-zero constant is re-introduced. This geometric
view forms the basis of a rugged test for magnetic order and is discussed byFarrugia
et al. [1990] andDunlop et al.[1995]. Constraining the field vector to lie in a plane (or
the surface of a cone), has the effect that the Euler angles (θ, φ), describing the orientation
of the field vector (forany reference coordinates) are explicitly related through the above
equation. Thus, for planar order

tanθ = tanα sin(ξ − φ)

where (α, ξ ) are the polar and azimuth angles defining the orientation ofn̂ in the same
reference frame andθ is actually the latitude angle of the field vector. Conical order is
governed by a slightly more complicated equation [Farrugia et al., 1990].

In the above equation, the Euler angles for the sampled field are actually functions of
time, and the equation relating them models the time series measurements. Therefore, they
form a set of equations which can be statistically solved (by general least squares, or by
singular value decomposition methods) for the angles (α, ξ ), which then define the normal
and hence the orientation of the plane. Not only do singular value decomposition methods
give the accuracy of the fit, but a plot of the elevation and azimuth of the field direction in
some reference frame gives a strongly visual representation [seeDunlop et al., 1995, for
applications].

This simple, but powerful, geometric technique is used as a complementary test of
event character and is part of the diagnostic test of normal stability employed during the
analysis.
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11.3.4 Stationarity

A simple test can be devised for the case of multiple spacecraft data which is described
in Chapman and Dunlop[1993]. For planar, convecting structures, for example, it is clear
that

B
(
rβ , t

)
= B

(
rα, t −1tαβ

)
where1tαβ represents the convection time of the structure to move from spacecraftα to
spacecraftβ. A time Fourier transform of this signal (on the profile seen at each spacecraft)
implies that (whereω is frequency).

B
(
rβ , ω

)
= B (rα, ω)e−iω1tαβ

by using the familiar shift theorem in the Fourier domain. Thus, the ratio of the amplitude
spectra between pairs of spacecraft will be approximately equal under these conditions.
Further this ratio is also independent of frequency for non-dispersive structures. The phase
spectra will differ, directly byω1tαβ .

For non-planar, but convecting, structures the amplitude ratio will still be constant,
but not unity. The test therefore gives the necessary conditions for the sampled structure
to be quasi-static (or non-dispersive) by inspection of the ratios in the signal between
spacecraft in the frequency domain. Even if the signal is not fully static overall, there may
be ranges in frequency (windows) for which it is, particularly if the time dependence is
well separated in frequency. In these circumstances the signal can be filtered to remove
the time dependent part, and re-analysed.

The test works best for planar structures, where the response is flat and unity, but can
also be applied, approximately, with preferred sampling along principal directions of non-
planar structures. The test has been successfully applied to a number of model structures.
The effect of instrument and other noise has also been investigated. Normally the effect
of instrumental response occurs only over some part of the frequency range. Most events
will remain stationary over some range of ‘ω’ (a window) where the model most strongly
applies.

11.4 Discontinuity Analysis: Motional Properties

11.4.1 Planar-DA Technique

As described in Section11.3, the planar-DA technique first attempts to fit a planar
discontinuity, and then determine its motional properties. Initially, therefore, curvature is
treated only as a test for non-planarity. Curvature introduces characteristic and system-
atic deviations from a planar fit (Section11.4.5). Only in the case of very pure events
can quantitative surface fitting be attempted, as we discuss in Section11.5, under certain
assumptions on the nature of the relative motion.

The core method (which is principally characterised by its use of independently de-
termined normals) is therefore discussed from two viewpoints: firstly planar analysis; and
secondly deviations from planarity. Figure11.2summarises the technical description of
the analysis process. The conceptual flow in Figure11.1is not shown, but the form here
shows the analysis choices which depend on the result of the individual boundary normal
analysis. If the normals all agree (to within the implied uncertainty of the eigenvectors),
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Figure 11.2: Technical flow for the Discontinuity Analyser.

the planar analysis can proceed to calculate the quantities indicated, as described later in
Section11.4.2.

Consider this planar route illustrated in Figure11.3, where planar is arbitrarily defined
asδnα < 10%. The boundary is assumed to cross each spacecraft in the order shown,
once, with the projected crossing distancesr‖ along〈n̂〉 being known from spacecraft po-
sition data and the computed average normal. The individual boundary normals, obtained
at each spacecraft, will provide an estimate of the mean normal, which will be a better es-
timate for the common boundary normal if the structure is planar. An error weighted mean
is currently used for this (but shown as a sum in Figure11.2, for simplicity). Although we
can then estimate the velocity parallel to this normal for each pair of spacecraft individ-
ually using the crossing times, we choose to fit a polynomial to the projected spacecraft
separation vectors, parallel to the average normal, of the form:

r‖ = v1
‖
t +

1

2
a‖t

2

Heret representstα,β , the relative crossing times, andr‖ represents1rα,β · 〈n̂〉, the pro-
jected spatial separation for each spacecraft pair (note that this equation is similar to that
quoted in Section14.5.2). This allows a constant acceleration term only and some initial
velocity at the first spacecraft crossing. Note that for planar boundaries, only the com-
ponents of the motion along the normal have meaning. For non-planar boundaries, the
transverse components immediately become significant, and then, of course,a may not
align with v. There is a subtle problem of sorting crossing times against spacecraft num-
ber which is dealt with in the analysis technique but is not discussed here.

Of course, for planar boundaries having constant motion and a minimum of four space-
craft,v‖ and the common normal can be obtained directly from the relative crossings and
knowledge of the spacecraft configuration, since there then exists a high degree of redun-
dancy (this is the technique applied byRussell et al.[1983]). With less than four spacecraft
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this analysis is ambiguous, unless the plane of the discontinuity is known in one direction,
or unless other conditions along the normal can be employed (for example, in the case of
shock jump conditions, covered in Chapter10). With four spacecraft it is pointed out in
Chapter10 that the extra conditions can form an over-determined set of equations.

It is unlikely that any mission will be flown in the near future with an array of more than
four spacecraft, so that this approach will continue to depend on fortuitous conjunctions
of independently orbiting spacecraft (as inRussell’s study). We feel the approach here
is better able to distinguish deviations from such assumptions as rigorous planarity and
constant velocity, together with the effect of errors and noise. Moreover, as we discuss
in Section11.5, the number of spacecraft required is not restricted and simply limits the
information that can be reliably obtained.

The other route in Figure11.2(i.e. δnα > 10%) implies possible non-planarity. The
existence of stable, distinctly non-parallel normals is, however, not necessarily an indi-
cation of structure curvature. This is the question to be addressed in the box labelled
“significance of n” in the flowchart (Figure11.2). For example, the differences between
the normals may arise from effects other than simple boundary structure, such as surface
waves. Further pre-filtering may be attempted, or there may exist no physical significance
to the differences between the spacecraft normals and the analysis is ambiguous. By “phys-
ical” significance we mean the relevance to analysis by way of the discontinuity analyser
technique. If, however, the origin of the normal differences is believed to be a curved
thin magnetic structure, we can attempt to characterise the surface and its motion more
fully. Systematic differences indicate the probable existence of curved field geometry and
we can attempt a quantitative analysis of both the surface curvature and motion (see Sec-
tion 11.5for a more detailed discussion of curvature in which the planar-DA methodology
is applied loosely, still within a discrete analysis).

Conversely, if the normals show differences that are inconsistent with simple curved
field geometry but that are, nevertheless, believed to fundamentally derive from curved
field geometry, then application of a planar analysis can still be performed, as described in
Section11.4.5, but then only linear fits to the velocity can be attempted. This provides a
less quantitative estimate of the velocity (i.e. the estimate represents only a mean velocity
during the measurements), and the non-planarity of the surface remains qualitative, since
then the presence of acceleration in the motion is not explicitly treated. Any quadratic
fit, attempting to obtain an acceleration estimate will be meaningless in this case because
of the presence of curvature. Furthermore, curvature (and other effects), unknown at this
stage of the analysis, can bias the estimate of velocity and even masquerade as an apparent
acceleration.

11.4.2 Basic Application

Figure11.3demonstrates the technique for the case of planar analysis. The method
has been tested, using suitable magnetic field models for the discontinuity, by flying the
spacecraft through the model.

The top graph shows a typical result of flying the spacecraft with constant velocity.
There may be a component ofv perpendicular tôn, as shown, for which no information is
revealed by a planar structure. The lower graph shows the result of an additional, constant
acceleration. The relative times of the crossings are plotted against the relative, compo-
nents ofr, parallel ton̂. Note that one point (for spacecraft 1, here) lies at the origin. For
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Figure 11.3: The basic discontinuity analyser method, described as the planar-DA in the
text.

Figure 11.4: Sample run through the planar discontinuity using an accelerated fly-through.
The two curves on the right-hand panel are linear and quadratic fits, respectively.
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constant acceleration, a quadratic can easily be fitted to the points as shown.
An example output, showing a simulated accelerating trajectory is also given in Fig-

ure11.4. In these tests both the actual trajectory flown and the quadratic fit to the crossing
points can be superimposed (only the quadratic and a linear fit are shown in the Figure).
Additionally, the effect of noise and other signal can be monitored by redoing the analysis
for these cases (see below).

11.4.3 Noise: Error Combinations

The linear fit to the crossing points shown in Figure11.3determines the velocity from
all independent pairs of spacecraft. Clearly,

v‖αβ =
1rαβ · n̂

1tαβ

so that the estimate of velocity depends upon errors in: the normal, the spacecraft sepa-
ration vectors and the crossing times. In fact for application to a phased spacecraft array,
timing errors usually remain well below 1% and are relatively unimportant in their con-
tribution to the error inv‖, δv‖. We can therefore consider that the error in the fit lies
predominantly in uncertainty in the values of1r‖. Relative errors in velocity then arise
from δn̂ andδr/|1rαβ |, where for convenience we have treated the separation error as
common for all spacecraft pairs.

The presence of these errors, as a result of noise in the data signature or instrument
uncertainty, will increase the scatter of the points about the linear fit depicted in Figure11.3
and the corresponding uncertainty inv. Noise will degrade the normal analysis through
uncertainties inn̂. Clearly, also, the quality of the estimate of the acceleration term is
degraded by the addition of noise. Since the mean normal, used for determining1r‖, is
affected to a reduced degree compared to the individual normals, noise levels associated
with normal uncertainty of up to 20% only affect the estimate of1r‖ (and hence inv), to
below 10%. Of more practical concern are tracking errors, which are typically of order
10% in the projected1r‖ (and hence inv).

An acceleration term introduces a systematic change in the velocity of ordera‖1t . The
estimate of acceleration will remain quantitatively significant, therefore, if deviations from
a linear fit (corresponding to implied acceleration, as in the quadratic fit in Figure11.3) are
greater than the random uncertainty in1r‖. In simulation tests of noise, which result in
scatter of order the effect of the typical acceleration indicated in Figure11.3(although then
not systematic), the fit often remains significant, although the estimate is quantitatively
poor.

11.4.4 Noise: Data Examples

Before discussing the identification of non-planar effects, it is useful to first explore the
visual effects of natural noise on the analysis. The visual effects of noise on the analysis
can be simply shown in the format of the planar test, described in Section11.3.3, where the
Euler angles (θ, φ) of the magnetic field vectors are plotted against each other as a scatter
plot. The equation for the model plane is superimposed as a curve in the plot of (θ, φ).
Figure 11.5, for example, shows a simulated data signature from the planar tangential



284 11. DISCONTINUITY ANALYSIS: ORIENTATION AND MOTION

Figure 11.5: Scatter plot for a pure, planar discontinuity with the addition of instrumental
noise.

model, with typical (in the sense of the argument in Section11.4.3), high frequency scatter
on the model data for one spacecraft. Note that this scatter is symmetric about the planar
curve, drawn here to correspond to the exact model plane. Ultimately, this scatter will feed
through as uncertainty in both the normals (represented by the plane here) and timings,
affecting the positions of the crossing points, as in Figure11.4.

The geometric technique is used both as a complementary test of event character (pre-
selection) and as a diagnostic test of normal stability. The planar orientation may deviate
from the MVA evaluation of the normals in some cases, particularly where real events have
additional, complex properties which may confuse underlying boundary structure or may
bias the estimated normals. The technique is applied in Figure11.6, for instance, on a well
studied magnetopause crossing; one of a number considered inPaschmann et al.[1986].
This example is chosen because it is quoted as presenting difficulties for MVA analysis
of the boundary, due to variability in the implied normals. In fact it is often the case, for
magnetopause boundary crossings, that MVA gives no better estimate of the normal than
simple surface models.

Three intervals (thought to be rotational discontinuities) containing crossings of the
magnetopause are chosen for the illustration. These are labelled 1, 2 and 3 at the top of the
time series plots in Figure11.6and analysis is carried out for suitable intervals, centering
on each. Scatter plots of each interval are shown on the right-hand side of Figure11.6in
terms of the angles (θ, φ) of the magnetic field time series. The conical form of the planar
equation is fitted for values of (α, ξ ), in the generalised least squares sense, to the scatter
plot of the angles (θ, φ) for interval ‘1’, shown in the top panel. This plane corresponds
closely, although not exactly, to the boundary normal, found via MVA. The other two
panels then use this fit as a model curve for comparison to the other intervals. The curves
are suggestive of the ordering seen by eye, even when the scatter here is large. Conversely,
MVA then fails to produce any stable normals. The geometric technique is therefore useful
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Figure 11.6: Demonstration of the planarity test as described in the text.

as an alternative method to MVA for these cases, where MVA gives confused results.
Generally, the technique is applied best in situations of slow boundary crossings, giving
a suitable number of data values through the boundary. The diagnostics for the normal
determinations use similar (θ, φ) plots for visual representation. Clearly, the example here
only represents a single spacecraft location.

11.4.5 Identification Of Non-Planar Structures

Consider an array of spacecraft encountering a curved discontinuity. The situation is
drawn schematically in Figure11.7, with the corresponding graph of crossing times in
(a) and (b), plotted against the projectedr for two relative orientations of the sense of
the curvature. The curvature is assumed to be 2-D, and only three spacecraft are shown,
for clarity. In this case, the dot-dashed line in the graphs are drawn to correspond to
the constant velocity motion of a planar discontinuity. The situation shown, represents a
typical result of simulated fly-throughs, using one of the simple 2-D magnetic boundary
models (see Section11.A).

For each model, the detail for the crossings will differ and hence the analysis will differ,
but we can use the sketch in Figure11.7a, which serves to indicate how the crossing times
deviate asymmetrically from the planar line, to represent the key geometry. For instance,
spacecraft 2 will cross the real boundary att2 but crosses an effective planar boundary att ′2.
This shift (t ′2 − t1) is shown on the graph, and similarly fort3. The sense of this systematic
deviation depends only on the relative orientation of the spacecraft configuration with
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Figure 11.7: The analysis of a non-planar boundary structure.
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respect to the curvature and not on the sense of motion (down or up along the line shown
in Figure11.7a), as is apparent by following a similar discussion of Figure11.7b. For
instance, spacecraft 2 again crosses the planar boundary att ′2, but now the geometry of
the boundary is inverted with respect to the spacecraft configuration and this is reflected
in the plot. We shall see later that the effect of noise more easily obscures the effect of
acceleration in the presence of curvature; although the sense of the asymmetry may still
be apparent (Section11.5.5).

11.5 Discontinuity Analysis: Combined Motional and
Curvature Analysis

Our intent in this chapter has been to deal conceptually with factors which can compli-
cate the analysis of both curved discontinuities and situations with non-constant motion,
particularly those factors relating to conflicts in event properties. Consequently, we have
attempted to distinguish between conceptual issues and technique description at various
points in the discussion. Now, we look at these issues in more detail, discussing required
changes in methodology (from the planar-DA) when curvature analysis is introduced; for
example, in the combination of the normal determination with the macroscopic analysis.
We also look at the extent of self-consistency in each stage of the analysis, an issue which
becomes deeper when curvature effects are considered. We first discuss these issues in
general terms below, and then detail some specifics in the later sections.

11.5.1 Method Development

Use of multi-spacecraft

The amount of information that can be learned from different sized arrays of space-
craft is an important consideration in the development of the method. Intuitively we would
expect that with more spacecraft available, more can be gleaned on the macroscopic prop-
erties of the physical event. With only a single spacecraft, for instance, planarity is implic-
itly assumed in the application of MVA and motional information can only be determined
by combining multi-instrument data. With more than one spacecraft the multi-point data
can be used and we summarise below the information that can be calculated from space-
craft arrays of increasing size (up to 4, the size of Cluster); firstly, in the case of planar
discontinuities and secondly, in the presence of curved boundaries (it may help the visual
interpretation to refer back to Figure11.3).

1. Planar discontinuities

• 2 spacecraft :
Planarity may be checked to within the projection of the spacecraft separation
by making use of computed boundary normals,n̂ (interpreted from MVA, for
example). The boundary velocity,v‖, relative to the spacecraft and parallel to
n̂ may also be directly determined from the time delay, but with assumption of
constant velocity (simple convection) and stationarity of the structure.
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• 3 spacecraft :
These give a better check on planarity (two spacecraft pairs are available, pro-
viding a mean,〈n̂〉). Although similar assumptions must be made as for two
spacecraft, a more realistic velocity can be found since the two estimates may
give some quantitative indication of acceleration. Again, the motion must be
one dimensional (convective).

• 4 spacecraft :
Here, a good planarity fit and velocity estimate can be obtained. In addition, a
possible estimate of acceleration,a‖, parallel to〈n̂〉, may be made if noise or
other additional signal is sufficiently low and normal stability and colinearity
is sufficiently high.

2. Deviations from planarity (non-dispersive)
Unless planarity is assumed, special, multiple boundary crossings are required with
one spacecraft for even qualitative analysis, or the curvature must be small (nearly
planar). The determination of quantitative information, in the presence of curved
boundaries, generally requires limitations on either motion or curvature and more
than one spacecraft. Explicitly, with four spacecraft, the limit could be constant
velocity of a convected structure, which would allow some check on the level of
curvature to be made, via surface fitting procedures. Alternatively, if some linear ac-
celeration is known to be present, simple curvature properties must be assumed; for
instance, a single radius of curvature (see Section11.5.3). Generally, with less than
four spacecraft, the number of unknowns sought, even at lowest order in curvature
and acceleration, are too many for direct estimation. Either rigid, constant motion,
or planarity must be assumed to proceed. Errors and noise, of course, severely limit
the ability to disentangle motional from topological factors and it is possible that
only qualitative knowledge can be obtained.

Macroscopic treatment

The basic assumption in the planar-DA, which requires justification, is that the space-
craft separation distances are much in excess of the scale lengths of the physical event.
Sampling the characteristic spatial scales in this context allows the spatial content in the
time series data to be interpreted individually; as compared to across spacecraft. This in-
terpretation is consistent with the use of single spacecraft methods for boundary normal
determination, since it limits the effect of non-planar structure on the local analysis of the
individual spacecraft crossings even in the presence of some curvature, i.e. the integration
of the solenoidality of the magnetic field remains, primarily, at the single spacecraft level.

Even under this “thin boundary” assumption, the full coordination of data from a num-
ber of spacecraft is sensitive to properties which generally take only secondary importance
in the single spacecraft analogue. Effectively, the approach, termedmacroscopicanalysis,
decouples the determination of macroscopic properties (through purely multipoint analy-
sis) from the boundary normal identification (obtained through purely multichannel anal-
ysis, where the coordination in the data is primarily over an interval in each time series).
This decoupling is not perfect, however, and is dependent on the event characteristics,
particularly in the presence of curvature, which affects the normal determination to some
degree, as we shall see.
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Actual measurements result froma priori unknown encounters with the boundary,
which must be checked self-consistently with any model assumptions. Moreover, the us-
ability of the measurements is constrained by data issues such as, the sampling of the
discontinuity, compatibility across data sets and data quality. A consequence is that devel-
oping the method for the combined use of multi-instrument data (having often lower time
resolution and accuracy than that of the magnetic field alone) with multiple spacecraft data
sets is not simple to design efficiently and to achieve overall enhancement of the perfor-
mance of the technique. Special events may arise, of course, from particular sampling
conditions or particular physical properties.

11.5.2 Non-Planar Analysis: Constant Motion

As discussed above, the planar-DA strictly applies to thin, nearly planar boundaries,
but can provide a qualitative indication that curvature is present. However, by applying
the methodology non-rigorously in this case, direct fitting of a surface to the individual
normals is in principle possible; the assumption being that the normals remain determined
independently from the surface fit at the individual spacecraft. Where planarity is demon-
strated, the method gives a direct test of the motion (since the curvature is then known).
There is no equivalent test, however, where curvature is unknown, since the individual
crossing times will be affected by both curvature and motion. For instance, if a boundary
moves with known, constant velocity, the crossings at each spacecraft can be mapped back
to the positions at the time of the first crossing allowing the surface fit to proceed. The fit
is then only mutually consistent with that velocity, however. Normally, all components of
velocity need also to be treated as parameters in the fit.

There is therefore a need to ensure that the fit is achieved self-consistently by careful
development of the method. Furthermore, although the normals might be significantly
non-colinear, there will be some degree of uncertainty in their orientation. In fact it is not
known,a priori, what weighting should be given to the errors in the individual normals in
order to then apply some optimisation of the surface fit. One reason is that the analysis is
further complicated by the fact that the normal determination is itself affected, or biased,
at each crossing point, by the direction of motion through the boundary of each spacecraft,
particularly if the curvature is high. This bias arises through the need to identify a finite
data interval through the boundary (which maps to a distance along the motion) in order
to perform the variance analysis. Unless this distance is small compared to the scale of
the curvature, the field structure will not wholly represent the boundary orientation local
to the crossing. This affects the resulting normal direction computed.

Figure11.8schematically emphasises this effect. In the illustration we have chosen
a semicircular boundary (thick solid curve), across which the field reverses, and assume
for argument that field lines (thin curves with arrow heads indicating field direction) in the
vicinity of the boundary may be drawn as semicircles all with a common centre (O). Two
spacecraft trajectories (t1 and t2) are drawn. The first one,t1, passes through the centre
point, and normals to successive field lines alongt1 are all colinear, as illustrated in the
figure.

The second and more realistic trajectory,t2, does not pass through the centre point, and
the normals to successive field lines are not colinear. Single spacecraft boundary normal
techniques determine a normal which is some average normal of the measured field over
the interval taken. Clearly, the longer the interval over which the normal is calculated,
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Figure 11.8: Diagramatic representation of a circular discontinuity, showing the depen-
dence of the field normal on trajectory.

the more it can vary from the real boundary surface normal. Other boundary models can
be considered, but the conclusion here still remains the same: i.e. that trajectories not
along certain specific (to the model) characteristic lines (i.e. realistic trajectories) will
yield normals which vary according to the length of the data interval taken.

Although such a sensitivity of the computed normal to the data interval is a well known
problem, its importance here is that any result of surface fitting cannot, therefore, be fully
decoupled from the determination of normals, or curvature must not be significant on the
scale of the boundary layer. Indeed, the effect of strong curvature can affect the normals
quite dramatically and will introduce a dependence on both the time series interval used
for analysis and the trajectory orientation through each crossing point. Investigation con-
firming this has been carried out in conjunction with the planar test on both the models and
on a real data event (see Section11.5.5) and suggests that a test for thin boundary events
may be possible.

For completeness, a full inversion of the problem should be done, but this is not easy
to set up correctly (see, for example Section11.5.4). The above comments, together with
those in Section11.2, raise the issue of whether full curvature analysis can be done quan-
titatively at all. The two points raised for the planar-DA are essentially that independent
determination of the boundary normals gives a direct test of planarity and that this then
sets the context for the motional analysis. In other words, notwithstanding the above com-
ments (that normal determination in curved geometry is open to possibly unknown error),
the boundary normals have to be used in some way to provide information on the local
surface orientation. Furthermore, there is no equivalent test for the nature of the motion as
there is for establishing planarity. Events with constant velocity must be assumed, unless
information is obtained from other instrument data, such as the plasma velocity.
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Any actual acceleration will affect the surface fit to at least the same order as the
curvature terms. Thus, deviations from assumptions of constant motion may artificially
enhance, or mask, the curvature effect (see Section11.5.4). The constraint to constant
motion is used byMottez and Chanteur[1994], who designed a surface fitting procedure
based on a geodesic description of the surface and which requires the use of the Frenet
curve relations. The analysis works to lowest order (given the motional constraint) and
they successfully apply a reduced version to the case of a dual spacecraft magnetopause
crossing. They do not explain, however, how, in general, events with constant motion
are selected. Section11.5.3here also refers to their technique in terms of the extent of
curvature analysis which can be attempted.

11.5.3 Non-Planar Analysis: Information Balance to Lowest Order

If the structure is non-planar, the foregoing discussion suggests that, in general, less
information can be determined about the motion. In fact, topological and motional param-
eters compete for their representation in the data and in the nature of the analysis which
can be performed. Use of the planar technique for qualitative analysis of a model, for in-
stance, is possible since the planar analysis can be used to order the data so that deviations
from planarity can yield unique information on the surface. Direct analysis of the surface
topology, however, is limited by the need to ensure self-consistency with the normal anal-
ysis; currently a single spacecraft analysis in the manner discussed above. As mentioned,
for example, the individual normals can be dependent on spacecraft trajectory, with the de-
pendence being related to the form of the surface. Hence, any surface analysis will affect
the interpretation of the normals.

Full curvature analysis, therefore, is generally possible only under conditions of con-
stant motion or very limited curvature. This is indicated in Table11.1below, which results
from the following equations governing the number of unknowns which are present in
each assumed situation. In constructing this table, we assume that the surface normals
determined at each spacecraft position are precise. This allows us to establish the lowest
order determination of the unknown parameters characterising the surface. Firstly, we con-
sider in detail the situation of a 2-D curved discontinuity. We assume that the surface of
this physical event may be modelled by a curve of a single radius of curvature, and hence
that the spacecraft array encounters the structure at its “nose”. For the corresponding 3-D
case, we also take the view that the analysis attempts to find only a local expansion of the
surface to the spacecraft configuration, which sets the orientation of the effective nose of
the curved surface with respect to the spacecraft. This slight relaxation of mathematical
rigour is, we believe, in the spirit of any realistic analysis using actual measurements.

Curvature with 2-D geometry

Consider a two-dimensional curved discontinuity (thick solid curves in Figure11.9)
moving linearly and without distortion or rotation. The discontinuity, which is indicated by
the two thick solid curves in Figure11.9, is shown at two positions in time. All quantities
are assumed to be projected into the plane of the figure. This plane is knowna priori for
sampled events from the orientation of the measured normals, which would have to have a
common component (be coplanar) by assumption. Referring to Figure11.9, suppose that
the discontinuity (curve passing through spacecraft 1) is detected at spacecraft 1 at a time
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Figure 11.9: Geometrical construction for a curved discontinuity at lowest order curvature
as described in the text.

t1 (then at positionr1 relative to some origin), and at spacecraft 2 at a timet2 (then at
positionr2 and indicated by the curve passing through spacecraft 2).

If we assume that the discontinuity had a (relative) velocityv1 (with respect to the
spacecraft) at timet1 (assumed to be earlier thant2) and was accelerating with constant
accelerationa, then, after a timet21 ≡ t2− t1 when it was detected at spacecraft 2, it would
have traversed a displacementvt21+

1
2at221. This motion is indicated in Figure11.9by the

solid arrows connecting the two positions of the discontinuity at timest1 andt2.

If we now assume that the discontinuity has constant curvature (i.e. has a constant ra-
dius of curvature,R), then it is possible to relate each of the discontinuity crossings by the
two spacecraft. In principle, this may be done by using the assumed motional properties to
locate the position on the surface at the earlier timet1 (i.e. when the surface encountered
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spacecraft 1) where spacecraft 2 detected it, and then using the assumed geometry to relate
the two positions.

In particular, for an arbitrary point on the surface (see the upper thick curve passing
through spacecraft 1), shown with positionr and normal vector̂n, the positionr0 of the
centre of curvature of the surface may be written as

r0 = r + Rn̂ (11.2)

Thus, considering the encounter with spacecraft 1, we may write

r0 = r1 + Rn̂1 (11.3)

Since we have assumed a linear motion of the surface, we can relate the encounter with
spacecraft 2 at timet2 back to the position of the surface at timet1 and the encounter with
spacecraft 1. In particular, since the discontinuity is displaced byvt21 +

1
2 at221 during the

period between its encounters with the two spacecraft, the positionr ′

2 of the point on the
surface detected by spacecraft 2 at the earlier timet1 may be expressed as follows (see
Figure11.9):

r ′

2 = r2 − v1t21 −
1

2
at221 (11.4)

Furthermore, the normal̂n2 measured at spacecraft 2 at positionr2 is parallel to the
normal at positionr ′

2 on the surface at the earlier timet1. Hence we may also write

r0 = r ′

2 + Rn̂2, (11.5)

and combining equations11.4and11.5we derive

r0 = r2 + Rn̂2 − v1t21 −
1

2
at221 (11.6)

Therefore, using equation11.3we derive a “motional” expression relating the (mea-
sured) displacements (r1,2), detection times (t1,2) and normals (̂n1,2) to the model param-
eters (R, v1, a), as follows

r1 − r2 = R(n̂2 − n̂1)− v1t21 −
1

2
at221 (11.7)

or

r12 = Rn̂21 − v1t21 −
1

2
at221 (11.8)

where
r12 ≡ r1 − r2
n21 ≡ n̂2 − n̂1
t21 ≡ t2 − t1

 (11.9)

If we have more than two spacecraft detecting the discontinuity, we may construct
motional analogues to equations11.8for each spacecraft pair. We note, however, that by
taking one reference spacecraft, e.g. spacecraft 1, to correspond to the earliest detection
of the discontinuity by the spacecraft array, we have only one initial velocityv1 as a
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model parameter to determine. Thus, we may write the set of equations for an array of
4 spacecraft as

r12 = Rn21 − v1t21 −
1
2 at221

r13 = Rn31 − v1t31 −
1
2 at231

r14 = Rn41 − v1t41 −
1
2 at241

 (11.10)

where definitions analogous to equations11.9apply.
For a two-dimensional model, as considered above, we can consider 2 component

vectors in the plane of the normals. Thus, since the unknowns (R,v1, a) amount to 5 scalar
quantities altogether, we require 4 spacecraft (giving 6 equations) to determine them. If
constant velocity can be assumed, only 3 spacecraft are required. Any fewer spacecraft
will provide insufficient data for this type of model.

Curvature with 3-D geometry

Three-dimensional discontinuity surfaces present a more complicated problem. In par-
ticular, there are more geometrical parameters than in the case of two dimensions. Never-
theless, we outline here the basic (general) formalism which we only discuss by analogy
to the above equations. The discussion below is similar to that presented byMottez and
Chanteur[1994], except that we relax the constant velocity assumption to one of constant
acceleration.

We can assume a simple, general three-dimensional surface, characterised by two prin-
cipal curvatures (with corresponding radii of curvatureRp1 andRp2). Thus, to describe
the surface we require knowledge of these two scalar quantities, as well as their orientation
in space. This latter factor is reduced to a single scalar quantity, namely an angle in the
tangent plane to the surface (defined by the measured normal) at a reference point; taken as
spacecraft 1 in our case. The motion of the surface is characterised by the velocityv1 and
accelerationa (i.e. 6 scalar quantities). Thus, 9 scalar quantities are required to describe
the motion and geometry of this surface.

Consider, however, what information can be obtained from the surface by using an
array of spacecraft. Building on the ideas discussed above for two-dimensional surfaces,
but working with pairs of spacecraft in the three-dimensional case, we can derive motional
equations, analogous to equations11.10, which connect the local radius of curvatureR
between the spacecraft to the velocityv1 and accelerationa of the surface as before.

Note that the local radius of curvature depends on the orientation of the section con-
taining the two spacecraft and passing through the surface. Thus, we should label the
local radius of curvature according to the two spacecraft between which it is measured
(i.e.R1α ; α = 2, 3, . . .). In this way, each spacecraft pair, one of which being a reference
spacecraft (e.g. spacecraft 1), contributes 3 equations. The unknown quantities arev1 and
a, as well as the localR1α.

This is not the whole story, however. Two (separated) points on a three-dimensional
surface may be connected by a curve on the surface, and the shortest such curve is a
geodesic. The important property of a geodesic curve is that the normal vector to it at
any point coincides with the normal to the surface at the same point, and this normal is
a quantity which we can determine from the magnetometer data using variance analysis,



11.5. Discontinuity Analysis: Combined Motional and Curvature Analysis 295

for example. Thus, when attempting to parameterise the surface by measurements of lo-
cation at a few points on the surface, we must construct normal sections, which contain
the geodesic curves. These curves connect the points on the surface, through the local
curvature between spacecraft.

The corresponding geodesic curves, however, will not, in general, be the curves with
principal curvaturesR−1

p1 andR−1
p2 of the surface, but will have different curvatures. Nev-

ertheless, Euler’s formula [Kreyszig, 1959] gives the curvature of a normal section in terms
of the principal curvatures and the relative orientation of the normal section and the prin-
cipal section with principal curvatureR−1

p1 . The orientation of the normal section, relative
to some coordinate system, is given by the direction of the tangent vector, which may be
calculated using a discrete form of the Serret-Frenet curve formulas (as done byMottez
and Chanteur[1994]).

This leaves the orientation (θ0, say, relative to the same coordinate system) of the
principal sections as unknown at this stage. Hence, each pair of spacecraft contributes 1
Euler equation with 4 unknowns:R1α, Rp1, Rp2 andθ0. Thus, with 4 spacecraft (i.e. 3
pairs), we may construct 9 (scalar) motional equations in addition to 3 Euler equations,
with a total of 12 unknown (scalar) quantities (v1, a, Rp1, Rp2, θ0, R12, R13, andR14).

11.5.4 Consequences for Curvature Analysis

Within the framework of the above discussion, Table11.1below summarises the re-
sults. This table shows the (lowest order) quantitative information which is, in principle,
obtainable from magnetic field analysis alone. To construct the table, it has been assumed
that the normals are given and are not modified by the analysis (not always true). It is also
assumed that the discontinuity is non-dispersive and convecting. The plus signs refer to sit-
uations where the number of equations, defined, as above, in terms of the motion through
the structure, is more than the number of identifiable unknowns. The negative signs refer
to the reverse situation where there are less equations than unknowns. The equals sign in-
dicates situations where there are the same number of unknowns and equations (critically
constrained).

For the cases which are under-constrained, so that not all parameters can be deter-
mined, qualitative indications may still be obtained, such as testing the existence of cur-
vature, or acceleration, as discussed in the previous sections. Section11.5.2, however, has
discussed the problems associated with assuming the motion to have a constant velocity
for the purpose of pursuing a curvature analysis. Clearly, from the table, this appears to
allow lowest order determination of curvature to be made in more circumstances (up to
3-D or with less spacecraft). Analysis of the above equations in Section11.5.3, however,
reveals that the acceleration term in these equations enters at least at the same order as the
curvature term. Thus, it is never known whether the curvature analysis is fundamentally in
error (i.e. an artifact) as a result of an acceleration in the motion which had not been taken
into account.

The converse situation occurs if planarity is assumed, anticipating a planar-DA anal-
ysis. The presence of actual curvature affects the motional fit at the same order as the
acceleration term, and would infer an artificial acceleration (see, for example, the graphs
in Figure11.7). With a minimum of four spacecraft and to lowest order in curvature, as
defined here, the motion can be determined without assumptions up to a constant acceler-
ation term, given that the normals can be estimated by some independent method. In this
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Table 11.1: Indication of the ability of the analysis to determine the unknowns in different
physical situations and to lowest order in curvature.

Dimension Number of spacecraft: 1 s/c 2 s/c 3 s/c 4 s/c

1-D No acceleration − = + +

Acceleration − − = +

2-D No acceleration − − + +

Acceleration − − − +

3-D No acceleration − − = +

Acceleration − − − =

case, therefore, the result of lowest order determination of the unknowns will have some
uncertainties, but is in principle self-consistent: a more complex surface or motion is just
represented approximately by the lowest order terms, not anomalously.

The use of other instrument data, of course, can potentially add information on struc-
ture, such as independent determination of velocity in the case of electric field measure-
ments. This must be carefully assessed, however, since with the data restrictions (on res-
olution and quality), which are introduced through the incorporation of other data sets, it
will require a different analysis methodology for their consistent integration. Except on
a case by case basis, therefore, additional measurements are most easily added as inde-
pendent information on the event, complementing the planarity or stationarity tests, for
example, rather than as an extended, integrated multi-spacecraft method. Furthermore,
the availability of more than 4 spacecraft can also potentially add information. However,
again the methodology then adopted to fully integrate this information requires careful
reconsideration.

Clearly, from the above discussion, if the normal directions show significant and sys-
tematic differences, then quantitative analysis of curvature can be attempted. If only a
lowest order surface fit is attempted (for example, a locally spherical boundary is as-
sumed), then, in principle, the motion can be determined up to a constant acceleration
term, given that the normals can be estimated by some independent method. In practice,
however, noise or other properties, present in real events precludes such a critical anal-
ysis mainly through their introduction of uncertainties inn̂. Furthermore, there may be
resulting bias from the determination of single spacecraft (MVA) normals in curved ge-
ometry (as demonstrated in the study below). Whilst other methods can be adopted for⇒11.1
estimating the boundary normals their application and the associated errors depend on the
nature of the event analysed. Inspection of the above equations, for example, in terms of
an error analysis, indicates a weighting effect of curvature on any errors inn̂. The effect
may be more significant if the surface lies at an unfavourable orientation to the spacecraft
configuration. It is clear from the plots in Figure11.7, that, for actual encounters in the
presence of curvature, where the relative orientations are not known, the effect of noise (or
biasing, when significant) will more easily obscure the effect of acceleration; although the
sense of the asymmetry may still be apparent. For instance, the study below shows that the
asymmetry in the deviations shown in the trends in Figure11.7is also represented using
the planar test on the individual data sets for each spacecraft.
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11.5.5 Data Analysis: Natural Noise

The problems discussed above in determining structure normals in curved geometries
have fundamental impact on the methodology suitable for a “curved-DA” technique since
the normals can no longer be assumed to be given. Here, we demonstrate the effect with
data from a real event recorded by the AMPTE/UKS and IRM spacecraft pair. It is not
surprising, of course, that MVA provides normal estimates in curved geometry which de-
viated from the geometric normals indicated by the models. The systematic effect of
quantitative biasing on the normals, shown schematically in Figure11.8, is important for
their use within the methodology outlined above; i.e. as a single spacecraft analysis for
n̂, feeding into the equations. The significance of this systematic error with respect to
the overall deviations of the normals between spacecraft depends upon the spacecraft tra-
jectories through the structure, given the data sampling achieved. This sampling depends
upon the combination of the minimum nesting interval applied and the data resolution
with respect to the characteristic spatial scale of the structure. In practice, the sampling
achieved depends upon the thin boundary properties of an event. The trajectories then set
the spacecraft separation scale with respect to the characteristic scale of the model.

Different events will be sampled in different waysin situ so that for some the sys-
tematic error will be comparatively large and for others comparatively small. In the latter
case, the methodology may be used, for such selected events, to estimated both lowest
order curvature and acceleration terms (by fitting all terms in the above equations to the
set of normals). As indicated by the flow in Figure11.2 , the rejection of qualitatively
unsuitable events may be done if the normal analysis shows unstable results (with respect
to nesting or shifted intervals) in the presence of significant deviations between the space-
craft normals. It is possible, however, that inspection of MVA normals, in comparison
to the planar test at each spacecraft, will indicate suitable events for measured data; so
providing a possible event selection stage in the procedure. The presence of stable MVA
results, which are also consistent with the planar (geometric) test results, individually, is
likely to be a good indicator that biasing is relatively small for the structure and that the
individual normals can be interpreted geometrically.

Figure 11.10 shows a real event measured by the combined AMPTE/IRM (Fig-
ure11.10a) and UKS (Figure11.10b) spacecraft during a solar wind Barium release (see
papers inNature, 320, 700–726, 1986). Both spacecraft were thought to have sampled an
intense plasma cloud boundary at about the time indicated by the solid vertical line on the
upper panels of each plot. Because of cloud expansion following the release, this boundary
should be strongly curved between the two spacecraft and this appears to be confirmed by
MVAB boundary normals obtained from each data set . The sense of the curvature implied
by the normals, which were obtained using a standard run, is described inDunlop et al.
[1996] (equivalent curves are plotted in Figure11.10), and is consistent with an expanding
cloud where the effective tilt between the normal directions is∼30–40◦.

The curves in the lower panels of Figure11.10show individual fits of the planarity test
at each spacecraft together with the corresponding planes defined by the individual MVA-
normals. In this example, where there is significant curvature, the MVA and planar test
give very different planes (on the scale of the deviations between spacecraft), even though
the structure is strongly tangential. This, of course, is not unexpected in curved geometry
unless the thin boundary description holds to a high degree. The planar test attempts the
best fit, always, and hence finds a mean, geometrically, planar orientation for the scatter
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Figure 11.10: Data example of a curved discontinuity from the AMPTE/UKS and IRM
solar wind Barium release, as discussed in the text.

plot (locally to each spacecraft). Either side of the boundary, the direction of the magnetic
field will deviate systematically from the local plane inferred by the normals.

We therefore expect that both MVA (as well as the planar test) will return a biased
normal estimate, which will be sensitive to the actual sampling path of the spacecraft, as
discussed above. In fact, the scatter of data points shows a clear asymmetry about the
MVA curves which is in the opposite sense for each spacecraft. This is consistent with the
sense of the curvature implied by the boundary normals (following the arguments given
in Section11.4.5for interpretation of non-planar structure). It shows that the boundary
structure is effective over the analysis intervals and confirms the biasing of the normals
is significant. Using the planarity test in conjunction with the MVA analysis obviously
assists the geometric interpretation of the structure. Clearly, however, this event would be
unsuitable for the discrete analysis in the manner discussed above.

11.5.6 Self-Consistent Curvature and Normal Analysis

Self-consistent methods are required which quantitatively disentangle the relative con-
tributions arising from both non-constant motion and curvature; avoiding the need to make
specific assumptions on properties. As was alluded to in Section11.4, however, informa-
tion sought on one of these aspects may only be done at the expense of details concerning
the other if both are represented in the data. Even to lowest order, the information bal-
ance in the idealised model is still critical for four spacecraft. In the case of the presence
of both these effects, the establishment of self-consistency will involve some interrelation
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between the macroscopic and boundary normal analyses (checked iteratively). We can ask,
for instance, how the determination of the individual boundary normals is relaxed to take
account of a surface fit. This is an issue of weighting the normal values obtained during
the optimisation of the surface fit.

A more general technique, than the motional analysis described in detail above, is
in the process of being designed which combines both the multipoint and multichannel
data in such an interrelated manner, within a slightly extended minimum variance scheme.
Although this approach can potentially provide more rigorous estimates in the presence of
both limited curvature and non-constant motion, it is not clear how fully a relaxation of
the thin boundary assumption can be handled by it (although this is the hope). This will be
the subject of future work. Effectively, the use of the variance definitions assumes that the
data is characterised by the thin boundary regime, i.e. it assumes that data intervals used
for the analysis (the sum overi, below) cover what can be considered to be a locally planar
boundary.

The problem is one of inversion to find the coefficients describing the local surface
shape, statistically optimised to remain consistent with the individual boundary normals.
This can be defined in terms of the minimisation of a variance in the form of

σ 2
=

1

N

∑
i,α

(
Bα
i · n̂

α
− 〈Bα

i 〉 · n̂
α)2

, α = 1, . . . , s .

under the particular constraints arising from the specification of the surface function,
U(xα, yα, zα) = C. The indexi runs over the data and the spacecraft are labelled byα.
TheBα

i are considered as (time shifted) time series vectors such thatn̂ runs over a set of
intervals centred on the crossings at each spacecraft. Singular value decomposition seems
the best mathematical technique for solving the inversion. The definition of this variance
is based on the construction of a statistical series of scalar productsBα

i · n̂
α, whereBα

i is a
single magnetometer measurement on spacecraftα andn̂

α is the (in principle, unknown)
normal to the physical structure at that spacecraft.

In this form, the solenoidality of the magnetic field is integrated as part of the optimi-
sation at the (nearly) single spacecraft level (rather than at a fully multi-spacecraft level).
Therefore, the normalŝnα are not related to each other through Gauss’s law, but through
the (unknown) form of the surfaceU = C. This surface is considered to contain the mo-
tional parameters in order to effect the time shifting of theBα

i ’s. Thus, the above variance
exhibits two characteristics. Firstly, it involves the variance at each spacecraft (i.e. the
sum overi). Secondly, it entails the sum over the different spacecraft normals (i.e. the
sum overα); the two characteristics being related through the form of the surfaceU = C.
The minimisation of this variance determines the surface and motional parameters as well
as, potentially, the individual boundary normals. Consider the case where the structure is
actually planar. Then the form of the variance above decouples into the individual single
spacecraft variances and a minimisation automatically should produce the MVA normals.
In general, how closely the solution coincides with an independent boundary normal anal-
ysis at the individual spacecraft will depend upon how consistent, statistically, the normals
are with the macroscopic nature of the sampled data (intervals selected, balance of motion
and curvature effects).

Minimisation using the normalŝnα implicitly would require a full inversion proce-
dure, and represents a truly multi-spacecraft and multichannel methodology. In that case,
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however, there is only an implicit weighting of each term: with too few spacecraft, or
too complex definitions of the motion or topology, the information will be conflicting and
optimisation with respect to all coefficients will not be possible. An explicit use of the
normals, however, can be viewed as being halfway between the full-blown, combined
methodology and the discrete methodology we have discussed in the preceding sections
(where curvature actually exists). Such an explicit minimisation combines the normalsn̂

α,
determined separately with each spacecraft data set, in the scheme of the variance defined
above. The normals, considered to be independently calculated (and therefore part of the
input data), must be weighted according to the confidence we have in them in the light
of the uncertainties that they may possess as discussed in section11.5.2(random or sys-
tematic). In the case of a planar structure, for instance, in which systematic uncertainties
would not be present, this reduces to the planar-DA method.

Clearly, one can also limit the procedure by primarily solving for the motion (given an
assumption of fixed curvature) or for the curvature (given an assumption of fixed motion).
Under the assumptions of lowest order curvature and constant motion, the minimisation is
much simplified. The addition of more spacecraft, of other measurements (relatingv, n̂,
B, etc.), or other physical relations (for example, coplanarity, Rankine-Hugoniot relations
for shocks), can also allow some statistical optimisation (by general least squares or other
means) of motional or curvature parameters. For planar structure, for example, equations
analogous to the type presented in equation (11.10) can be directly solved forv and n̂

(as in theRussell et al.[1983] study). The issue of weighting is then not relevant, of
course, since the normals are not independently calculated. Hence the inversion is a little
artificial in these cases and only mutually consistent with the macroscopic assumptions,
not necessarily the data characteristics.

11.6 Conclusions

This chapter has introduced a methodology for a magnetic field-based, discontinuity
analyser technique which is suitable for multi-spacecraft analysis. It has discussed con-
ceptually the issues arising for the study of different structures, particularly separating the
approach required for (nearly) planar structures and significantly curved discontinuities.
We also describe the application of the method to simulated and actual data (from 2 or
more spacecraft). Such application of the discontinuity analyser (DA) technique requires
more detailed examples in the future to fully test its behaviour. The success of the analysis
depends on the degree of stationarity, and the planarity properties, of events and tests for
these form part of the analysis. These pre-selection methods have been explicitly described
here and have been implied in the description of procedure. The restrictions introduced by
limitations in the number of spacecraft has also been addressed.

The planar technique, together with the associated motional analysis, has been demon-
strated here, using example output from simulated data. The method relies on the indepen-
dent determination of boundary normals to give a direct demonstration of planarity, which
endows this method with an internal consistency between the (planar) model and the data
characteristics. We have explored the natural progression from motional to topological pa-
rameters which can be extracted by considering, in degrees, the introduction of curvature.
Thus, for planar structures one can potentially determinev‖, a‖, and a uniquên for the
boundary. Uncertainties lead to a playoff between the determination ofv‖ anda‖, how-
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ever, and events need to be particularly clean (in terms of noise, or the absence of complex
properties) to analyse deviations from planarity. If the structure is non-planar, less infor-
mation can be determined about the motion. The nature of the obtained parameters of
course also depend upon the degree of stationarity found.

In general, therefore, topological and motional parameters compete for their represen-
tation in the data and typically we must attempt a lowest order determination of them,
or know, or make assumptions, about their presence for particular events. For instance,
two main issues regarding curvature analysis (surface fitting) are firstly, that the nature
of the motion must be assumed (say, that of constant velocity) in order to attempt the
analysis, and secondly, that boundary normals must be determined independently to give
information on the surface geometry, where single spacecraft methods (MVA) for this de-
termination are sensitive to the presence of curvature in the magnetic field. Data examples
have been discussed to investigate this sensitivity as well as the general effect of natural
noise, present in real (measured) events. A possible selection test, suitable for thin bound-
aries (for which the effect on the normals is minimised), has been proposed. It is apparent,
then, that internal consistency of the method is weakened with the adaption to curved sit-
uations, except within the thin boundary data regime. We explored briefly the problem of
constructing a self-consistent procedure for the curved-DA method.

We have had in mind an assumption that “multi-” actually means up to four spacecraft,
this being the minimum required for adequate, three dimensional sampling. Although, in
principle, the method can be generalised to any number of spacecraft, the method pro-
posed here may not be the best which can be devised. Multi-instrument data, of course,
may also extend the method. The use of other measured quantities than the magnetic field
can add information on the properties of the structure sampled if used independently in the
analysis. Its combined use, in a multi-spacecraft sense, must be treated with caution, how-
ever, because of the disparity in data resolution and quality of common quantities (see, for
example, Chapters8 and9, for caveats on use of multi-instrument data in single spacecraft
analysis, and Chapters6 and17, for a discussion of plasma moment determination and
use).

In summary, if a structure is non-planar, it is difficult, if not impossible, to characterise
its topology and motion fully. Direct analysis of surface topology is limited by the need
to ensure internal consistency with the normal analysis, i.e. any surface analysis will af-
fect the interpretation of the normals. Thus, curvature effects cannot be unambiguously
determined in most situations. It is never known whether the curvature analysis is fun-
damentally in error as a result of an acceleration in the motion which has not been taken
into account. Furthermore, for real events, determination of non-planar surface forms will
depend upon the separation of noise and quality of each spacecraft normal from the pa-
rameters sought, as well as on the degree of stationarity found. For these reasons, we also,
briefly, introduced the concept of a combined self-consistent methodology, which involves
defining and solving a full inversion problem. The crux of this approach lies in the weight-
ing of the various elements during the minimisation process, which endows the technique
with its self-consistency. This will provide a fruitful area of development for the future.
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Appendix

11.A Model Examples

A number of simple models have been employed to simulate a pure boundary structure
(to which wave, noise and instrumental effects can be added). Some of these, and their
properties, have been presented inDunlop et al.[1996] and are therefore not reproduced
here. The tangential field models are briefly defined below as key examples used in the
tests of the technique summarised in Section11.4.

11.A.1 Planar Model

The simplest model used to generate the data for a planar tangential discontinuity is
defined as follows. In model cartesian coordinatesBz is zero, whileBx andBy depend
only on the coordinatez, thereby ensuring a divergence-free field. In the particular model
chosen the magnetic field maintains a constant magnitude while rotating in thexy plane
from parallel to thex axis for z � 0 to an angleθ0 to thex axis for z � 0, the major
change taking place betweenz± d, the thickness of the discontinuity.

Mathematically this is expressed as

B = B (cosθ(z) , sinθ(z) , 0)

whereB is the magnitude of the field andθ(z) rotates the field through an angleθ0 across
the discontinuity, thus:

θ(z) =
θ0

2
{1 + tanh(z/d)}

Figure11.11a is a schematic diagram of the model.

11.A.2 Non-Planar Models

We shall define two basic models for a pure 2-D discontinuity, in both of which the
strength of the field decreases to zero on approaching the boundary from one side, before
flipping direction and increasing its strength on the other side. Mathematically, they are
defined as follows:

b = ∇ϕ × ẑ ; ϕ ≡ B0l log

[
2 cosh

(
g(x, y)

σ

)]
where 2σ is the boundary thickness andg(x, y) = const represents a set of curves as
described below.

There are two interesting classes of this type of model which have been used in the
simulation tests of the planar-DA technique (see Section11.4), namely: point-similar and
curve-similar.

1. Point-similar
The essential features of this model are depicted in Figure11.11b, where, for illus-
tration, we have taken a circular geometry, with

g(x, y) ≡ R −

√
x2 + (y − R)2 ; y < R
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Figure 11.11: Schematics of the form ofB for the example models discussed in the text.
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andR is the radius of curvature of the surface of the discontinuity in thexy plane.
The point(0, R) is its centre in this plane (the surface is of infinite extent in the
z-direction).

2. Curve-similar
For this class

g(x, y) ≡ y − f (x)

wherey = f (x) represents the surface of the discontinuity in thexy plane. To
illustrate this, consider two forms of surface.

(a) A parabolic discontinuity, for whichf (x) ≡ ax2
; a = 1/2R, with R being

the radius of curvature of the parabola at its nose (x = 0). Figure11.11c shows
the characteristics of this model.

(b) The circular discontinuity, for whichf (x) ≡ R −
√
R2 − x2, whereR is

defined as before, depicted in Figure11.11d.

The principal difference between the models lies in the position of the field lines (and
hence the current distributions) on either side of the discontinuity surface, relative to the
boundary itself. In the first case, point-similar, the field lines follow the shape of the
surface at a constant distance perpendicular to the closest point on the surface. Thus, for
a circular discontinuity, Figure11.11b, the field lines are semicircles with the same centre
point(0, R), but with different radii as compared to the surface. The corresponding case of
a parabolic geometry, for the point-similar class, is a little more subtle. On the other hand,
the curve-similar, models have field lines which are a constanty-distance from the surface.
For example, consider the case of a semicircular surface for this class, as in Figure11.11d.
It is seen that the field lines are semicircles of the same radius, but different centre points
(displaced along they axis) as compared to the surface. A similar geometry is apparent in
the parabolic case, Figure11.11c.

Curve similar models are easier to construct analytically (and computationally), but
possess some undesirable features. These are that for a general surface,y = f (x), the
current density can increase monotonically away from the nose atx = 0, whereas for the
point-similar model the current is naturally constant along the surface of the discontinuity.
Furthermore, for the circular cases, the curve similar model does not describe the field
outside of the region,−R < x < R, while the point-similar model does.

Finally, the point-similar model allows the field lines to evolve from straight (y =

−∞) to finite curvature geometry (y > −∞), whereas this is not the case for curve-similar
models. One drawback of the circular, point-similar model is that the current density can
approach a delta function at the centre point(0, R). The point similar model is used in
the simulations described later in Section11.4, being cautious not to approach the centre
point.
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12.1 Introduction

All physically observable field parameters, such as particle populations, electric and
magnetic fields, vary in both space and time, and the understanding of the physical pro-
cesses within the medium requires knowledge of both the temporal and the spatial vari-
ations. The ISEE-1 and -2 mission, launched in 1977, was the first attempt to separate
systematically temporal and spatial gradients; two satellites allow the determination of the
component of the spatial gradient in the direction of their separation vector.

The determination of all three components of a spatial gradient requires at least four
spacecraft. These spacecraft define a polyhedron in space. Clearly the success with which
any spatial gradient can be measured depends upon the size and shape of the polyhedron,
and for the Cluster mission much thought has been given to the optimum geometry to meet
specific scientific objectives.

In this chapter we examine from first principles the least squares determination of the
spatial gradient using data acquired simultaneously from four or more spacecraft. It is
found that the gradient is always expressed in terms of the inverse of a symmetric tensor
formed from relative positions of the spacecraft. It is shown that this same tensor de-
scribes certain basic geometrical properties of the polyhedron defined by the spacecraft:
its characteristic size (mean square thickness) in three mutually orthogonal directions, and
the orientation of these directions in space. Conversely, these six geometrical parameters,
three characteristic dimensions and three angles, define completely the symmetric tensor;
therefore they contain the totality of the geometrical information required to determine the
spatial gradient by the least squares method. These results are in agreement with what
one intuitively expects: that the quality of the polyhedron for the determination of spatial
gradients will involve its size, its anisotropy, and the orientation in space of that anisotropy.

This geometric tensor is shown to be closely related to the inertia tensor. In the special
case of four spacecraft, the product of the three characteristic dimensions is exactly three
times the volume of the tetrahedron; for this reason it is called the “volumetric” tensor.

The importance of the volumetric tensor for describing the geometry of a polyhedron
was first noted by J. Schœnmækers of ESOC Flight Dynamics Division [private commu-
nication], but its fundamental importance lies in the key role it plays in the determination
of spatial gradients, for which purpose it must be inverted. The magnitude and the direc-
tion of the smallest characteristic dimension define how well the spatial gradient can be
determined or, indeed, whether it can be determined at all. The values of the other two
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characteristic dimensions of the tetrahedron, and their directions, are required to estimate
the precision of the gradient determination in both magnitude and direction.

Whatever the number of spacecraft used, each spacecraft will follow its own individ-
ual trajectory independently of the others. Therefore the size and shape of the polyhedron
will vary continuously along the orbit. This ensures that most of the time the separation
geometry will not be ideal. The volumetric tensor, through its eigenvalues and eigenvec-
tors, provides a description of the geometry of the polyhedron which is intuitively simple
and yet adequate to evaluate the geometric worth of the data for studying any particular
scientific objective. This is explained further in Chapter13. Of course, the final evaluation
of the quality of the gradient determination is a combination of both orbital geometry and
physical data quality considerations, as described in Chapter17. And its overall scien-
tific utility also depends upon the nature of the physical problem being investigated, as
discussed in Chapter13.

12.1.1 Timing

Multi-spacecraft observations exhibit a symmetry between space and time: the same
physical observables are measured not only at different point in space, but also at different
instants in time. Methods which may be used for resampling, so as to bring data from
different instruments onto a common timeline, have been discussed in Chapter2.

In all cases, it is necessary to use the spacecraft position at the time the physical mea-
surement is made. In the case of a boundary, its motion is then obtained with respect to
the orbital motion of the spacecraft.

For the determination of spatial gradients (Section12.3), it is assumed that all physical
measurements, including the spacecraft position coordinates, are brought to a common
timeline using the methods described in Chapter2. It is also assumed that the data have
been smoothed (see Chapter2) to eliminate all short period fluctuations associated with
wave disturbances (see Chapters3 and4), so that only large-scale variations remain.

If the data sampling interval becomes too large, the resampling becomes convoluted
with the spatial gradient which we are trying to measure. And if it becomes comparable
with the tetrahedron transit time (the time required for the spacecraft to travel a distance
comparable with the size of the tetrahedron), then the whole concept of a multi-spacecraft
mission (to measure spatial gradients) fails.

12.1.2 A Simple Boundary Crossing

Let us assume that a discontinuity lies in a plane defined by the direction of its normal
n̂, and that this plane is moving in the directionn̂ with velocity V . In the simplest case
(the one considered in Section10.4.3) the discontinuity can be identified unambiguously
on all four spacecraft. Let it be observed at timetα by the spacecraftα, 1 ≤ α ≤ 4,
which is located at positionrα. These timestα are assumed to be well determined, with
no possibility of inconsistency. It is then easy to determine bothn̂ andV . During the time
tα−t4 the plane of the discontinuity moves along the normal direction a distanceV (tα−t4)

which is equal to the projection of the separation distancerα − r4 onton̂,

(rα − r4) n̂ = V (tα − t4)

where spacecraft 4 has arbitrarily been taken as the reference.
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Introducing the vector

m =
n̂

V
(12.1)

this may be written
D m = T (12.2)

whereD is the 3× 3 matrix (not a tensor) defined by

D = ( r1 − r4 , r2 − r4 , r3 − r4 )

andT is the linear array (not a vector)

T =

 t1 − t4
t2 − t4
t3 − t4


This set of equations (which are equivalent to equation10.20in Section10.4.3) is solved
by finding the inverse matrixD−1 such that

D−1D = I = the unit operator(= δjk) ;

hencem is found,
m = D−1T (12.3)

Note that a necessary condition for a solution (i.e., for the matrixD−1 to exist) is that
|D| 6= 0. This condition is satisfied if, and only if, the four spacecraft are not coplanar.

Although equation12.3yields a solution, this solution is unsatisfactory.

1. The method is totally incapable of handling relative time differences determined
independently between each of the six different pairs of spacecraft; these time dif-
ferences may be subject to experimental errors and therefore, in the mathematical
sense, they will be mutually inconsistent.

2. The method cannot be generalised to more than four spacecraft.

3. There is a lack of symmetry in the use of the satellite positionsrα and the timing
informationtα, despite the fact that the four satellites are identical. Of course, this
consideration is purely aesthetic.

In the following section we present a treatment of the problem which overcomes these
criticisms. It is a homogeneous least squares method applicable to four or more space-
craft, and which can be applied to either small or large-scale structures.For small-scale
structures it yields the normal and the speed of motion of a plane spatial structure; and
for large-scale structures it yields a linear approximation to the spatial gradient.The
same results are obtained explicitly by a symmetric interpolation method described in
Section14.2; this method, which uses barycentric coordinates, has also been extended to
higher order interpolation.

In the rest of this chapter, the dyadic vector and tensor notation used in most of this
book is replaced by the summation convention whenever this simplifies the mathematics.
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That is, a tensorX is written in terms of its representationXij in some arbitrary orthog-
onal coordinate system; and when in any expression a term contains a product of two
subscripted array elements with the same Latin index, then that term is understood to be
summed over the values 1, 2 and 3 of the index. Summations over Greek indices, used to
indicate the spacecraft, are written explicitly.

12.2 Orientation and Motion of a Plane Discontinuity

Consider a cluster ofN spacecraft, whereN ≥ 4. Since they are to be treated symmet-
rically, it is convenient to identify their mean position, which we call the “mesocentre”;
this coincides with the centre of mass if they have identical mass. Letrα be the position
of spacecraftα relative to this mesocentre. Then,

N∑
α=1

rα = 0 (12.4)

The relative positionsrα, and the position the mesocentre, are all calculable from equa-
tion 12.4and the known orbital positions of theN spacecraft.

12.2.1 A Symmetrical Treatment of the Simplest Case

Consider the example of Section12.1.2, but with observations fromN spacecraft, the
time of observation on spacecraftα beingtα. We determine the “best” values ofn̂ andV
by minimising the expression

S =

N∑
α=1

[
n̂ · rα − V (tα − t0)

]2
wheret0 is some origin of time. Using equation12.1, this equation may be written

S =

N∑
α=1

[
m · rα − (tα − t0)

]2
=

N∑
α=1

[
mk rαk − (tα − t0)

]2
Here the only undetermined quantities aret0 and the three componentsmk of the vector
m. Therefore we minimiseS by putting∂S/∂t0 = 0 and∂S/∂mk = 0, to obtain

N∑
α=1

[
mj rαj − (tα − t0)

]
= 0 ,

N∑
α=1

[
mj rαj − (tα − t0)

]
rαk = 0

The first of these equations may be written, using equation12.4,

t0 =
1

N

N∑
α=1

[
tα −mj rαj

]
=

1

N

N∑
α=1

tα

t0 is simply the time at which the mesocentre of the polyhedron crosses the discontinuity.
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The second equation may be expressed

mjRjk =
1

N

N∑
α=1

tαrαk (12.5)

where

Rjk =
1

N

N∑
α=1

rαj rαk (12.6)

This tensor plays an essential role in the determination of spatial gradients.For reasons
explained in Section12.4.3where its geometrical properties are studied in the special case
of a tetrahedron,R is called the “volumetric tensor”.

Provided that
|R| 6= 0 (12.7)

the inverse of the volumetric tensor exists and satisfies

Rjk R
−1
k` = δj` (12.8)

whereδj` is the Kronecker delta. Then equation12.5may be solved, to give

m` =
1

N

(
N∑
α=1

tαrαk

)
R−1
k` (12.9)

A necessary and sufficient condition for equation12.7 to be satisfied is that theN
spacecraft are not coplanar. In reality, this precise mathematical condition must be re-
placed by a more physical condition which compares the tensorR with the standard error
in the relative spacecraft positions as determined from the orbit analysis, and the standard
error of the experimental measurements themselves.

12.2.2 When Timing is only Relative

In general, geophysical events cannot be identified and unambiguously time-stamped
on each of the spacecraft. The best that can be done is determine time delays of the obser-
vations made on one spacecraft with respect to those made on each of the other spacecraft,
for example, by cross-correlation of the different data streams. WithN spacecraft, this
yieldsN(N − 1)/2 time delays

tαβ = tα − tβ

with 1 ≤ α ≤ N and 1≤ β < α.
To determine the boundary normal directionn̂ and the relative velocityV , we minimise

the function

S =

N∑
α=1

N∑
β=1

[
n̂ · (rα − rβ)− V tαβ

]2
(noting thattβα = −tαβ =). Once again, we introducem defined by equation12.1, to
obtain

S =

N∑
α=1

N∑
β=1

[
m`(rα` − rβ`)− tαβ

]2 (12.10)
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Putting∂S/∂mk = 0, we obtain

N∑
α=1

N∑
β=1

[
m`(rα` − rβ`)− tαβ

][
rαk − rβk

]
= 0

which is

m`

N∑
α=1

N∑
β=1

(rα` − rβ`)(rαk − rβk) =

N∑
α=1

N∑
β=1

tαβ(rαk − rβk) (12.11)

The left-hand side of this equation may be expressed

m`

N∑
α=1

N∑
β=1

(rα`rαk + rβ`rβk)−m`

N∑
α=1

N∑
β=1

(rα`rβk + rβ`rαk) = 2N2 mj Rjk (12.12)

where equation12.6 has been used to express the first two terms, and equation12.4 to
show that the last terms are zero. Thus equation12.11may be expressed in terms of the
volumetric tensor,

2N2 mjRjk =

N∑
α=1

N∑
β=1

tαβ(rαk − rβk)

which is analogous to equation12.5. As before, provided that|R| 6= 0, the inverseR−1

exists and we obtain

m` =
1

2N2

[
N∑
α=1

N∑
β=1

tαβ(rαk − rβk)

]
R−1
k`

which may also be written

m` =
1

N2

[∑
α 6=β

tαβ(rαk − rβk)

]
R−1
k` (12.13)

Here and elsewhere in this paper the symbol
∑
α 6=β indicates summation over theN(N −

1)/2 (and notN(N − 1)) terms withα 6= β, all of which have all been used to determine
the three componentsm`.

Caveat

TheN(N − 1)/2 time delaystαβ may not all be independent. In other words, the
condition

tαβ + tβγ + tγα = 0 (12.14)

may or may not be satisfied exactly forα 6= β 6= γ 6= α. This depends upon how
the delays are determined. There are many methods, of which the two employed most
frequently are probably:

• determine the delay corresponding to the maximum value of the cross-correlation
function, and
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• place two waveform plots, one over the other, and slide them around until “it looks
about right”.

It is not clear whether equation12.14is satisfied when the first method is used between
instruments which do not have identical transfer functions and internal noise characteris-
tics, and which do not sample at precisely the same rate; this latter disparity requires that
at least one of the data sets be resampled before cross-correlation is possible (see Chap-
ter 2). But equation12.14is certainly notexactlytrue for the second method. And there
are probably other ways to determine relative time delays, and it is impossible to predict
whether they will satisfy equation12.14.

If, however, condition12.14is satisfied, theN(N − 1)/2 equations are redundant. If
it is satisfied for all values ofα, β andγ there are onlyN − 1 independent time offsets
tαβ . In particular, for four spacecraft, the sum12.10of the residuals is zero, and the least
squares method is formally identical to that of Section12.1.2.

12.3 Spatial Gradients

The cluster ofN ≥ 4 spacecraft can be used to determine the large-scale local spatial
gradient, as described below. It is assumed that all measurements are made simultaneously,
if necessary by resampling using the methods described in Chapter2. This includes, of
course, the determination of the spacecraft positions. High frequency fluctuations will also
have been removed from the data.

Let x be some parameter whose gradientk

k` =
∂x

∂r`
(12.15)

we wish to determine from the valuesxα measured simultaneously on each of the space-
craftα, 1 ≤ α ≤ N . Our criterion for optimising the value ofk is that

S =

N∑
α=1

N∑
β=1

[
k · (rα − rβ)− (xα − xβ)

]2
be minimum. This expression is identical to equation12.10, but with xα replacingtα
andk replacingm. Therefore the least squares value of the gradient is obtained from an
expression analogous to equation12.13, namely

k` =
1

N2

[∑
α 6=β

(xα − xβ)(rαk − rβk)

]
R−1
k` (12.16)

where the symbol
∑
α 6=β indicates summation over allN(N − 1)/2 independent terms

with α 6= β.

12.3.1 The Gradient of a Vector

The gradientxn` = ∂xn/∂r` of a vector quantityxn may be determined minimising
the function

S =

3∑
n=1

N∑
α=1

N∑
β=1

[
xnm(rαm − rβm)− (xαn − xβn)

]2 (12.17)
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To determinexn`, we perform partial differentiation ofS with respect toxnm to obtain
(see the derivation of equation12.13or, for details, the derivation of equation12.20with
λ = 0) an expression analogous to equation12.16,

xn` =
1

N2

[∑
α 6=β

(xαn − xβn)(rαk − rβk)

]
R−1
k` (12.18)

In effect, the gradientxn` has been determined independently for each componentxn of
the vector.

12.3.2 The Gradient of a Solenoidal Vector

Very often the vector field is solenoidal, that is, it is known to satisfy

∇ · x = xnn =

3∑
n=1

∂xn

∂rn
= 0 (12.19)

which is the case, for example, of both the magnetic field and the mass flux. This con-
dition may be used to attempt to improve the determination of∂xn/∂rm , or to estimate
the error in the determination; but caution must be exercised for reasons to be explained in
Section15.3. We wish to determine the parametersx′

n` = ∂xn/∂r` by minimising the func-
tion S of equation12.17subject to the condition12.19. We introduceF =

1
N2S + 4λxnn

whereλ is a Lagrangian multiplier (and the factors 1/N2 and 4 are introduced for later
convenience), and solve the equations∂F/∂λ = 0 and∂F/∂xnk = 0 (for n = 1, 2, 3 and
k = 1, 2, 3), to obtain equation12.19and

∂F

∂xnk
=

2

N2

N∑
α=1

N∑
β=1

[
x′
nm(rαm − rβm)− (xαn − xβn)

]
(rαk − rβk)+ 2λδnk = 0

This equation reduces to

x′
nm

∑
α

∑
β

[
(rαm − rβm)(rαk − rβk)

]
−∑

α

∑
β

[
(xαn − xβn)(rαk − rβk)

]
+ 2N2λδnk = 0

The first term is purely geometric, and may be expressed (compare equation12.12) in
terms of the volumetric tensor, to give

2 x′
nmRmk −

1

N2

∑
α

∑
β

[
xαn − xβn)(rαk − rβk)

]
+ 2λδnk = 0

which may be solved, thus

x′

n` =

[
1

N2

∑
α 6=β

[
(xαn − xβn)(rαk − rβk)

]
− λδnk

]
R−1
k` = xn` − λR−1

n` (12.20)
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wherexn` is defined by equation12.18. This expression satisfies equation12.19if∑
n

x′
nn =

∑
n

[
xnn − λR−1

nn

]
= 0

that is, if the Lagrangian multiplierλ is determined by

λ =

∑
n xnn∑
n R

−1
nn

(12.21)

Together, equations12.20and12.21determinex′

n` subject to condition12.19.

12.4 The Volumetric TensorR

The expressions12.9and12.13for the direction and speed of a moving boundary, and
the expressions12.16, 12.18and12.20for a spatial gradient, all contain the inverse of
the tensorR defined by equation12.6. This tensor, and its inverse, are of fundamental
importance. Note that in an arbitrary system of coordinates, the mesocentre

rb =
1

N

N∑
α=1

rα (12.22)

is no longer at the origin of coordinates (compare equation12.4), and the definition (equa-
tion 12.6) of R generalises to

R =
1

N

N∑
α=1

(rα − rb) (rα − rb)
T

=
1

N

N∑
α=1

rαr
T
α − rbr

T
b (12.23)

R is determined uniquely from the known orbital positions of theN spacecraft. Its
fundamental importance comes from the ubiquitous way in which it appears whenever
a boundary normal or spatial gradient is determined from multipoint observations, for
which purpose it must be inverted. (We note that the reciprocal tensorK of section14.3.1
is related toR, K =

1
4(R)

−1, as will be proved in section15.2). Mathematically,R cannot
be inverted if it is singular, that is, if one of its eigenvalues is zero, and the spacecraft are
coplanar. Physically, the equivalent condition is that one of its eigenvalues is less than the
uncertainty in the spacecraft position: the spacecraft are too close to being coplanar for
the spatial gradient to be determined completely. (The determination of spatial gradients
using the methods of this chapter and of Chapter14 is the subject of Chapter15.)

As will be shown in the following section, the tensorR is closely related to the size
and shape of the polyhedron. For this and further geometrical reasons explained in sec-
tion 12.4.3, R is called the “volumetric tensor” of the tetrahedron.

12.4.1 A Simple Geometric Interpretation

Consider a plane defined by its normaln̂. The mean square distanceσ 2(n̂) of theN
spacecraft from this plane is given by,

σ 2(n̂) =
1

N

N∑
α=1

[
n̂ · (rα − r0)

]2
=

1

N

N∑
α=1

(nj rαj − a)(nkrαk − a) (12.24)
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=
1

N

N∑
α=1

rαj rαknjnk − 2a
1

N

N∑
α=1

n̂ · rα + a2

wherer0 is any point in the plane, anda = n̂ · r0. It is easy to show that, for fixedrα and
n̂, the minimum value ofσ 2 occurs whena =

1
N

∑N
α=1 n̂ · rα . This is true whatever the

directionn̂; therefore

r0 =
1

N

N∑
α=1

rα = rb

The plane of minimum mean squares contains the mesocentrerb of the polyhedron.
Introducing the tensorR of equation12.23into equation12.24, the root mean square

“deviation” of the spacecraft from their mesocentre in then̂ direction may be expressed

RMS deviation = σ(n̂) =
√
Rjk nj nk (12.25)

The dimension, or thickness, of the polyhedron is twice this value:

dimension = 2 × σ(n̂) = 2
√
Rjk nj nk

As the direction of the unit vector̂n varies over 4π steradians, so the value ofσ(n̂) de-
scribes the surface of an quasi-ellipsoid. A line in any directionn̂ intersects this surface
at two points whose separation is equal to the RMS “thickness” of the polyhedron in that
direction. There are three directions in whichσ(n̂) is stationary: these are the principle
axes of the quasi-ellipsoid, defined by the eigenvectors ofR. We denote the corresponding
values ofσ(n̂) by a, b andc, with

a ≥ b ≥ c

a2, b2 andc2 are the eigenvalues ofR, anda, b andc represent respectively the major,
middle and minor semiaxes of the quasi-ellipsoid.

12.4.2 Relation to the Inertia Tensor

The volumetric tensor is closely related to the inertia tensor.
If theN spacecraft were located rigidly with respect to one another and rotating at an-

gular velocityω around an axis passing through the mesocentre, their angular momentum
would be

h =

N∑
α=1

{
rα ×m

∂rα

∂t

}
= m

N∑
α=1

{rα × (ω × rα)}

wherem is the mass of each spacecraft. This may be written

hj = m

N∑
α=1

εjk` rαk ε`mn ωm rαn = m

N∑
α=1

(
δjmδkn − δjnδkm

)
rαk ωm rαn

which is

hj = m

N∑
α=1

(
|rα|

2δjk − rαj rαk

)
ωk = Ijk ωk



12.4. The Volumetric Tensor R 317

whereIjk are the components of the inertia tensorI. Thus,

1

Nm
Ijk + Rjk = S2δjk where S2

=
1

N

N∑
α=1

|rα|
2 (12.26)

is a parameter which characterises the size of the cluster ofN spacecraft. The inertia tensor
and the volumetric tensor have the same eigenvectors and their eigenvalues are related by

1

Nm
I (n) + R(4−n)

= S2 for 1 ≤ n ≤ 3 (12.27)

The eigenvector associated with the largest eigenvalue of the inertia tensor is associated
with the smallest eigenvalue of the volumetric tensor, andvice versa.

12.4.3 The Special Case of a Tetrahedron

We have seen that twice the square roots of the eigenvalues, 2
√

R(n) for n = 1, 2 or
3, yield the characteristic dimensions 2a, 2b, and 2c, of the tetrahedron, in three mutually
orthogonal directions in space defined by the corresponding eigenvectors. It is proved
below that these characteristic dimensions have the following properties in the special
case of four spacecraft.

1. The volumeV of the tetrahedron defined by the four spacecraft is one third of the
product of the three characteristic dimensions. In other words,

V

8abc
=

1

3
which is V =

8

3

√
|R| (12.28)

The eigenvectorRc associated with the smallest eigenvalueR(c) is the direction in
which the tetrahedron is “flattened”. This is the component of the spatial gradient (or
the boundary normal) which is least well defined, as explained further in Chapter13.

2. If the spacecraft are coplanar,c2
= R(c) = 0 and the ratio of the areaA of the

quadrilateral defined by the four spacecraft to the product 4ab of the two non-zero
characteristic dimensions lies in the range

1
√

2
≤

A

4ab
≤ 1 (12.29)

where:

• the upper limit applies when the spacecraft lie at the four corners of a parallel-
ogram;

• the lower limit applies to the triangle defined by the spacecraft when any two
of them are coincident.

The eigenvectorRc corresponding to the null eigenvalue is the pole of the plane
defined by the four spacecraft.
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3. If the satellites are colinear,b = c = 0 and the overall distanceL between the outer
spacecraft is related to the characteristic dimension 2a by

1 ≤
L

2a
≤

√
2 (12.30)

where:

• the upper limit applies when two of the spacecraft are coincident midway be-
tween the other two;

• the lower limit applies when there are two pairs of coincident spacecraft.

The eigenvectorRa corresponding to the non-zero eigenvalue defines the direction
of alignment of the spacecraft.

It is interesting to compare the expressions12.28through12.30with the definition
(Section13.3.3) of the characteristic sizeL = 2a of the polyhedron.

Proof of the Expression for the Volume of a Tetrahedron

The expression12.28may be proved as follows. The volume of the tetrahedron with
apexes defined by the four vectorsrα for 1 ≤ α ≤ 4 is

V = ±
1

6

[
r1 − r4

]
·
[
(r2 − r4)× (r3 − r4)

]
(12.31)

= ±
1

6

{
|r1, r2, r3| − |r2, r3, r4| + |r3, r4, r1| − |r4, r1, r2|

}
where ∣∣rα, rβ , rγ

∣∣ = rα ·
(
rβ × rγ

)
The upper sign is used ifr1, r2, r3 form a right-handed triad with respect tor4, the lower
sign otherwise. When the position vectorsrα are measured from the position of their
mean,rb = 0 and equation12.22reduces to equation12.4which may be used, together
with the general properties of matrices, to eliminater4 from equation12.31. Thus,

|r2, r3, r4| = |r2, r3, −r1 − r2 − r3| = − |r2, r3, r1| = − |r1, r2, r3|

and similarly
|r3, r4, r1| = − |r3, r2, r1| = + |r1, r2, r3|

|r4, r1, r2| = − |r3, r1, r2| = − |r1, r2, r3|

Thus, when coordinates with origin defined by equation12.4 are used, equation12.31
simplifies to

V = ±
2

3
|r1, r2, r3| (12.32)

To prove equation12.28, we may use equations12.4and12.6, to obtain

Rjk =
1

4

[
3∑
α=1

rαj rαk − (r1j + r2j + r3j )r4k

]
=

1

4

3∑
α=1

rαj (rαk − r4k)
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The right-hand side of the above is the product of two 3× 3 matrices, with elementsrαj
andrαk − r4k, respectively,(α, j, k = 1, 2, 3). Hence, using the rule for the determinant
of a product of matrices,

|R| =
1

43

∣∣rαj ∣∣ |rαk − r4k|

Now, from equations12.31and12.32respectively

|rαk − r4k| = ± 6V and
∣∣rαj ∣∣ = ±

3V

2

so that

|R| =
9V 2

43
=

(
3V

8

)2

and the statement is proved.

An alternative proof of equation12.28is supplied in Appendix12.A, where the in-
equalities12.29and12.30are also discussed.

12.5 Discussion

In this chapter we have derived expressions for the homogeneous least squares deter-
mination of a boundary normal or spatial gradient from measurements obtained on four or
more spacecraft. The method allows the solenoidal condition (zero divergence) to be im-
posed when determining the gradient of a vector. The use of the method will be illustrated
in Chapter15.

All the expressions are derived in terms of the inverse of the symmetric tensorR, which
is defined in terms of the spacecraft spatial coordinates by equation12.23. In the particular
case of four spacecraft,R yields the volume of the tetrahedron via equation12.28; for
this reason it is called the volumetric tensor. It is closely related to the inertia tensor
(equation12.26). We note that the reciprocal tensor introduced in Chapter14 is shown in
Section15.2to be equal to1

4R−1, thus proving the equivalence of the linear barycentric
and the least squares methods of determining spatial gradients.

The eigenvalues of the volumetric tensorR yield the characteristic dimension (mean
square semi-thickness) of the polyhedron in three mutually orthogonal directions, plus
the spatial orientation of these directions. The converse is also true; because a symmet-
ric tensor is completely defined by its eigenvalues and eigenvectors, these characteristic
dimensions and their orientation in space completely define the volumetric tensor. There-
fore they, or parameters closely related to them, are to be recommended for describing
the geometry of the polyhedron. In Section13.3.3of Chapter13 the eigenvalues ofR are
expressed in terms of more intuitively descriptive parameters: the “size”, “elongation” and
“planarity” of the polyhedron, together with the corresponding (mutually orthogonal) axes
of elongation and of planarity.
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Appendix

12.A Spacecraft Non-Coplanar: Alternative Proof for the
Tetrahedron Volume

A shorter proof of equation12.28uses the fact that a unimodular affine transformation
leaves the value of the determinant (but not the matrix itself) unchanged. Therefore we
can conveniently chooser4 = 0, so that

Rjk =
1

4

3∑
α=1

rαj rαk

Then, using the rule for the determinant of a product and remembering thatR is a matrix
of dimension 4,

|R| =
1

44

∣∣rαj ∣∣ |rαk|
Whenr4 = 0 equation12.4 is not satisfied, and we must use equation12.31instead of
equation12.32: thus ∣∣rαj ∣∣ = 6V

so that, finally,

|R| =
(6V )2

44
=

(
3V

8

)2

12.B Spacecraft Coplanar

When the four spacecraft are coplanar, one eigenvalue is zero and the corresponding
eigenvector is normal to the plane of the spacecraft.

The area of the quadrilateral defined by the four spacecraft can be determined by con-
sideration of small out-of-plane perturbations. These perturbations must be applied in such
a way as

• to satisfy equation12.4, and

• not to change the direction of the eigenvectors ofR.

There are two configurations for which perturbations satisfying these conditions can read-
ily be found:

• the spacecraft lie at the four corners of a parallelogram, and

• two spacecraft are coincident, the four spacecraft thus defining a triangle.
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Spacecraft at the Corners of a Parallelogram

Let the four spacecraft locations be

r1 , r3 = −r1 ,

r2 , and r4 = −r2 ,
(12.33)

wherer1 andr2 are arbitrary. Consider the effect of perturbationsδr applied in a way
which preserves the validity of equation12.4:

r1 → r1 + δr , r3 → r3 + δr

r2 → r2 − δr , r4 → r4 − δr
(12.34)

To the first order inδr,

Rjk → Rjk + (r1j − r2j + r3j − r4j )δrk + δrj (r1k − r2k + r3k − r4k) = Rjk (12.35)

The first order perturbation ofR is zero, and neither the eigenvalues nor the eigenvectors
are perturbed. We now derive the second order perturbation of the smallest eigenvalue.

Let the perturbationδr be parallel to the eigenvectore(c), corresponding to the smallest
eigenvalue and perpendicular to the plane of the spacecraft, say

δr = ε e(c)

Following application of the perturbation12.34, the RMS thickness of the tetrahedron in
thee(c) direction is 2ε so that, from equation12.25,

λ(1) → λ(1) + 4ε2
= 4ε2

Simultaneously, spacecraft 4 is a distance 4ε above the plane of the (perturbed) triangle
defined by spacecraft 1, 2 and 3. The volume of the tetrahedron is

Volume =
1

3
× 4ε × area of the triangle 123=

1

3

√
λ(1)λ(2)λ(3) =

1

3

√
4ε2λ(2)λ(3)

Therefore

area of the triangle 123=
1

2

√
λ(2)λ(3)

The area of the parallelogram 1234 is twice the area of the triangle 123,

area of the parallelogram 1234=
√
λ(2)λ(3)

Two Spacecraft Coincident

Let the four spacecraft be located at

r1 , r2 , r3 , and r4 = r3 , (12.36)

wherer1, r2 andr3 are arbitrary. Consider application of the perturbations

r3 → r3 + δr r4 → r4 − δr (12.37)
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The first order perturbation ofR is

Rjk → Rjk + (r3j − r4j )δrk + δrj (r3k − r4k) = Rjk (12.38)

Again, the first order perturbation ofR is zero, and we derive the second order perturbation
of the smallest eigenvalue.

Let the perturbationδr be parallel to the eigenvectore(c)

δr = ε e(1) (12.39)

The RMS thickness in thee(c) direction is
√

2ε so that, from equation12.25,

a(1) → a(1) + 2ε2
= 2ε2

Following the perturbation12.37, spacecraft 4 is at a distance 2ε above the plane of the
triangle defined by spacecraft 1, 2 and 3. The volume of the tetrahedron is

Volume =
1

3
× 2ε × area of the triangle 123=

1

3

√
λ(1)λ(2)λ(3) =

1

3

√
2ε2λ(2)λ(3)

Therefore (spacecraft 4 being coincident with spacecraft 3)

area of the triangle 123=

√
1

2

√
λ(2)λ(3)

Thus we have proved the two planar configurations considered in section12.4.3yield
the limits of equation12.29. But we have still not proved analytically that these two
configurations do indeed correspond to the limiting (maximum and minimum) values ofA

in terms ofa andb. This result has been inferred by numerical simulation.

12.C Spacecraft Colinear

A similar comment applies when the spacecraft are colinear. For the two colinear con-
figurations considered in section12.4.3, it is easy to establish the limits of equation12.30.
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Götz Paschmann and Patrick W. Daly (Eds.),

ISSI Scientific Report SR-001 (Electronic edition 1.1)
c© 1998, 2000 ISSI/ESA

— 13 —

Tetrahedron Geometric Factors

PATRICK ROBERT AND ALAIN ROUX

Centre National de la Recherche Scientifique
Vélizy, France

CHRISTOPHERC. HARVEY

Observatoire de Paris-Meudon
Meudon, France

MALCOLM W. DUNLOP

Imperial College of Science, Technology and Medicine
London, United Kingdom

PATRICK W. DALY

Max Planck Institut für Aeronomie
Katlenburg-Lindau, Germany

KARL-HEINZ GLASSMEIER

Technische Universität Braunschweig
Braunschweig, Germany

13.1 Introduction

The geometrical shape of the tetrahedron formed by the spacecraft is an essential cri-
terion in the choice of scientific investigation which can be performed with data from a
multi-spacecraft mission, such as Cluster. The shape of this polyhedron evolves continu-
ously along the orbital trajectory of the spacecraft, and this shape has a major impact on
the accuracy of the determination of scientific parameters related to the spatial gradient,
such as the current density, which is discussed in Chapter16. The scientific importance
of the shape, combined with its variability, inevitably led to many proposals for “quality
factors” to attempt to describe the geometric shape of the tetrahedron, or for “performance
indicators”, to indicate the likely error of a particular scientific parameter.

While these early geometric factors were all one-dimensional, 2-D parameters to char-
acterise the geometrical shape of the tetrahedron have also been proposed, i.e., the “elon-
gation”E and “planarity”P defined in terms of the eigenvalues of the volumetric tensor
described in Chapter12.

In this chapter, we use theE andP parameters to define five characteristic types of
tetrahedra and we check the validity and the meaning of the 1-D geometric factors by a
numerical simulation using an “homogeneous reservoir of tetrahedra” in theE-P configu-
ration space. As a practical application, we present an example of the Cluster orbit, and the
associated computation of the 1-D and 2-D geometric factors. We represent these quan-
tities in theE-P diagram, which allows a better understanding of their meaning. Finally,
we demonstrate the limits of the 1-D geometric factors and point out the advantages of a
2-D geometric factor.

323
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13.2 Measurement Performance

Tetrahedral geometry is one of the principal factors affecting measurement perfor-
mance; that is the precision of physical parameters derived by comparison of data ac-
quired at four points in space. There are, in fact, three factors which affect this precision:
the tetrahedral geometry, the structure (in time and space) of the phenomena sampled, and
the inevitable experimental errors inherent to all physical measurements. Measurement
accuracy includes not only instrumental accuracy, but also timing and location accuracy.
As mentioned in the introduction, the treatment of errors is covered by Chapters11, 16,
17, in terms of the determination of different sets of criteria for each physical parameter
to be determined. Different analysis techniques are appplied to four-point measurements
to derive different physical parameters, such as the local current density (involving spatial
field gradients), wave vector or mode, or global structure (boundaries). Each technique
imposes different criteria on adequate sampling for measurement quality. Each of these
criteria could be monitored separately, or given differing emphasis, depending on which
particular physical property is of interest.

Measurement quality is therefore not determined only by the geometric “quality” of
the tetrahedron (or polyhedron). Even for events which do not evolve structurally with
time, the sampling achievedof the physical eventdepends upon the geometry (and scale)
of the tetrahedron relative to that of the physical structure (anisotropy of the phenom-
ena) present. For a highly anisotropic physical structure, a particular alignment of an
anisotropic tetrahedral spacecraft configuration may be optimal, for example, to deter-
mine the spatial gradient. Different relative event scales, however, will result in different
measurement performance for any given tetrahedral size and shape. Multipoint analysis
typically involves the determination of gradients so that, for any given polyhedron over-
all size, derived quantities will, typically, be sensitive to the tetrahedral geometry when
sampling similar physical structures.

Measurement quality depends also on the size of the tetrahedron, compared to the
product of the measurement time resolution and the spacecraft relative velocity with re-
spect to the physical structure, i.e. the interval the spacecraft travel into the structure within
one data accumulation period. Note that for the particle experiments the data accumulation
period is typically equal to the spacecraft spin, so as to sample a complete 3-D distribution
function. In the case of Cluster this is 4 seconds, which determines the minimum size the
tetrahedron should have for the various spacecraft/physical-structure relative velocities.

Consider Figure13.1, for example, which indicates the evolution of the spacecraft
configuration around a Cluster orbit for two proposed scenarios. Note how very different
the evolution is and how the geometry varies widely in shape and size over the orbit. The
insets show enlarged (by a factor of 50 with respect to the main figure) configurations,
projected into the plane of view. The first group of insets, at positions 1, 2, and 3, show a
highly elongated configuration at the southern magnetopause crossing (3). The orientation
of this can be changed (not simply) by changing the orientation at 1 and, for instance,
for some simulated mission phases has a more parallel alignment to the boundary. Faced
with such a predicted tetrahedral geometry, the physical parameters which can be well
determined depend upon the orientation with respect to the boundary. For such a nearly
1-D structure, techniques which determine those parameters depending on spatial structure
(gradients, such as for∇ ×B or ∇ ×V ) will typically require a configuration aligned with
the boundary (i.e., matching the small and large gradients), but techniques which analyse
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Figure 13.1: Evolution of the Cluster configuration around the nominal orbit for the day-
side phase. The insets show two options which both target the northern cusp with a regular
tetrahedron, but target the southern cusp with a regular tetrahedron only for the second
case. The first option is optimised for fuel. [Reproduced fromBalogh et al., 1997.]

macroscopic properties will benefit from an anisotropic configuration in different ways:
motional properties will be best sampled by perpendicular alignment, whereas boundary
shape (especially non-planar) is best sampled by parallel alignment.

A quality parameter that monitors only spacecraft configuration is particularly useful,
however, when sampling of structure is not important. Such a parameter would best reflect
performance relating to transient or fluctuating events, for instance, with no preferred ori-
entation to the global structure. A large number of events are not predictable and therefore
a regular tetrahedron is optimum in this situation. We call here a regular tetrahedron a
particular tetrahedron where the separations between each pair of points are equal. For the
second scenario in the figure, for instance, the target at 3 has been chosen to correspond
to a second, regular tetrahedron in an attempt to regulate the evolution over the orbit. The
effect of tetrahedral distortion in terms of geometric quality parameters is studied in detail
in the next section.

Optimum configurations in terms of either physical sampling or measurement uncer-
tainty, as discussed above, are only likely to be achieved over small segments of the orbit.
It would seem sensible, therefore, to attempt to optimise for data quality over selected
global regions, together with choice of spatial scale, as a primary constraint. For other re-
gions, use may be made of the natural distortion of the configuration to achieve preferred
orientations with respect to the sampled structure.

13.3 The Shape of the Tetrahedron

13.3.1 The 1-Dimensional Geometric Factors

Four points in space define atetrahedron. If the separations between each pair of
points are equal, then it is aregular tetrahedron. Four spacecraft will form a tetrahedron,
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which in general will not be regular. How can we specify the degree to which regularity
is achieved? A number of parameters have been proposed to accomplish this, which we
present and compare below.

The QGM Parameter

TheQGM parameter is defined as

QGM =
True Volume

Ideal Volume
+

True Surface

Ideal Surface
+ 1 (13.1)

The ideal volume and surface are calculated for a regular tetrahedron with a side length
equal to the average of the 6 distances between the 4 points.

QGM takes values between 1 and 3, and attempts to describe the “fractional dimen-
sion” of the tetrahedron: a value of 1 indicates that the four spacecraft are in a line, while
a value equal to 3 indicates that the tetrahedron is regular. There is nevertheless some
difficulty with this interpretation: it is perfectly possible to deform a regular (QGM = 3)
tetrahedron continuously until it resembles a straight line (QGM = 1) without it resem-
bling a plane at any time; thereforeQGM = 2 is not a sufficient condition for planarity.

The QRR Parameter

TheQRR parameter is defined to be

QRR =

(
9π

2
√

3
·

True Volume

Sphere Volume

) 1
3

(13.2)

where the sphere is that circumscribing the tetrahedron (all four points on its surface).
QRR is normalised to be equal to 1 for a regular tetrahedron; its minimum value is 0. This
parameter was selected from many on the basis of its usefulness in estimating the error in
the determination of the spatial gradient of the magnetic field. This is discussed in section
13.5.4.

The QSR Geometric Factor

Another of the 1-D parameters is known as theQSR geometric factor. This factor is
simply defined by:

QSR =
1

2

(
a + b + c

a
− 1

)
(13.3)

wherea, b, c are the lengths of the 3 axes of the pseudo-ellipsoid (see section13.3.2).

The QR8 Geometric Factor

Finally, another 1-D factor namedQR8 is defined by:

QR8 =
True Volume

Ideal Volume
(13.4)

These 1-D geometric factors are studied in Section13.4.3in order to establish a rela-
tionship between their values and the type of the tetrahedra defined in Section13.4.1. To
do this, we need to use a “reservoir of five types of tetrahedra” described in section13.4.2.
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13.3.2 A Geometric Representation of the Size, Shape, and Orienta-
tion of a Polyhedron

Since none of these 1-D parameters is sufficient to characterise both the shape of the
tetrahedron and the accuracy of theJ determination, we now introduce two parameters to
characterise the shape of the tetrahedron in a 2-D parameter space.

These two parameters are derived from the volumetric tensor introduced in Chapter12
in connection with the determination of spatial grandients. It was shown in Chapter15
that the linear barycentric and least squares methods of determining spatial gradients are
equivalent; therefore the volumetric tensor must contain all the relevant geometrical in-
formation needed to determine the spatial gradient by either of these two methods. This
suggests strongly that parameters which describe the volumetric tensor will be rather use-
ful in practice. It may also be noted that the volumetric tensor, and parameters derived
from it, are valid for a general polyhedron defined by four or more spacecraft.

The volumetric tensor is symmetric. A symmetric tensor describes a quadratic form
which can be represented by an ellipsoid in space; this ellipsoid has three principal axes,
each lying in the direction of one of the eigenvectors of the tensor, with semi-length deter-
mined by the corresponding an eigenvalue.

We recall here the definition of the tensorR, fully defined in Section12.4(page315):

Rjk =
1

N

N∑
α=1

(
rαj − rbj

)
(rαk − rbk) =

1

N

N∑
α=1

rαj rαk − rbj rbk (13.5)

which is the component form of equation12.23.
WhenN is the number of vertices (or spacecraft),rαj is thej component of vertexα,

andrbj is the mean value, over allα, of rαj . If the origin of coordinates is chosen to be the
mesocentre, then the tensorR can be written

Rjk =
1

N

N∑
α=1

rαj rαk (13.6)

R is determined uniquely from the known orbital positions of theN spacecraft. It attempts
to describe the size and the anisotropy of the polyhedron (see Chapter12).

The principle axes of the pseudo-ellipsoid are given by the eigenvectorsR(n) of R. If
we order the eigenvalues as:

R(1) ≥ R(2) ≥ R(3) (13.7)

their square roots represent respectively the major, middle and minor semiaxes of the
pseudo-ellipsoid:

a =

√

R(1)

b =

√

R(2)

c =

√

R(3)

(13.8)

Thus, the volumetric tensor, and the associated ellipsoid, provide a simple way to vi-
sualise those features of the global shape of a polyhedron which are significant for the
determination of gradients. For instance, an ellipsoid reduced to a sphere corresponds to
a regular polyhedron, an ellipsoid reduced to a plane ellipse corresponds to the spacecraft
being coplanar, and an ellipsoid reduced to a line corresponds, of course, to the alignment
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of the spacecraft. The significance of the non-zero eigenvalues in the case of four space-
craft is explained in Section12.4.3. Again considering only four spacecraft, it may be
noted that, even if the volumetric tensor were to be renormalised so that the spacecraft of a
regular tetrahedron actually lie on (the surface of) the sphere, for an arbitrary configuration
the spacecraft would generally not lie on the corresponding ellipsoid.

13.3.3 Size, Elongation, and Planarity of a Polyhedron

The discussion of the preceding section, and of Chapter12, clearly demonstrates the
importance of the eigenvalues of the volumetric tensor with respect to both the description
of the polyhedron geometry and the calculation of spatial gradients.

Three parameters are needed to describe the three eigenvalues. It is useful for these pa-
rameters to be “intuitively descriptive”. One parameter may be used to indicate the size of
the polyhedron, and the other two, elongation and planarity, to describe its shape. Further-
more, in general (when it is anisotropic) two directions are required to define completely
the orientation in space of the polyhedron. The reasoning behind this choice of parameters
is as follows:

• When the polyhedron is isotropic, all three eigenvalues are equal.

• If it is stretched,a2 becomes greater than the other two eigenvalues; if stretched (or
rather, if squeezed in the two orthogonal directions) untilb = c = 0, the spacecraft
would lie on a straight line. We define theelongation, or prolateness, to beE =

1 − (b/a). Furthermore, the eigenvectorRa defines the direction of elongation.

• On the other hand, if the isotropic polyhedron is squashed in one direction,c2 be-
comes smaller than the other two eigenvalues; if squashed untilc = 0, the spacecraft
would lie in a plane. We define theplanarity, or oblateness, to beP = 1 − (c/b).
Furthermore, the eigenvectorRc defines the normal (or pole) of planarity.

• In general the polyhedron is both stretched and squashed, in mutually orthogonal
directions. Together, the elongation and planarity define completely (the ratios of)
the eigenvalues, and thus the physically important characteristics of the shape of
the polyhedron. It remains to define a parameter to describe the size; it is conve-
nient to use the largest eigenvector,a2, which is always non-zero, and to define the
characteristic size asL = 2 a.

To summarise, the physically important characteristics of the polyhedron may be de-
scribed completely by:

• characteristic sizeL = 2 a (in any convenient unit of length)

• elongationE = 1 − (b/a) • direction of elongationRa

• planarity P = 1 − (c/b) • normal of planarity Rc.

The direction of elongation and the normal of planarity are (by definition) orthogonal, and
so only three angles (e.g., the three Euler angles) are needed to describe completely the
orientation of the quasi-ellipsoid in three dimensions. These three angles, plus the values
of L,E andP , provide a complete description of the volumetric tensor. We may note that:
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Figure 13.2: The shape of the polyhedron as a function ofE andP .

• bothE andP are dimensionless, and lie in the range 0≤ E ≤ 1, 0≤ P ≤ 1;

• whenE = 1,P is undefined becauseb = c = 0.

The shape of the polyhedron asE andP vary over their permitted ranges is indicated
in Figure13.2. In Section13.4.1, we will define a limited number of general shapes to
characterise the tetrahedra during the investigation of this chapter.

Note that we have defined elongation and planarity to be 1− (b/a) and 1− (c/b),
whereas the eccentricity of an ellipse is defined bye =

√
1 − (b/a)2. Now e lies in the

same range 0≤ e ≤ 1 asE andP , and the question arises as to whether elongation
and planarity would have been better defined as

√
1 − (b/a)2 and

√
1 − (c/b)2. Then

the elongation and planarity would be simply the eccentricitiesec =

√
1 − (b/a)2 and

ea =

√
1 − (c/b)2 of the ellipsoid respectively in the plane of planarity (containing the

middle and major axes), and in the plane perpendicular to the elongation (containing its
minor and middle axes). Both definitions are acceptable, but the elongation and planarity
as defined above yield a more uniform distribution of points in theE-P plane. This point
is, of course, entirely subjective because there is noa priori uniform distribution; but the
statement is certainly true for typical Cluster orbits, as explained in Section13.5.

Note that if no single parameter can reproduce all the information contained in the
volumetric tensor, the converse is also true: it is not possible to express analytically the
various 1-D geometric parameters in terms of the volumetric tensor, because this tensor
does not describe the tetrahedron completely. A complete description would require the
position of three of the apexes with respect to the fourth apex, that is, nine independent
quantities of which three describe orientation and six describe shape; the symmetric volu-
metric tensor has only six independent quantities, of which only three describe shape.
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13.4 Study of the 1-D Geometric Factors over the Tetra-
hedron Reservoir

We now restrict our attention again to the special case of the tetrahedron, and study
several 1-D geometric factors in terms of the parametersE andP .

13.4.1 The Five Types of Tetrahedra

It is useful to limit the number of characteristic tetrahedra given in Figure13.2 and
to define only 5 representative types by means of theE andP parameters, Figure13.3
shows where, in theE-P plane, each type of tetrahedron would be. For low values ofE

andP we can define a “Pseudo-Sphere-shaped geometry” (bottom left corner of theE-P
diagram) corresponding to the pseudo-regular tetrahedra. For a high value ofP and a low
value ofE (top left corner of theE-P diagram) the ellipsoid is nearly a flat circle and we
can define it as “Pancake-shaped”. At the opposite side (bottom right corner) we can find
a long ellipsoid with a pseudo-circular section, that we can define as a “Cigar-shaped”.
Finally, at the top right corner, we can find tetrahedra which are both elongated and flat,
and we can call this type the “Knife-Blade-shaped”. Note that for elongated tetrahedron
the flatness does not have much physical significance. Tetrahedra that do not belong to
one of these categories or types, will be referred to “Potato type” and are located at the
centre of theE-P diagram. The tetrahedra which correspond to these 5 types shown in
Figure13.3are taken from a “five types reservoir” which is now defined.

13.4.2 Computation of a Reservoir of Five Types of Tetrahedra

Many tetrahedra corresponding to one or other of the five principal types shown in
Figure13.3have been constructed as explained below, and placed in a “reservoir”. Such
a reservoir is useful in simulations in order to study the consequences of each type of
configuration on the derived parameters (see Section13.4.3). All the tetrahedra have the
same mean inter-spacecraft distance:

〈D〉 =
1

6

6∑
α=1

dα (13.9)

When computing the reservoir we start with〈D〉 = 1. The origin of coordinates of
each tetrahedron is initially the mesocentre, with the axes being in accordance with Fig-
ure13.13.

Pseudo-Sphere. There are two components of this population:

• “Regular”, for which〈D〉 is equal to each of the 6 inter-spacecraft distances
dα.

• “Random”. The major part of the “Pseudo-Sphere” population is produced by
perturbation of a regular tetrahedron, all three coordinates of each vertex suf-
fering separately a random “displacement” uniformly distributed in the range
±〈D〉 × 15%.
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Figure 13.3: The five types of tetrahedra: Pseudo-Spheres, Pancakes, Cigars, Knife
Blades, and Potatoes.

Cigar. This population is derived from the pseudo-spherical population by random elon-
gation in thez direction, in such way as to obtain the distribution shown in Fig-
ure13.3.

Pancake. There are two basic forms of pancake population:

• “Triangular”, derived from a regular triangle in thexy plane (with the 4th
vertex taken at the mesocentre of the triangle);

• “Square ”, derived from a square in thexy plane.

In both cases, the three coordinates of each vertex are perturbed by a random amount
uniformly distributed in the range±〈D〉 × 20%.

Knife Blade. This population contains three components:

• “Long Triangular” derived from the Triangular Pancake scaled in thex di-
rection by a random factor in a such way to obtain the distribution shown in
Figure13.3;
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• “Long Rectangular”, derived from the Square Pancake scaled in thex direction
by a random factor.

• a “Long Diamond”, defined from a regular plane diamond in thexy plane,
where the position of each vertex is perturbed by a random noise with an am-
plitude of〈D〉×15% in a random direction for each cartesian component, and
then scaled in thex direction by a random factor.

Potatoes. This population is derived from the Pseudo-Sphere type by elongation in both
thex andz directions by different random factors in a such way to obtain the distri-
bution shown in Figure13.3.

After computation of the nine populations of tetrahedra defined above, the coordinates
of each tetrahedron are computed with respect to its new (after perturbation of the ver-
tices) mesocentre coordinate system. Then each tetrahedron is scaled so as to have the
same mean inter-spacecraft distance〈D〉; the value has been arbitrarily fixed at 1000 km.
Finally, to randomise the spatial orientation of the tetrahedra, essential if we want to study
the role of the tetrahedron direction, each tetrahedron is “shaken” in all directions, via
three successive plane rotations, where the three rotation anglesθ, φ, β are uniform ran-
dom values.

To produce Figure13.3, we have used a different number of tetrahedra for each type,
as follows:

Regular = 10
Pseudo-Sphere = 200
Pancake (Triangular) = 100
Pancake (Square) = 100
Knife Blades (Long Triangle) = 70
Knife Blades (Long Rectangle) = 70
Knife Blades (Long Diamond) = 70
Cigars = 200
Potatoes = 150

These numbers are chosen so that all five basic types contain about the same number of
tetrahedra (200 for Pseudo-Sphere, 200 for Pancake, 210 for Knife Blades, 200 for Cigars,
150 for Potatoes), except the perfectly regular (10). It is worth noting that the cigar-type
tetrahedra are largely over-represented; this must be taken into account in the simulations.
In fact, there is noa priori “uniform” distribution for the shapes of the tetrahedra; any
distribution which occurs in practice will be the result of a deliberate choice of orbital
parameters for the spacecraft concerned.

13.4.3 The 1-D Geometric Factors and the Types of Tetrahedra

To study how the main 1-D geometric factors behave for each the five types of tetrahe-
dra, we use the 5-types tetrahedra reservoir defined in Section13.4.1. For each tetrahedron
of the five types studied, we have computed the main geometric factors (QGM ,QRR,QSR,
andQR8), together with theE andP parameters. The results are given in Figure13.4,
where thex axis is the cumulative number of tetrahedra in each types. The total number of
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tetrahedra in each type is also indicated at the top of the figure. Note that theQGM factor
varies in the (1–3) range, and the others parameters varies in the (0–1) range.

The small “S” category is the perfectly regular tetrahedron (the true sphere type). This
type has been added, with a low number of tetrahedra, to verify that each 1-D parameter
give the maximal value of its range (3 forQGM , 1 for the other parameters, except of
courseE andP ).

The Pseudo-Spheres type tetrahedra gives the expected result: theQGM , QRR, and
theQR8 factors gives effectively a value very close to 3 forQGM and 1 for the others.
Only theQSR parameter gives a value about 0.8, meaning that this kind of factor is very
sensitive to the low change of a regular tetrahedron. TheE andP parameters give the
most real indication of the shape, in contrast to the 1-D parameters alone, and show, of
course, that the elongation and planarity have low values already visible on Figure13.3.
As we will see, TheE andP parameters will be obviously in accordance with the other
types. Nevertheless, one should not forget thatE andP alone are not sufficient to describe
entirely the exact shape (see Chapter12). They are only 2-D geometric parameters, and
can indicate the main characteristics of a given tetrahedron; however, very much better
that a single 1-D parameter.

The Pancake type tetrahedra gives a more complex result. TheQGM factor gives the
expected result, a value very close to 2, with a small variance. TheQSR factor gives a
value near 0.5. On the other hand, theQRR factor gives a value which varies from 0
to 0.7, the 0–0.4 part corresponding with the subtype of the triangular pancakes, and the
0.4–0.7 part corresponding to the subtype of square pancakes. The behaviour of theQR8
factor is the same, but reaches only a value of 0.5. For these last two factors, it is not
surprising, since these parameters are being computed from the circumscribing sphere, or
for the volume of the tetrahedron, so a flat or a line tetrahedron leads to an infinite radius
or a zero volume, and then a factor value near zero. Once again, one can separate the
geometric factors giving information on the shape, such asQGM orQSR, from those such
asQRR orQR8 giving information on the accuracy of the measurement, as we will see in
the next section and in Chapter16.

The Knife Blades type gives also the broadly expected result. TheQRR and theQR8
geometric factors give a value very near zero, while theQGM factor, and, in a minor part,
theQSR factor give a value near zero (1 forQGM ) but with a rather high variance, these
factors being probably more sensitive to the difference from an absolutely long and plane
tetrahedron.

The Cigars type gives result which may be surprising, but can be easily understood.
TheQGM factor, in fact, does not make a large distinction between a cigar or a knife blade,
because in the two cases the tetrahedron is long, and then give a “fractional dimension” in
the range (1–2), with a high proportion close to 1. It is the same case for theQSR factor,
which yields very similar result with the cigars type and the knife blade type, with a lower
variance. This phenomena will be studied in details on the next section.

The “Potatoes type” gives the expected results, since the potato is an undefined shape,
between the other well identified types, and gives values about 2.3 forQGM factor (0.65
if we normaliseQGM in the 0–1 range) and about 0.5 for the others.

In conclusion, the study of the 1-D geometric factors with the 5-types of tetrahedra
is limited, since the results are not surprising, although this kind of study allows us to be
precise about the behaviour of these 1-D geometric factors with characteristic tetrahedra.
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13.5 Study of the 1-D Geometric Factors with theE-P Pa-
rameters

The method used to study the meaning of the 1-D geometric factors is to plot the value
of these parameters on aE-P diagram. To do that, we need a “homogeneous tetrahedron
reservoir”, whose theE andP values must cover all theE-P plane. Then, for each
of these tetrahedra, the values of theQGM , QRR, QSR, andQR8 geometric factors are
plotted on theE-P diagram. This highlights the significance and limitations of this kind
of 1-D parameter.

13.5.1 Computing an Homogeneous Tetrahedra Reservoir

The method used to compute an homogeneous tetrahedra reservoir is explained below.
Firstly, we take tetrahedra corresponding to the 9 basic forms used in Section13.4.2.

For each basic form,Ni tetrahedra are chosen in categoryi, we perturb (always in the
mesocentre coordinate system) each vertex of the tetrahedra by a random noise with an
amplitude of〈D〉×10%. Then, we define a grid of 0.1 steps in theE-P plane and decom-
pose theE-P plane in 100 regular squares of 0.1 unit for each side. We also compute the
E andP parameters for each tetrahedron, and determine the corresponding square in the
E-P plane.

Secondly, we begin again this process as many time as it is necessary (with a maximum
of 10 times) so that each square of theE-P plane contains about 10 tetrahedra.

Finally, to avoid a bias, all the tetrahedra have the same mean inter-spacecraft distance
〈D〉, arbitrarily fixed at 1000 km. The final result is a reservoir of about 1000 tetrahedra
(ten per regular square of the 10× 10 grid).

Figure 13.5 shows the result, and we can see that there is indeed an homogeneous
distribution of representative points in theE-P plane. To make this reservoir, we used
numbers of tetrahedra, deduced from each basic forms, as follows:

Regular = 10
Pseudo-Spheres = 300
Pancakes (Triangular) = 150
Pancakes (Square) = 150
Knife Blades (Long Triangle) = 150
Knife Blades (Long Rectangle) = 150
Knife Blades (Long Diamond) = 150
Cigars = 300
Potatoes = 300

13.5.2 Cluster Orbit Tetrahedron in a Time Diagram

The more usual representation of the orbit of 4 spacecraft is a plot of the position of
each spacecraft, and many other parameters, versus time. In Figure13.6, we have plotted,
for a typical Cluster orbit, and over one orbit, from top to bottom:

• the four geocentric distances,
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Figure 13.5: The tetrahedra reservoir used in the paper. Notice the homogeneous coverage
of theE-P plane.

• the six inter-spacecraft distances,

• the volume of tetrahedron,

• the 3 geometric factorsQ′

GM ,QRR,QSR (note thatQ′

GM factor is equal to(QGM−

1)/2 to have the same range (0–1) that the others parameters),

• the 3 semiaxes of the ellipsoid,a, b, c,

• theE andP parameters.

The orbit has been given by ESA [Schœnmækers, private communication], and was
established initially on the basis of a launch in November 1995. Although the launch and
the Cluster mission are delayed (failure launch of Ariane 501), the arguments remain the
same. Regarding the geocentric distance, the spacecraft seem close to each other, and
the four geocentric distances are superposed on the figure. One can see however that the
inter-spacecraft distances vary in high proportions, and thus the shape of the tetrahedron
has a strong variation along one orbit. In particular, the volume of the tetrahedron can
reach a value very close to zero twice (at 26:30 UT and 33:10). This explains that, as we
can see in Figure13.6, theQRR geometric factor is very close to zero, and theQ′

GM and
QSR reach a low value, as we have seen in preceding section. Since the minor semiaxis
c of the ellipsoid is also equal to zero at these points and the middle semiaxisb has a
non-zero value, the tetrahedra is fully flat (planarity parameter equal to 1, and elongation
takes any value). Two other particular points can be observed, namely at 18:30 and 38:45,
whenb = a, and thusE = 0, corresponding to a regular sphere “flattened” in a single
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Figure 13.6: The main Cluster orbit parameters, and the 1-D and 2-D associated geometric
factors, for a typical orbit of December 24, 1995 (data provided by ESA).
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direction. Finally, Schœnmækers has shown that we can have two points in the orbit where
the tetrahedron is regular. We find the first point at 22:30 whereP = 0 andE have a low
value. The second point is in fact a small duration in the interval [37:30–38:45] where
P = 0 andE has a low value and then, after a short time, whereP has a low value and
E = 0. In both cases, these points can be rapidly found by examiningQ′

GM andQRR

which reach the maximum value of 1, corresponding to a regular tetrahedron. As we have
seen, theQSR value has a maximum value less than 1, this parameter being very sensitive
to the difference to a perfect tetrahedron.

This kind of figure can gives a good indication on the shape of the tetrahedron during
the orbit of the for spacecraft.

13.5.3 Cluster Orbit Tetrahedron in the E-P Diagram

In order to characterise quickly the shape of the Cluster tetrahedron along one orbit,
rather than plotting the tetrahedron characteristics with time as done in previous section,
another way is to plot an hodogram of the successive positions of the tetrahedron in aE-P
diagram. In Figures13.7and13.8, the shape of the Cluster tetrahedron is computed and
plotted in theE-P diagram along a whole orbit. The time step is 6 minutes, and the arrow
indicates the direction of the motion. The apogee corresponds to the portion of the figure
where the different points are very close together, the velocity being low and the shape
slowly varying. The perigee corresponds to the portion of the figure where the points are
widely spaced, because the spacecraft velocity along the average trajectory is large.

In Figure13.7 (December 24, 1995), as we have seen in the preceding section, the
tetrahedron is regular at 2 points along the orbit, the first point being located near(E, P ) =

(0.28, 0.01), and the second point is in fact a short period, from(E, P ) = (0.21, 0.01) to
(E, P ) = (0.01, 0.16). These two points where the tetrahedron is regular are, of course,
located in the region of the Pseudo-Spheres type (see Figure13.4). During the rest of the
curve, theE-P parameters can take extreme values. In particular, as we have seen before,
the tetrahedron is absolutely flat (P=0.99) for 2 points along the orbit, but never completely
linear (the maximum value ofE is 0.8 near the perigee). For another example orbit shown
in Figure13.8(June 24, 1996) the conclusions remain the same. During the course of the
Cluster mission, all possible shapes of tetrahedra are expected, and thus, simulations must
take into account any possible value in theE-P plane. Thus, the homogeneous reservoir
will be used for the following 2-D simulations.

13.5.4 E-P Diagram for 1-D Geometric Factors

The idea is the same as that in the previous section on the shape of the tetrahedron
along the orbit. In Section13.4.3, we have studied the geometric factors among the 5
types of tetrahedra defined in13.4.1. To have a more precise idea of what the different 1-D
geometric factors studied mean, we have used the homogeneous reservoir of tetrahedron
defined in Section13.5.1to compute the values of these 1-D parameters in theE-P plane.
This presentation has an important advantage: by examination of the values of these 1-D
geometrical parameters in theE-P diagram, we can directly correlate the value of the 1-D
geometric factors to the shape of the tetrahedron which is very best defined by theE andP
parameters, although, as we have already say,E andP are themselves an approximation
of the exact shape.
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Figure 13.7: Evolution of the shape of the Cluster tetrahedron along its trajectory in aE-P
diagram for December 24, 1995 (data provided by ESA).
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Figure 13.8: Evolution of the shape of the Cluster tetrahedron along its trajectory in aE-P
diagram for June 24, 1996 (data provided by ESA).



340 13. TETRAHEDRONGEOMETRIC FACTORS

The QGM and QRR Geometric Factors

The results are shown in Figures13.9and13.10, where we have plotted in theE-P
plane the values of theQGM geometric factor (Figure13.9) and theQRR geometric factor
(Figure13.10). The size and the colour of the circles corresponds to the values of the
geometric factors according to the legend given vertically on the right of each figure. At a
first glance, there is an important difference between the distribution of the values of these
factors in theE-P plane. Near the origin, for the low values ofE andP (“Pseudo-Spheres
type”), there is a similar behaviour of the two geometric factors, but, for high values of
E andP , we have a difference. From theQGM factor, we can see an illustration of the
fact that theP parameter becomes undefined whenE is near 1 (see Section13.3.3). In
Section13.4.3we interpreted the meaning ofQGM as the “fractional dimension” of the
tetrahedron, but this kind of diagram reveals a fundamental question: does the fractional
dimension exist? If we cover the sides of theE-P plane from the(0, 0) origin in the
clockwise direction and having in mind the Figure13.3describing the five types of tetra-
hedron, from the “Pseudo-Spheres” type to the “Pancake” type, and then to the “Knife
Blades type” and the “Cigars type”, theQGM value varies from 3 to 2 and then to 1 for
these 4 types, corresponding to the concept of a “fractional dimension”. There is no dif-
ference between a “Knife Blade” and a “Cigar”, both being considered as a line shape of
dimension near 1. If we consider however the transition between the “Cigars type” (D=1)
and the “Pseudo-Spheres type” (D=3) to finish the clockwise tour, we reach now a fun-
damental problem about the “fractional dimension”. These two shapes are in fact very
similar since the Cigars are deduced from the Pseudo-Spheres by a strong elongation in
an arbitrary direction (13.4.2), and the transition between these two shapes from dimen-
sion D=1 to dimension D=3 has to pass by the value of D=2 which, in this case, does not
correspond to a plane because the planarityP is near zero. In others words, a value of
QGM equal to 2 does not imply a flat tetrahedron; it could also correspond to a rather long
cigar with a rounded section. On the other hand, the fact that theQGM factor does not
distinguish between Knife Blade and Cigars (both being considered as a long tetrahedron)
cannot be essential, because this distinction becomes impossible nearE = 1. In conclu-
sion, theQGM geometric factor remains a good alternative to describe, in the strong limit
of a single 1-D parameter, the geometrical shape of a tetrahedron, particularly in the ex-
treme “pancake” region, although the concept of fractional dimension must be taken with
care.

Concerning theQRR geometric factor (Figure13.10), the result is fully different for the
high values ofE andP . The isovalues of this factor (not plotted here, but easily guessed)
are roughly decreasing with the radiusr =

√
E2 + P 2. This factor is not directly con-

nected to the geometric shape of the tetrahedron, because a Pancake type tetrahedron, a
Knife Blade type, and a Cigar type lead approximately to the same value forQRR. Never-
theless, this kind of parameter is rather well connected to the relative error measurement of
physical parameters such as∇ × B for which a regular tetrahedron is often the best shape
to minimise the measurement errors (at least for isotropic signature, see also Chapter16).
This property is easily explained by examining Figure13.10. In fact, this parameter has
minimum values nearE = 1 andP = 1, and particularly in the region where we have
simultaneouslyE andP close to 1 (Knife Blades). Thus theQRR factor can be seen as
an expression of thedegenerationof the tetrahedron (i.e., whenE or P are close to 1),
and so can be used as a real geometric factor for the physical determination of scientific
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Figure 13.9: Plot in theE-P diagram of theQGM geometric factor.
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Figure 13.11: Plot in theE-P diagram ofQSR geometric factor.
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parameters which prefer a regular tetrahedron.
Nevertheless, for further studies, we can also define directly the degeneration of a

tetrahedron as, for example,d =
√
E2 + P 2, or something of the same kind.

The QSR and QR8 Geometric Factors

Many 1-D geometric factors have been studied by examination of their values in the
E-P diagram. In fact, we can find a lot of factors for which theE-P diagram looks the
same as the two “preferred”QGM andQRR geometric factors. We present here only
theQSR and theQR8 geometric factors defined in Section13.3.1and already studied in
Section13.4.3.

TheE-P diagram for theQSR factor is very similar to that of theQGM factor, as we
can see in Figure13.11. Nevertheless, there is a difference near the low values ofE and
P (see Section13.4.3), where theQSR factor decrease very rapidly as soon as theE or P
values are not close to zero, thus confirming the “sensitivity” of this geometric factor to a
small deviation from a perfectly regular tetrahedron. Except for this difference, however,
the main conclusion is the same as for theQGM geometric factor.

Concerning theQR8 geometric factor (see Figure13.12), apart from a much smoother
transition, theE-P diagram of this geometric factor is very similar to theQRR one, con-
firming the fact that the normalised volume is a good indicator of the degree of “degener-
ation” of a tetrahedron.

13.6 Conclusions

The pseudo-ellipsoid, derived from the volumetric tensor of in Section12.4.1, provides
a useful and simple approach to characterise the shape of a tetrahedron, and its orientation
in space. TheE andP parameters allow an appropriate and easy-to-use description of
this shape, and has been used to define 5 main types of tetrahedra: “Pseudo-Spheres”,
“Pancakes”, “Knife Blades”, “Cigars”, and “Potatoes”. TheseE andP parameters are
used to define a 2-D geometric factor, which is a very efficient way to describe the shape
and the deviation to a regular tetrahedron rather than a single 1-D geometric factor, even
if it is as best as possible.

The definition of the 5 types of tetrahedron, and the making of a corresponding “reser-
voir of five type”, has allowed us to study the response of the main 1-D geometric factors
with respect to each type of tetrahedron.

On the other hand, the evolution of the shape of the tetrahedron along a typical Cluster
orbit has been studied in a time diagram. By considering the different 1-D geometric
factors, the length of the axes of the pseudo-ellipsoid, and theE andP parameters, we can
obtain a good description of the evolution of this shape. But the introduction of theE-P
diagram to plot, for instance, this orbit can give good information directly on the distortion
of the tetrahedron, and its evolution. Notice that in a real case, such as the Cluster orbit,
theE-P plane is well covered, and so all the values ofE andP must be taken into account
in any simulation.

The making of an homogeneous reservoir of tetrahedra in theE-P plane allows us to
check the validity, meaning, and limits of the main 1-D geometric factors. Factors such
as theQGM or QSR factors yield information on the geometrical shape, but, of course,
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incompletely because of the strong limitation in single scalar values. On the other hand, the
E-P diagram is not compatible with the notion of “fractional dimension” which remains
an interesting concept but which has to be precisely defined. Other factors, such as the
QRR factors and others, do not give real or direct information on the geometrical shape,
but can be considered as the degree of degeneration of the tetrahedron and so are well
related to the uncertainties in the determination of some physical parameters which prefer
a regular tetrahedron.

To conclude, this study is based on the idea that a regular tetrahedron is the ideal
form for good geometric measurements, but we do not forget that for special studies (for
example, a boundary crossing) an alignment of the four points can be considered as the
best form. Furthermore, for actual sampling of phenomena, we need to identify the relative
scale and the orientation in space of the tetrahedron, which requires not only the knowledge
of the length of the axes of the ellipsoid, but also their directions. When this information
is unknown or is unimportant (as for an isotropic structure), since a single 1-D parameter
is not sufficient to describe in a single scalar value the real shape of the tetrahedron, the
use of a 2-D factor such as theE-P plane remains essential.

Appendix

13.A Calculation of Geometric FactorsQGM and QRR

To calculate the geometric factors of equations13.1and13.2, we need to study the ge-
ometrical properties of a tetrahedron. We consider the tetrahedron defined by four points in
space numbered 1 to 4, with position vectorsr1, r2, r3, r4. Without any loss of generality,
we may consider only the differencesdα = rα − r4 in describing the points.

Area of the Sides

The area of a parallelogram bounded by two vectorsd1 andd2 is given by the magni-
tude of their cross product; any triangle is half of a parallelogram, so its area is

S =
1

2
|d1 × d2|

whered1 andd2 are the vectors for any two sides of the triangle.
We specify sideα of the tetrahedron to be the one opposite vertexα: that is, it does

not contain the pointα.

S1 =
1

2
|d2 × d3| , S2 =

1

2
|d1 × d3| , S3 =

1

2
|d1 × d2|

S4 =
1

2
|(d2 − d1)× (d3 − d1)| =

1

2
|d1×d2 + d2×d3 + d3×d1| (13.10)

The total surfaceS is the sum
∑4
α=1 Sα.
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Volume

The volume of a parallelepiped defined by three vectors in space is the triple product
of those vectors. Any tetrahedron is 1/6 of such a figure, hence

V =
1

6
|d1 · d2 × d3| =

1

6

∣∣∣∣∣∣
d1x d1y d1z
d2x d2y d2z
d3x d3y d3z

∣∣∣∣∣∣ (13.11)

Centre of the Circumscribing Sphere

To find the circumscribed sphere, we need the point that is equidistant from all four
vertices, i.e., we wantr such that

(r − rα) · (r − rα) = r2
− 2r · rα + |rα|

2
= ρ2

; ∀ α = 1,4

If we take point 4 as the origin, that is, if we use thedα vectors in place of therα, then
r2

= ρ2, the sphere radius, and this equation reduces to

2r · dα = |dα|
2

∀ α = 1, 3

This matrix equation for the centre of the sphere can be solved for the vectorr and the
radius of the sphereρ2

= |r|
2. Note that the matrix{dα} in this equation is the same

as the one whose determinant yields the volume of the tetrahedron (equation13.11). The
volume of the circumscribed sphere is then

V◦ =
4

3
πρ3 (13.12)

The Regular Tetrahedron

The regular tetrahedron of unit side is the ideal against which the true figure of the four
spacecraft is to be measured. We may take (Figure13.13)

d1 = (1, 0, 0)

d2 =

(
1

2
,

√
3

2
, 0

)

d3 =

(
1

2
,

√
3

6
,

√
6

3

)
d4 = (0, 0, 0)

Values for the regular tetrahedron of unit side length are listed in Table13.1.

The Geometric FactorsQGM and QRR

From the above quantities, it is easy to calculateQGM andQRR.
For QGM , we average the 6 distances between the 4 points to get the sideL of

the “ideal” regular tetrahedron, with volumeVideal = L3
√

2/12 and surfaceSideal =
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Figure 13.13: Conventions used to define a regular tetrahedron (1,2,3,4 correspond to the
spacecraft position).

Table 13.1: Values for regular tetrahedron

Quantity Value

Sα =
√

3/4

S =
√

3

V =
√

2/12

ρ =
√

6/4

V◦ = 4
3π
(

3
8

) 3
2

L2
√

3. The true volumeV and true surfaceS are found from equations13.11and13.10.
Then we can expressQGM as:

QGM =
V

Videal
+

S

Sideal
+ 1 (13.13)

ForQRR, the radius of the circumscribing sphere is calculated from equation13.12.
The actual volume of the sphere need not be calculated, for all the factors just go into the
normalisation factorN .

QRR =

(
9
√

3

8
V

) 1
3

· ρ−1 (13.14)
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Spatial Interpolation for Four Spacecraft:
Theory

GÉRARD CHANTEUR

CETP-CNRS
Vélizy, France

14.1 Introduction

Spatial interpolation of data between the spacecraft and estimation of the effects of
tetrahedron shape and attitude are key aspects of data analysis from four spacecraft. This
chapter presents the fundamental concepts of barycentric coordinates and demonstrates
their use for interpolating data within a tetrahedron. The reciprocal vectors, defined as the
gradients of the barycentric coordinates, play a key role in the determination of gradients,
the characterisation of discontinuities and the analysis of errors related to the uncertainties
on the spacecraft positions. The first application of this formalism to a four spacecraft
mission was proposed byChanteur and Mottez[1993]. The method as developed here
applies to only four spacecraft; it could likely be generalised to more than four spacecraft at
the expense of a greater algebraic complexity, but this development has not been pursued.

Barycentric coordinates are well-known tools in applied mathematics but not in space
physics. This is why a self-contained and detailed presentation is given in Section14.2
together with the introduction of the reciprocal vectors and the demonstration of their fun-
damental properties. Linear and quadratic interpolation schemes are presented as well as
the related estimators of gradients. The practical determination of the gradient of the mag-
netic field by these and others estimators along realistic orbits in a model magnetospheric
field is the object of Chapter15. Section14.3is devoted to the theoretical analysis of phys-
ical and geometrical errors. In a first step the expectation values and covariance matrix of
the reciprocal vectors are explicitly derived from the uncertainties affecting the spacecraft
positions for any configuration of the cluster. Then use is made of this result to predict
the expectation values and covariances of the estimated components of the gradient of a
vector field and to separate for errors of physical and geometrical origin. Section14.4
gives a detailed analysis of the errors related to the truncation inherent to any interpola-
tion scheme. To avoid unnecessary mathematical complication the analysis is conducted
for the one-dimensional model of a thick and planar current sheet. Section14.5presents
some other applications of the barycentric formalism, especially the derivation of the spa-
tial aliasing condition for plane waves sampled by a tetrahedron and the characterisation
of a planar discontinuity crossed by the cluster of spacecraft, i.e., the determination of the
normal components of the velocity and acceleration of the discontinuity in the frame of
the cluster. The conclusion section emphasises the usefulness of the barycentric formalism
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and its possible applications to other topics not investigated in this chapter.

14.2 Interpolation within a Tetrahedron and Estimation
of Gradients

In this and following sections involving the barycentric coordinates, dyadic notations⇒14.1
will be used systematically. A column vector is denoteda, its transposeaT being a line
vector. The dyadaT b denotes the scalar product of two real vectorsa andb, usually
writtena · b, hence:

a · b = aT b = bT a

Meanwhile the dyada bT is a tensor of rank two, the transpose of which isb aT . The
gradient of the scalar fieldu(r) is the vectorG[u] defined by the differential:

du = drT G[u] (14.1)

Similarly the gradient of the vector fieldv(r) is the tensor of rank twoG[v] defined by the
differential:

dvT = drT G[v] (14.2)

In cartesian coordinates this definition gives the usual definition for componentkl of G[v]:(
G[v]

)
kl

= ∂kvl , partial derivative of componentvl with respect to coordinatexk.

14.2.1 Linear Interpolation and Related Estimators

Definitions of the Barycentric Coordinates and Reciprocal Vectors

Let Sα (α = 1, 2, 3, 4) be the vertices of an irregular tetrahedron, or cluster, andrα be
their position vectors. A naturally occurring scalar fieldu(r) or a vector fieldv(r) is known
only by the valuesuα = u(rα) or vα = v(rα) measured at the verticesSα. The linear
interpolation of these values in the vicinity of the cluster requires four basic interpolating
functionsµα which are linear scalar functions of the position vectorr, and which satisfy
the constraintsµα(rβ) = δαβ (Kronecker symbol). Let the linearly interpolated fields,
denoted byL[u] andL[v] be given by the following expressions:

L[u](r) =

4∑
α=1

uαµα(r) (14.3)

L[v](r) =

4∑
α=1

vαµα(r) (14.4)

The four valuesµα(r), 1 ≤ α ≤ 4 are the barycentric coordinates of the pointr. They
can be expressedµα(r) = να + kα.r where theνα andkα are respectively scalar and
vector constants to be determined. Using the constraintsµα(rβ) = δαβ we deduce that:

µα(r) = 1 + kα.(r − rα) (14.5)

kα.(rβ − rγ ) = δαβ − δαγ (14.6)
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Figure 14.1: Barycentric vectors and coordinates. The shaded plane, perpendicular to the
axisµα, is an isovalue surface ofµα.

Equation14.6shows thatkα is normal to5α, the face of the tetrahedron opposite toSα.
Hence, for example, by making use ofrβγ = rγ − rβ , k4 can be written:

k4 =
r12 × r13

r14.(r12 × r13)
(14.7)

it appears to be proportional to the area of the face of the tetrahedron opposite to vertex
S4 and inversely proportional to the volume of the tetrahedron. Expressions for the other
reciprocal vectors are obtained through cyclic permutations of the indices. We callkα the
reciprocal vectors of the tetrahedron. From equation14.5, they satisfy:

kα = G[µα] (14.8)

Properties of the Barycentric Coordinates and Reciprocal Vectors

From a geometrical point of view, the barycentric coordinates have the following prop-
erties (see Figure14.1):

1. µα(r) is constant in a plane parallel to5α, the face of the tetrahedron opposite to
Sα.

2. µα(r) < 0 in the half space, relative to5α, not containingSα.

3. µα(r) = 0 for all points lying in5α.

4. µα(r) > 0 in the half space, relative to5α, containingSα.

5. 0< µα(r) < 1 for all points lying inside the tetrahedron
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It is worth mentioning the following properties of the barycentric coordinates and re-
ciprocal vectors due to their importance in numerous topics that can be addressed by a four
spacecraft mission. Firstly, from the definitions themselves it is obvious thatµα(r) andkα
are independent of the origin of the position vectors. Secondly, the linear interpolation of
a constant scalar field gives straightforwardly:

4∑
α=1

µα(r) = 1 (14.9)

Taking the gradient of both sides of equation14.9leads to:

4∑
α=1

kα = 0 (14.10)

Thirdly, r itself is a linear field, hence:

r = L[r] =

4∑
α=1

rαµα(r)

According to definitions14.2and14.8, taking the gradient of this equation gives:

4∑
α=1

kα rTα = I =

4∑
α=1

rα kTα (14.11)

whereI is the unit tensor defined byIij = δij . Equation14.11contains the two following
special relations:

4∑
α=1

kα · rα = 3 and
4∑
α=1

kα × rα = 0

Another interesting property is obtained by taking the gradient ofrTA, whereA is a
constant vector:

A =

4∑
α=1

(rα · A)kα (14.12)

Linear Estimators of Gradients

The gradients of the linearly interpolated fieldsL[u] andL[v] may be used as estima-
tors of the gradients of the sampled physical fieldsu andv.

LG[u] = G [L[u]] and LG[v] = G [L[v]] (14.13)

Hence, from the definitions14.3 and 14.4 and making use of equation14.8 the linear
barycentric estimators are:

LG[u] =

4∑
α=1

kαuα (14.14)

LG[v] =

4∑
α=1

kα vTα (14.15)
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The linear estimators of the divergence and curl of fieldv are thus:

LD[v] =

4∑
α=1

kα · vα (14.16)

LC[v] =

4∑
α=1

kα × vα (14.17)

These last expressions solve exactly the equations forLD[v] andLC[v] derived byDun-
lop et al. [1990] from Ampère’s and Gauss’s integral theorems combined with linear in-
terpolation of the fields.

The differencesLG[u] − G[u] or LG[v] − G[v] are respectively, and by definition,
the errors of truncation ofLG[u] or LG[v].

14.2.2 Quadratic Interpolation and Related Estimators

Quadratic Interpolation within a Tetrahedron

The information provided by four samples of a physical fieldu or v, measured si-
multaneously at the vertices of the tetrahedron, allows linear interpolation of the field in
the vicinity of the cluster, but not higher order interpolation. Quadratic interpolation re-
quires six extra independent simultaneous measurements: for example, the valuesuαβ at
the midpointsSαβ of the linesSαSβ .

The quadratic interpolation uses a base of ten quadratic functions, each of them being
equal to unity on only one node, and zero on all other nodes. Becauseµα vanishes on5α,
the face of the tetrahedron opposite toSα, i.e. on the three other vertices and on the three
midpoint nodes belonging to5α, it should be a factor of the basis functionqαα related to
vertexSα. The second factor is 2µα − 1 becauseµα =

1
2 on the remaining three midpoint

nodes betweenSα and5α. Henceµα(2µα − 1) is the desired function, being moreover
equal to 1 on vertexSα whereµα = 1. The midpoint nodeSαβ is the only node which
belongs neither to5α nor to5β , hence the associated basis function is proportional to
µαµβ ; a factor 4 is needed to obtain the right weight on nodeSαβ . The basic quadratic
interpolating functions are thus:qαα = µα(2µα − 1) which is equal to 1 at vertexSα and
0 at all other nodes, andqαβ = 4µαµβ which is equal to 1 at midpointSαβ and 0 at all
other nodes. Relation14.9can be used to demonstrateqαα = µαµα −6′µαµβ where6′

denotes a sum overβ different fromα. Thus quadratic interpolations may be done with
homogeneous functions of theµα ’s:

Q[u](r) =

4∑
α=1

uαqαα +

4∑
α=1

∑
β>α

uαβqαβ (14.18)

Q[v](r) =

4∑
α=1

vαqαα +

4∑
α=1

∑
β>α

vαβqαβ (14.19)

These formulas reduce to the linear interpolation formulas whenuαβ =
1
2(uα + uβ).
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Quadratic Estimators of Gradients

From the definitions of theqαβ ’s it follows that:

G[qαα] = (4µα − 1)kα (14.20)

G[qαβ ] = 4(µαkβ + µβkα) (14.21)

These formulas can be used to define quadratic barycentric estimators of differential opera-
tors through the application of these differential operators to the quadratically interpolated
physical fields, spatially sampled by the spacecraft. The gradients of the quadratically in-
terpolated fields are linear functions of the position vector, the gradient of the scalar field
is defined by:

G [Q[u]] =

4∑
α=1

(4µα − 1)kαuα + 4
4∑
α=1

∑
β>α

(µαkβ + µβkα)uαβ

and the gradient of the vector field is written:

G [Q[v]] =

4∑
α=1

(4µα − 1)kα vTα + 4
4∑
α=1

∑
β>α

(µαkβ + µβkα)v
T
αβ

The quadratic barycentric estimators of the gradients are chosen to be equal to the latter
expressions evaluated at the barycentre of the tetrahedron, i.e.:

QG[u] =

4∑
α=1

∑
β>α

(kα + kβ)uαβ (14.22)

QG[v] =

4∑
α=1

∑
β>α

(kα + kβ)v
T
αβ (14.23)

An Approximate Procedure Taking Advantage of the Orbital Motion

A midpoint sample can only be estimated at the expense of the time resolution by
defining it as the mean value of its nearest vertical neighbours on a supplementary position
of the cluster, but that would lead to midpoint and vertical samples defined at different
times. A midpoint sample has to be defined by averaging this mean value on two positions
of the cluster, one retarded and the other advanced with respect to the central position. One
position of the cluster giving two independent midpoint samples on opposite edges of the
tetrahedron, it appears that only three pairs of retarded/advanced clusters are sufficient to
estimate the six midpoint samples. Figure14.2illustrate the following scheme:

u23(t) =
1

4
(u2(t − 2dt)+ u3(t − 2dt)+ u2(t + 2dt)+ u3(t + 2dt))

u14(t) =
1

4
(u1(t − 2dt)+ u4(t − 2dt)+ u1(t + 2dt)+ u4(t + 2dt))

The adequate interval of timedt will be specifically determined for each physical field; it
should be small enough to preserve the accuracy of the estimation, but nevertheless large
enough to guarantee the independence of the successive filtered samples of data.
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Figure 14.2: Sequence of seven tetrahedra necessary for the quadratic interpolation.

In fact due to the linear interpolations used to estimate the midpoint values this ap-
proximate quadratic estimator of the gradient is linearly degenerate and will be denoted
L2G[B]. It will be demonstrated in Section14.4.3that for a thick and planar current sheet:
L2G[B] = LG[B]. Nevertheless this identity relies upon power series expansions accu-
rate to second order with respect to small parameters defined by the characteristic size of
the cluster, or the distance between the successive clusters, divided by the scale length
of the gradient. The two estimators are indeed slightly different, andL2G[B] could be
used as an alternative toLG[B], provided it is used with a smaller time interval between
successive clusters.

14.3 Physical and Geometrical Errors

The investigation of the statistical properties of the barycentric estimators requires the
knowledge of the statistical properties of the cluster configuration. We will only discuss
the lowest order statistics, namely the expectation values and covariances.

14.3.1 Statistical Properties of the Reciprocal Vectors

The nominal positionrα of spacecraftα differs from the true positionrα + δrα. The
difference between the true and nominal positions is supposed to be a random vector. The
expectation value of the random variableX is noted〈X〉 and the covariance of the random
variablesX andY is 〈(X − 〈X〉)(Y − 〈Y 〉)〉. Assuming that spacecraft positions are not
affected by systematic errors, i.e. that〈δrα〉 = 0 for anyα, the covariance of the positions
of spacecraftα andβ is the tensor〈δrα δrTβ 〉, which is not knowna priori but should be
part of the mission tracking program. Here, it will be supposed to be known. A unique base
of reciprocal vectors can be computed from any configuration of the four spacecraft; the set
{kα, α = 1 to 4} is the nominal reciprocal base computed from the nominal configuration
{rα, α = 1 to 4}, meanwhile{kα + δkα, α = 1 to 4} is the true reciprocal base computed
from the true cluster configuration{rα+δrα, α = 1 to 4}. The key issue consists in finding
the relation between the deviations of the reciprocal and position vectors. This relation is



356 14. SPATIAL INTERPOLATION: THEORY

obtained by differentiating equation14.11:

4∑
α=1

δkα rTα = −

4∑
α=1

kα δr
T
α

Multiplying right by kβ , then making use of equations14.6 and 14.10 to evaluate the
left-hand side of the above equation, we get:

δkβ = −

4∑
α=1

(
kTβ δrα

)
kα = −

(
4∑
α=1

kα δr
T
α

)
kβ , for anyβ. (14.24)

The first expression, involving the scalar productskTβ δrα will later appear as the most
useful. The latter equation14.24ensures that, accordingly to the hypothesis of unbiased
position measurements, the deviations of the reciprocal vectors have null expectation val-
ues:

〈δkα〉 = 0 , for anyα. (14.25)

Equation14.24allows for computing the covariances of the reciprocal vectors along
the following lines:

δkαi δkβj =

4∑
γ=1

4∑
ν=1

(
kTα δrγ

) (
kTβ δrν

)
kγ i kνj

ChangingkTβ δrν into the equivalent expressionδrTν kβ , the expectation value of the prod-

uct
(
kTα δrγ

) (
kTβ δrν

)
becomeskTα 〈δrγ δr

T
ν 〉 kβ , thus revealing the role played by the

covariances of the vector positions of the spacecraft. The general expression for the co-
variances of the components of the reciprocal vectors is thus:

〈δkαi δkβj 〉 =

4∑
γ=1

4∑
ν=1

kTα 〈δrγ δr
T
ν 〉 kβ kγ ikνj (14.26)

The covariance matrices of the spacecraft positions will be determined specifically for a
given mission; they are not knowna priori. Nevertheless, it is very likely that the position
vectors of two spacecraft will be uncorrelated, furthermore it seems reasonable to assume
that the covariance matrix of the position vector will be the same for all spacecraft of the
cluster. This means that:

〈δrγ δr
T
ν 〉 = δγ,ν 〈δr δrT 〉 (14.27)

Under these simplifying assumptions the general expression14.26is reduced to:

〈δkαi kβj 〉 = kTα 〈δr δrT 〉 kβ Kij (14.28)

Kij , the last factor, is theij component of the reciprocal tensor defined by:

K =

4∑
ν=1

kνk
T
ν (14.29)
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14.3.2 Statistical Properties of the Linear EstimatorLG

This section investigates the statistical errors which affect the estimation of the gradient
of a vector field sampled by a four spacecraft mission. Two kinds of statistical errors can
be distinguished with regard to their physical or geometric origin. The first type originates
in the measurement of the field itself and involves the results of the error analysis made
for each relevant experiment. Of course, the resulting uncertainties on the gradient depend
upon the geometry of the tetrahedron formed by the four spacecraft but only through the
nominal configuration. The second type of statistical errors comes from the uncertainties
on the spacecraft positions. Although the present theory is general and valid for any type
of measured field, the discussion of the physical errors usually deserve specific consider-
ations depending upon the nature of the measured field. Hence a detailed discussion of
the accuracy of current determination via magnetic measurements is given in Chapter16
and gradients of fields computed from the plasma measurements are discussed in Chap-
ter 17. Let us proceed now with the general theory. First we derive expectation values
and covariances of the components of the linear barycentric estimator of the gradient of
an unspecified vector fieldv, then specific considerations will be made in the case of the
magnetic field.

Let vα be any vector field measured by spacecraftα at any given time, meanwhile the
true field at the same time and location isvα + δvα. It is worth mentioning that short
scale fluctuations should be filtered out from a physical field before trying to estimate its
gradient. Thus the difference between the measured and true vectors is supposed to be
a random vector having an expectation value〈δvα〉 that ideally should be equal to zero.
Differentiating equation14.15we get the variation of the estimator, the expectation value
of which is1:

〈δLG〉 =

4∑
α=1

(
kα 〈δvTα 〉 + 〈δkα〉 vTα

)
When both the field and the position measurements are not spoiled by systematic errors,
i.e. when〈δvα〉 = 0 and〈δkα〉 = 0, the linear barycentric estimator of the gradient of the
vector field is not biased, i.e.〈δLG〉 = 0.

The analysis of covariances of the components of〈δLG〉 takes advantage of the statisti-
cal independence of the geometrical and physical measurements and of the assumption of
unbiased position measurements to eliminate the covariances of geometrical and physical
variables:

〈δkαj δvβm〉 = 〈δkαj 〉〈δvβm〉 = 0

Hence the covariance of theij andmn components ofLG can be written:

〈δLGij δLGmn〉 =

4∑
α=1

4∑
β=1

(
〈δvαi δvβm〉 kαjkβn + 〈δkαj δkβn〉 vαivβm

)
(14.30)

As far as the magnetic field is concerned the latter expression can be simplified by
noticing that the magnetic measurements on two different spacecraft are statistically inde-
pendent, nevertheless each spacecraft will have its own covariance matrix for the magnetic
measurements, this means that:

〈δBαi δBβm〉 = δαβ 〈δB i δBm〉α

1In order to simplify notations, functionalLG[v] is simply writtenLG throughout this section.



358 14. SPATIAL INTERPOLATION: THEORY

Under these simplifying assumptions and those made to get the reduced form (14.28) of
the covariances of the reciprocal vectors, the following simplified result holds:

〈δLGij δLGmn〉 =

4∑
α=1

〈δBi δBm〉α kαjkαn +

(
4∑
α=1

4∑
β=1

kTα 〈δr δrT 〉 kβBαiBβm

)
Kjn

(14.31)
Usually the covariance matrices〈δBi δBm〉α will differ from one spacecraft to the other
and will not be diagonal, consequently further simplifications will be impossible.

Both the general expression14.30and the one specialised to the magnetic field case
14.31contain explicitly separated contributions originating in the physical and geometrical
uncertainties.

14.3.3 Comparison of the Physical and Geometrical Errors for a
Regular Tetrahedron

In order to compare the order of magnitudes of the different contributions to the errors
affecting the estimation of the gradient of the magnetic field, let us consider the ideal case
of a regular tetrahedron. It is convenient to work in a cartesian frame attached to the
tetrahedron such that the four vertices{Sα, α = 1 to 4} have positions:

rT1 = a(−1,−1,−1) , rT2 = a(+1,+1,−1)

rT3 = a(+1,−1,+1) , rT4 = a(−1,+1,+1) (14.32)

The reciprocal vectors are:

kT1 =
1

4a
(−1,−1,−1) , kT2 =

1

4a
(+1,+1,−1)

kT3 =
1

4a
(+1,−1,+1) , kT4 =

1

4a
(−1,+1,+1) (14.33)

It is straightforward to show that the reciprocal tensorK can be written:

K =
1

4a2
I (14.34)

For the sake of simplicity we make the further but, as already mentioned, unrealistic as-
sumptions:

〈δB i δBm〉α = (1B)2 δim and 〈δr δrT 〉 = (1r)2 I

where1B and1r denote respectively the uncertainties on the physical measures and on
the coordinates of the spacecraft:(1B)2 is indeed the variance of the filtered data. It is
then easy to obtain:

〈δLGij δLGmn〉 =

(
1B

2a

)2

δim δjn +

(
1r

2a

)2 δjn

4a2

4∑
α=1

4∑
β=1

(
δαβ −

1

4

)
Bαi Bβm
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where use has been made of the identitykα · kβ =
1

16a2

(
4δαβ − 1

)
. The double sum is of

the order ofB2 and the final result holds for a regular tetrahedron:

physical errors

geometrical errors
≈
1B

B

2a

1r

In their investigation of errors affecting the estimation of∇ × B Dunlop et al.[1990]
evaluate the maximum intrinsic error1B/B to be less or equal to 0.01; this value together
with 1r/2a ∼ 0.01, a typical value for the Cluster mission, gives a ratio of errors equal
to 1, which means that in most cases the geometrical errors will compare to the physical
ones. In case of degraded positional accuracy the geometrical errors will dominate as
suggested byDunlop et al.[1990] for the estimation of the current density; this contrasts
with the plasma measurements discussed in Chapter17. However the above argument
just provides orders of magnitude, in practice the errors should be evaluated by formula
14.31for the magnetic field, or by the more general formula14.30, possibly combined
with formula 14.28, for other fields, taking into account the effective covariances of the
spacecraft positions and of the measured field components.

14.3.4 Effect of the Orbital Motion on LG

The estimation of the gradient of a physical field will usually require averaging of
the field samples over some time interval in order to eliminate small scale fluctuations or
to implement the approximate quadratic estimator, hence we have to investigate in which
respect the estimation of the gradient will be affected by the deformation of the tetrahedron
due to slight differences in the orbital motions of the four spacecraft. LetV α be the
velocity of spacecraftα, and1t the finite interval of time required to estimate the gradient;
from definition14.15the variation ofLG[B] induced by the orbital motion during1t can
be written:

δLG[B] =

4∑
β=1

(
δkβB

T
β + ∆t kβV

T
βG[B]

)
and the variation of the reciprocal vectorskβ is given by equation14.24which can be
written:

δkβ = −1t

(
4∑
α=1

kα V T
α

)
kβ

thus leading to:

δLG[B] = ∆t

(
4∑
α=1

kαV
T
α

) (
G[B] − LG[B]

)
The tensor

∑4
α=1 kαV

T
α is equal to

∑4
α=1 kα (V α−V b)

T , whereV b is the velocity of the
barycentre. The differenceδV α = V α − V b is supposed to be small compared toV b and
is computed by using the angular momentumσ α = rα ×mV α and Runge’s vector

Rα = V α × σα −
GMm

rα
rα

which are approximate invariants of the orbital motion on a time scale1t which is short
compared to the orbital period. Moreover these invariants should be the same for the four
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spacecraft because they have almost the same orbits, thus the velocity of the barycentre
can be written:

V b =
σ

σ 2
×

(
R +

GMm

rb
rb

)
whereG is the gravitational constant,M the mass of the Earth,m the mass of one space-
craft andσ 2

= σ 2
x +σ 2

y +σ 2
z . Introducingδrα = rα−rb andê = rb/rb, the differentiation

of V b gives:

δV α =
GMm

σ 2rb
σ
(
I − ê ê

T
)
δrα (14.35)

The cross productσ × a has been replaced byσa, with tensorσ defined by:

σ =

 0 −σz σy
σz 0 −σx

−σy σx 0

 (14.36)

The final result for the variation ofLG[B] is:

δLG[B] = ∆t
GMm

σ 2rb

(
I − ê ê

T
)
σ
(
LG[B] − G[B]

)
(14.37)

For an elliptic orbit

GMm

rb
∼ mV 2

b thus, 1t
GMm

σrb
∼
Vb1t

rb

For the Cluster mission,Vb will be of the order of 5 km/s near the perigee (geocentric
distance of 4RE) and of 1 km/s near the perigee at 22RE . A typical1t of 60 s gives:

(apogee) 10−4 <
∼ 1t

GMm

σrb

<
∼ 10−2 (perigee)

In conclusion the errors induced by the orbital deformation of the cluster onLG[B] are
much smaller than the differenceLG[B] − G[B], named the truncation error of the linear
estimator of the gradient. The next section is devoted to the analysis of this truncation
error.

14.4 Truncation Errors for a One-dimensional
Model: the Thick Plane Current Sheet

Let the magnetic field created by a one-dimensional current sheet be:

B = f (ζ ) û + g(ζ ) v̂ + Bnn̂

where(û, v̂, n̂) is a direct trihedron andζ = Kr · n̂; K−1 being the thickness of the layer,
meanwhile constantBn is the component of the field normal to the sheet. Functionsf and
g are such that:

lim
ζ→−∞

B = B1 and lim
ζ→+∞

B = B2
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According to definition14.2, the gradient of this field is:

G[B] = Kn̂

(
df

dζ
û +

dg

dζ
v̂

)T
(14.38)

The divergence of the field is equal to the trace of this tensor, i.e. zero owing to the or-
thogonality of the vectors(û, v̂, n̂). The errors of truncation of the linear, quadratic and
linearly degenerate quadratic estimators of the gradient will now be evaluated for this sim-
ple model.

14.4.1 Truncation Errors for LG[B]

The position vector of spacecraftα is writtenrα = R
(
ê + εα

)
whereRê is the position

vector of the barycentre of the tetrahedron. The corresponding value ofζ is:

ζα = KR ê · n̂ +KR εα · n̂ = ζ0 +KR εα

From definition14.15the linear barycentric estimator of the gradient can be written:

LG[B] =

4∑
α=1

kα
(
f (ζα) û + g(ζα) v̂

)T
Assuming that the four small parametersεα have magnitudes comparable toa/R, a being
a length characterising the size of the cluster, the series expansion ofLG[B] accurate to
first order inKa can be written:

LG[B] =

4∑
α=1

kαB
T (ζ0)+K

(
R

4∑
α=1

kα(εα · n̂)

)(
df

dζ
û +

dg

dζ
v̂

)T
ζ=ζ0

+KaK
(
R2

2a

4∑
α=1

kαε
2
α

)(
d2f

dζ 2
û +

d2g

dζ 2
v̂

)T
ζ=ζ0

+ O
(
K2a2

)
the first term is equal to zero due to property14.10and the second factor of the second
term is equal tôn owing to property14.12. Thus the linear estimator of the gradient is
equal to:

LG[B] = G0[B] +KaKC1

(
d2f

dζ 2
û +

d2g

dζ 2
v̂

)T
+O

(
K2a2

)
whereG0[B] is the true gradient of the field at the barycentre of the tetrahedron, i.e.
tensor14.38evaluated atζ0, and the second term involvingC1 is the error of truncation.
VectorC1 defined by:

C1 =
R2

2a

4∑
α=1

kα(εα · n̂)2 (14.39)

depends upon the cluster configuration and the normaln̂ and is generally neither orthog-
onal to û nor to v̂, hence the trace ofLG[B] is generally not equal to zero due to the
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errors of truncation, which means that the linear estimation of∇ · B will differ from zero.
The tensor of truncation errors being not symmetric will generally affect the estimation of
the large scale current density. VectorC1 vanishes under exceptional circumstances, for
example whenε2

α is independent ofα.
The truncation error can be made more explicit in the ideal case of a regular tetra-

hedron. Considering the frame of reference attached to the tetrahedron, as defined by
equations14.32, the normaln̂ to the current sheet has components(nx, ny, nz) and vector
C1 can be written:

C1 = −(nynzx̂ + nznx ŷ + nxny ẑ)

This vector vanishes only when the normaln̂ is parallel to one of the axes of the refer-
ence frame, a very unlikely situation. With the latter expression of vectorC1, the linear
estimators of the divergence and curl ofB can be written:

LD[B] = −KaK
(

d2f

dζ 2
(nynzux + nznxuy + nxnyuz)

+
d2g

dζ 2
(nynzvx + nznxvy + nxnyvz)

)

+O
(
K2a2

)

(LC[B])z = −KaK
(

d2f

dζ 2
nz(nyuy − nxux)+

d2g

dζ 2
nz(nyvy − nxvx)

)
+O

(
K2a2

)
The other components ofLC[B] are obtained through cyclic permutations of the indices
x, y and z. The divergence ofB being equal to zero, its linear estimation is equal to its
truncation error; this substantiates the intuitive idea of using this estimator to evaluate the
errors of truncations which affect the estimation of the current density. Unfortunately the
latter are not simply related to the former except under special circumstances, for example
when the current densityJ has a constant direction (e.g. along vectorv̂ which means that
functiong vanishes identically); in this peculiar case the error of truncation affectingJz is
proportional to the linear estimation of the divergence:

(LC[B])z

LD[B]
=

nz(nyuy − nxux)

nynzux + nznxuy + nxnyuz

This point is further investigated by simulations in Chapter16: the numerical results cor-
roborate that generally the linear estimation of∇ · B cannot be used to estimate the errors
of truncation affecting the linear estimation of∇ × B.

14.4.2 Truncation Errors for QG[B]

From definition14.23the quadratic barycentric estimator of the gradient can be writ-
ten:

QG[B] =

4∑
α=1

∑
β>α

(kα + kβ)
(
f (ζαβ) û + g(ζαβ) v̂

)T
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Making series expansions accurate to second order inKa of f (ζαβ) andg(ζαβ)with ζαβ =

ζ0 +
1
2KR

(
εα + εβ

)
, we get:

QG[B] =

4∑
α=1

∑
β>α

(kα + kβ)B
T (ζ0)

+ K
(
R

2

4∑
α=1

∑
β>α

(kα + kβ)(εα + εβ)

)(
df

dζ
û +

dg

dζ
v̂

)T
ζ=ζ0

+ KaK
(
R2

8a

4∑
α=1

∑
β>α

(kα + kβ)(εα + εβ)
2

)(
d2f

dζ 2
û +

d2g

dζ 2
v̂

)T
ζ=ζ0

+O
(
K2a2

)
Using properties14.10and14.12once more, it is easily demonstrated that the first and
third terms of the right-hand side are equal to zero meanwhile the second term is equal
to the exact gradient at the barycentre of the tetrahedron, thus the quadratic barycentric
estimator of the gradient can be written:

QG[B] = G0[B] +O
(
K2a2

)
i.e. the first order errors of truncation vanish exactly whatever is the configuration of the
cluster. This expected result demonstrates the improvement achieved by the quadratic
interpolation. Unfortunately we do not have any possibility to measure the midpoint fields
Bαβ and consequently this estimator will not be computable.

14.4.3 Truncation Errors for L2G[B]

We will now demonstrate that the approximate quadratic estimator defined in Sec-
tion 14.2.2is indeed linearly degenerate and identical toLG[B] up to the first order in
Ka.

Let us assume that the six auxiliary clusters we need are deduced from the central
cluster (see Figure14.2) by translations(±qd, for q = 1, 2, 3); this is equivalent to the
assumption that the four spacecraft have the same constant velocity. The estimated mid-
point fields are defined by:

Bαβ =
1

4

(
B+
α + B−

α + B+

β + B−

β

)
which involve functionsf andg evaluated atζ±

α = ζ0 + KR (εα ± qη), where the small
parameterη = R−1d · n̂ is assumed to be of the same order as theεα with q = 1,2,3 for
(α, β) = (1, 3) and(2, 4), (2, 3) and(1, 4), and(2, 1) and(3, 4) respectively. The series
expansion of14.23computed with the above approximateBαβ , accurate to the first order
in Ka is:

QaG[B] = G0[B]
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+KaK
(
R2

4a

4∑
α=1

∑
β>α

(kα + kβ)(ε
2
α + ε2

β)

)(
d2f

dζ 2
û +

d2g

dζ 2
v̂

)T
ζ=ζ0

+O
(
K2a2

)
Terms proportional toη andη2 vanish exactly and the second term is simplified by making
use of property14.12. It appears that this approximate quadratic estimator is affected by
the same truncation error as the linear estimator, more precisely:

QaG[B] = LG[B] +O
(
K2a2

)
(14.40)

This result means that, for a uniform rectilinear motion of the cluster, the interpolation
made to estimate the midpoint fieldsBαβ causes the degeneracy of the quadratic estimator.
This remark justifies the notationL2G[B] adopted forQaG[B].

14.5 Other Applications

14.5.1 Derivation of the Spatial Aliasing Condition

The base of reciprocal vectors allows a simple derivation of the spatial aliasing condi-
tion [Neubauer and Glassmeier, 1990]. Let us consider two monochromatic plane waves
differing only by their wave vectorsK1 andK2:

B1 = B0 exp i(K1 · r −�t) , and B2 = B0 exp i(K2 · r −�t)

The aliasing problem can be formulated by the question: “What relationship should exist
between wave vectorsK1 andK2 in order to make these two waves undistinguishable by
the cluster?”. In other words the waveformsB(rα, t), α = 1 to 4, recorded by the four
spacecraft should be identical, which means that

(K2 − K1)·rα = 2πnα , for α = 1 to 4, and wherenα are signed integers (14.41)

The solution forK2 − K1 is:

(K2 − K1) = 2π
4∑
α=1

nαkα (14.42)

wherekα are the reciprocal vectors of the tetrahedron. This is proved at once as follows:
any vectorK may be expressed in terms of its componentsκα on the reciprocal base,2 thus

K =

4∑
α=1

καkα (14.43)

2It is important to notice that the components of any vector on the four vectors of the reciprocal base are
determined modulo a real constant due to equation14.10.



14.5. Other Applications 365

hence, equations14.41become

4∑
β=1

(κ1,β − κ2,β)kβ · rα = 2πnα , for α = 1 to 4

or, using property14.10to eliminate, for example,k4,

3∑
β=1

[
(κ1,β − κ1,4)− (κ2,β − κ2,4)

]
kβ · rα = 2π(nα − n4) , for α = 1 to 4

then, subtracting the fourth equation from the first three equations

3∑
β=1

[
(κ1,β − κ1,4)− (κ2,β − κ2,4)

]
kβ · (rα − r4) = 2π(nα − n4) , for α = 1 to 3

equation14.6is eventually used to reduce the above set to the following

(κ1,α − κ1,4)− (κ2,α − κ2,4) = 2π(nα − n4) , for α = 1 to 3

which leads to equation14.42. This result is important for wave analyses taking advantage
of the four spacecraft, especially fork-filtering technique (see Chapter3).

14.5.2 Characterisation of a Planar Discontinuity

Although normals to shocks and discontinuities are considered in Chapters10and11,
it is worth here emphasising the usefulness of reciprocal vectors for this matter. LetD be
a planar surface of discontinuity crossed by the cluster and represented at some timet0
on Figure14.3. The position vector of spacecraftSα is rα(t) at timet and this spacecraft
crosses surfaceD at timetα through pointPα, the position of which isr0

α at timet0. Let
us suppose thatD is not deformable, does not rotate, has velocityV at timet0 and moves
with constant acceleration0 during the interval of time necessary for the cluster to cross
it. The unknown vectorsV ,0 andr0

α , for α = 1 to 4, satisfy the four equations:

rα(tα) = r0
α + V (tα − t0)+

1

2
0(tα − t0)

2 , for α = 1 to 4 (14.44)

The positions of the four spacecraft, taken for each of them at the time when it crosses sur-
faceD, form a tetrahedron which does not correspond to any instantaneous configuration
of the cluster. It is nevertheless convenient to use this fictitious configuration together with
its associated barycentric base of reciprocal vectors.

Let us first consider the simplest case of theuniform motion for which noa priori
knowledge of the normal̂N to the discontinuity is required. The scalar product of equa-
tion 14.44, with 0 = 0, by normalN̂ gives:

N̂ · rα(tα) = N̂ · r0
α + N̂ · V (tα − t0) (14.45)

Owing to the planarity assumption all scalar productsN̂ · r0
α are equal, thus multiplying

the above equation bykα and summing over the four values ofα we get:

4∑
α=1

kαN̂ · rα(tα) = Vn

4∑
α=1

kαtα
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Figure 14.3: A surface of discontinuityD that will be crossed by the cluster is represented
at some timet0. SpacecraftSα will cross it at timetα through pointPα; and n̂α is the
normal to the surface determined by spacecraftSα. Each vertex of the tetrahedron is
located at the position of the corresponding spacecraft when it crosses the surface, hence
this tetrahedron does not correspond to any instantaneous configuration of the cluster.

where use has been made of equation14.10. The reciprocal basis presently considered
is the one associated to the fictitious tetrahedron that we have introduced, thus with the
help of equation14.12the left-hand side of the above equation is just equal toN̂ , which is
eventually given by:

N̂ = VnQ1 , where Q1 =

4∑
α=1

kαtα (14.46)

The normal component of the relative velocity between the cluster of spacecraft and the
discontinuity is given by the condition̂N · N̂ = 1, i.e.:

Vn =
(
Q1 · Q1

)− 1
2 (14.47)

This simple result is just the explicit solution of the problem posed byRussell et al.[1983]
in their multi-spacecraft study of interplanetary shocks. OnceVn andN̂ have been com-
puted with equations14.46and14.47it is necessary to check the consistency of the four
equations14.45 which mean that the four points, forα = 1 to 4, having coordinates(
tα, N̂ · rα(tα)

)
should be aligned. A dramatic failure of this consistency test would mean

that at least one of our assumptions, the planarity of the discontinuity or the uniformity of
the motion, is not valid. A rotation or a deformation of the discontinuity, during the time
interval needed by the cluster to cross it, are quite difficult to discuss.Mottez and Chanteur
[1994] proposed a least square method, not related to the barycentric formalism, to deter-
mine the relative velocity of a non-planar discontinuity in the rest frame of the cluster,
together with estimates of its principal directions and radii of curvature.

Let us now consider the case of the uniformlyacceleratedmotion of a planar discon-
tinuity. The normal̂nα to the surface at the location and time of the crossing by spacecraft
Sα is determined by measurements made onboardSα only, for example by means of a min-
imum variance analysis of the magnetic fluctuations. When the mutual angles made by the
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four normals are less than the experimental uncertainties on their directions it is reasonable
to assume that the cluster crossed a planar discontinuity and that the relative motion did
not involve a rotation. We will demonstrate at the end of this section that the estimations
of N̂ and0 are invariant in a time translationt −→ t + τ and thatV −→ V − 0τ , as it
should. Thus we chooset0 = 0 for convenience in the following discussion which will be
followed by a short discussion of the uniform motion case.

Derivation of the Estimations

Taking the scalar product of equation14.44with N̂ , for t0 = 0, and using once more
equation14.10, we get the following system of equations:

N̂ · r0
α + Vntα +

1

2
0nt

2
α = N̂ · rα(tα) , for α = 1 to 4

whereVn and0n denote respectively the components ofV and0 along the normal. The
first terms on the left-hand side of the above equations are equal to zero because of the
planarity assumption, thus multiplying bykα and then summing over the four values ofα

gives, with the help of equation14.12, the normal to the discontinuity in terms of vectors
Q1 andQ2:

N̂ = VnQ1 + 0nQ2 , where Q1 =

4∑
α=1

tαkα , and Q2 =
1

2

4∑
α=1

t2αkα (14.48)

The unknown parametersVn and0n are determined by a constrained least square proce-
dure taking into account the fact thatN̂ is a unit vector, i.e. by minimising the expression

ξ =

4∑
α=1

(
n̂α − N̂

)2
+ 4(3− 1)

(
N̂

2
− 1

)
The Lagrange multiplier, written 4(3− 1) for later convenience, is determined by

3 = ±
∣∣vQ1 + γQ2

∣∣ (14.49)

where v =
Q2

2

(
Nmean· Q1

)
−
(
Q1 · Q2

) (
Nmean· Q2

)
Q2

1Q
2
2 −

(
Q1 · Q2

)2 (14.50)

γ =
Q2

1

(
Nmean· Q2

)
−
(
Q1 · Q2

) (
Nmean· Q1

)
Q2

1Q
2
2 −

(
Q1 · Q2

)2 (14.51)

Nmean =
1

4

4∑
α=1

n̂α (14.52)

The normal components of the velocity and the acceleration are

Vn =
v

3
, and 0n =

γ

3
(14.53)
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Indeed looking for the extrema ofξ we have found two solutions for3, one of them
corresponds to a minimum ofξ and the other one to a maximum; the right solution is
selected by considering that the cosine of the angle between vectorsN̂ andNmeanshould
be positive, i.e. that

sign(3) = sign
[(
vQ1 + γQ2

)
· Nmean

]
(14.54)

The Uniform Motion Case

When vectorsQ1 andNmeanare colinear, i.e.Nmean = λQ1, it comes immediately
from equations14.49and following thatγ = 0 andv = λ. In that case

N̂ =
Nmean

|Nmean|
, and Vn =

1

Q1 · N̂
(14.55)

This result is consistent with our former discussion of the uniform motion case, especially
with equations14.46and14.47.

Changing the Origin of Time

Equation14.10is used to demonstrate that the time translationt −→ t + τ leaves
Q1 invariant and thatQ2 −→ Q2 + τQ1. Using these elementary properties of vectors
Q1 andQ2 it is easily demonstrated that the following expressions are invariant when
changing the origin of time

Q2
1Q

2
2 −

(
Q1 · Q2

)2
Q2

1

(
Nmean· Q2

)
−
(
Q1 · Q2

) (
Nmean· Q1

)
It follows immediately thatγ is an invariant of the time translation. Then it is readily
demonstrated thatv −→ v− γ τ and that the vectorvQ1 + γQ2 is invariant. Being equal
to plus or minus the norm of the latter vector the Lagrange multiplier3 is also invariant.
To summarise we have demonstrated the invariance of the estimations ofN̂ and0n given
by equations14.48to 14.54whent −→ t + τ , and thatVn −→ Vn − 0nτ as expected.

14.6 Conclusions

The aim of this chapter was to introduce in a detailed and self-contained way the
barycentric coordinates and the reciprocal vectors of a tetrahedron and to demonstrate the
power of these geometrical concepts to analyse data provided by a four spacecraft mission.
All the applications presented in this chapter, the estimation of gradients, the analysis of
discontinuities or the spatial aliasing condition, demonstrate that the barycentric formal-
ism allows an entirely symmetric handling of the data provided by the four spacecraft,
leading to explicit results in which the four spacecraft play identical roles. Moreover the
barycentric formalism allows a complete theoretical analysis of the various kinds of errors
affecting the estimates of large scale gradients, for any shape of the tetrahedron formed by
the spacecraft. Equation14.31shows that the knowledge of the covariance matrix〈δr δrT 〉

of the uncertainties on the spacecraft positions is mandatory to estimate the geometrical
errors affecting the evaluation of the gradients. The truncation errors of the barycentric
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estimators of magnetic gradients will generally lead to errors in the estimations of the
large scale electric currents; this has been demonstrated here for a thick and planar cur-
rent sheet and this important point will be again investigated in Chapter15 for a dipole
field. Extensive simulations, making use of the linear barycentric estimators among oth-
ers, are discussed in Chapter16 with respect to the accuracy of the current determination
for simple models of current tubes [see alsoRobert and Roux, 1993]. The analysis of the
truncation errors has emphasised that the linear barycentric estimator of∇ ·B is generally
not equal to zero due to the linear interpolation of the magnetic field, but there is no gen-
eral relationship between the truncation errors affecting∇ · B andJ . Although we have
often focused on magnetic measurements, most of the general results derived here could
be applied to other fields, for example the plasma velocity moments (see Chapter17).
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15.1 Introduction

The primary purpose of a multi-spacecraft mission such as Cluster is to distinguish
between temporal and spatial variations by means of four or more spacecraft. An obvi-
ous question is how, precisely, the gradients of the spatial variations should be determined
from such multipoint measurements. Some of the early studies related to the Cluster mis-
sion aimed to evaluate the components of the electric current density (see Chapter16), i.e.
of peculiar combinations of various components of the gradient of the magnetic field. But
the first attempt to devise a method of determining the gradient of any field was due to
Chanteur and Mottez[1993], who introduced barycentric coordinates for the linear inter-
polation of scalar and vector field quantities. This work has been considerably extended
and a detailed and self-contained presentation has been made in Chapter14; linear and
quadratic estimators of the gradient of a field have been defined. Chapter12 introduced
two other linear estimators derived by least squares minimisation, constrained or not by
the solenoidal condition.

The present chapter aims to evaluate the accuracy of these estimators by applying them
to simulated data; it requires an understanding of Chapters12 and14. In Section15.2
we prove the mathematical equivalence of the unconstrained least squares linear estima-
tor with the linear barycentric estimator. In Section15.3a dipole field model is used to
illustrate analytically the nature and magnitude of the errors caused by using linear in-
terpolation to approximate an non-uniform field. In Section15.4we compare the linear
barycentric estimator and the least squares estimator constrained by the solenoidality con-
dition; the latter will be briefly referred to as the solenoidal estimator. The estimates of the
gradient of the magnetic field are computed by both methods for simulated observations
obtained by using a model of the Cluster orbit together with theTsyganenko[1987] model
of the geomagnetic field. The exact gradient of the simulated observations is computed
directly from the model when preparing the simulated data sets. This comparison gives
further insight into the difficulties related to the determination of gradients, and their likely
variation as the tetrahedron geometry evolves along a typical spacecraft orbit. In the last
section we discuss the smoothing of the data which is required before using it to deter-
mine the gradient. We also recall the result demonstrated in Chapter14(equation14.31on
page358) that the standard error in the determination of the gradient is intimately related

371
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not only to the properties of the reciprocal tensor (or of its inverse, the volumetric tensor),
but also to the properties of the covariance matrix of the error in the determination of the
spacecraft position.

15.1.1 Statement of the Problem

Cluster can determine gradients in two different ways, depending upon the scale size
of the spatial variation of the observed parameter.

1. Small-scale structures are spatial variations with scale size small compared with
the inter-spacecraft separation distances. They are identifiable in the sense that the
differences in their time of observation at the four spacecraft may be determined, for
example, by cross-correlation. Such observations may be interpreted in terms of a
one-dimensional spatial structure moving along the direction of its normal, and both
the direction of the normal and the speed of the motion may be determined from the
observations. This model is suitable for the study of shocks, discontinuities, and the
like.

2. Large-scale structures have a spatial scale large compared with the spacecraft sep-
aration distances. Cross-correlation does not yield any meaningful result. But if
there is a difference in the values of a parameter measured on the four spacecraft,
it is possible to determine the corresponding large-scale gradient. In particular, an
important objective of the Cluster project is to infer the mean current density from
magnetic measurements made at different points.

These two cases are relatively clear. The situation is more complicated when the spatial
scale is comparable with the inter-spacecraft separation, or when the tetrahedron is very
anisotropic, and further study is required.

15.2 Relationship Between Homogeneous Least
Squares and Barycentric Methods

We now show that the unconstrained homogeneous least squares method and the linear
barycentric method described in Chapter14 are equivalent. We do this by first showing
that the reciprocal tensor defined by equation14.29(page356)

K =

4∑
α=1

kα kTα

is equal to1
4 of the inverse of the volumetric tensor.

15.2.1 Relationship Between the Reciprocal and Volumetric Tensors

The volumetric tensor is defined by equation12.23(page315), whererb is the position
vector of the barycentre of the tetrahedron. The reciprocal and volumetric tensors are
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symmetric. A short lemma is needed concerning the scalar product

kα ·
(
rβ − rb

)
=

1

4

∑
γ

kα ·
(
rβ − rγ

)
with the help of equation14.6(page350), we obtain

kα ·
(
rβ − rb

)
=
(
rβ − rb

)
· kα = δαβ −

1

4
(15.1)

The dyadic notation allows us to compute the product of the two tensors, thus:

4K R =

∑
α

∑
β

kα kTα
(
rβ − rb

) (
rβ − rb

)T
The inner dyadkTα

(
rβ − rb

)
is the scalar product of equation15.1, so that

4K R =

∑
α

kα (rα − rb)
T

Then equations14.11and14.10(page352) , and the symmetry of both tensors, allow to
conclude that:

K R =
1

4
I = R K (15.2)

15.2.2 Identity of the HLS and Linear Barycentric Estimators of the
Gradient

When the homogeneous least squares method is applied without imposing the condi-
tion of solenoidality (of Section12.3.2), the resulting estimatorHLSG[v] of the vector
field v minimises the scalar quantity (see equation14.2on page350for the definition of
GT

[v])

S =

∑
α

∑
β

wTw , where w = GT
[v]
(
rα − rβ

)
−
(
vα − vβ

)
It is obvious from definition14.13(page352) that the linear barycentric estimatorLGT

[v]

satisfies:
LGT

[v]
(
rα − rβ

)
=
(
vα − vβ

)
henceLGT

[v] exactly cancelsw andS and

HLSG[v] = LG[v]

15.3 Truncation Errors of LG for a Magnetic Dipole

In this section we illustrate the inherent limitations of any linear (homogeneous least
squares, barycentric, or other) estimation of the gradient. We do this by evaluating ana-
lytically the linear estimator obtained from a simple dipole magnetic field sampled at four
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locations. Linear interpolation between these four field samples generally leads to an es-
timation of the gradient tensor which is asymmetric, with a trace different from zero; i.e.,
to the appearance of non-existent current and local violation of the conservation of the
magnetic flux. Detailed expressions will be given for a regular tetrahedron.

These results explain, for example, why forcing the divergence of the estimated mag-
netic field to be zero (the method of Section12.3.2) does not necessarily yield the best
result, as will be discovered in Section15.4.

15.3.1 The Dipole Field and its Gradient

The magnetic field created at locationR = Rê by the magnetic dipoleM = Mû

writes:
Bdipole(R) = −∇

(
R−3M · R

)
=MR−3

(
3ê û

T
ê − û

)
(15.3)

whereê andû are unit vectors. This is obtained from definition14.1(page350) of the gra-
dient of a scalar field and with the help of the identityR dR = R·dR. From definition14.2
(page350) of the gradient of a vector field we obtain:

R4

3M
GT

dipole = (ê · û)
(
I − 5e eT

)
+ ê û

T
+ û ê

T (15.4)

whereI is the unit tensor. The gradient of the dipole field is obviously symmetric and its
trace is equal to zero as it should.

15.3.2 Linear Estimation of the Gradient of the Dipole Field

The linear estimation of the gradient of the dipole field involves the magnetic field
vectors measured by the four spacecraft. We assume that the characteristic sizea of the
tetrahedron is much less thanR, the distance from the barycentre to the dipole, and we
develop measured (dipole) vector magnetic field in the vicinity of the barycentre up to
terms of second order in(a/R)2. The vector position of spacecraftα is written rα =

R(ê + εα), which implies that the magnitude ofεα is of ordera/R and6εα = 0. The
linear estimator of the magnetic field gradient writes up to second order ina/R:

LGT
[B] = GT

dipole +
a

R

3M
R4

{
(1 − 5ê · û)T

+ (û − 5ê û
T
ê)CT

0 − 5(û − 7ê û
T
ê)CT

1 − 5ê CT
2

}
(15.5)

with the following definitions:

T =
R2

a

4∑
α=1

(ê · εα)εαk
T
α (15.6)

C0 =
R2

2a

4∑
α=1

(εα)
2kα (15.7)

C1 =
R2

2a

4∑
α=1

(ê · εα)
2kα (15.8)
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C2 =
R2

a

4∑
α=1

(ê · εα)(û · εα)kα (15.9)

As expected the first order contribution toLGT
[B] is equal to the exact gradient of the

dipole field at the barycentre, but the general second order contribution is not symmetric
and its trace is not equal to zero.

15.3.3 Truncation Errors for a Regular Tetrahedron

Consider the regular tetrahedron defined in Section14.3.3and let(ux, uy, uz) and
(ex, ey, ez) be respectively the cartesian components ofû andê in the reference frame of
the tetrahedron. With these notations, the auxiliary vectors defined by equations15.7 to
15.9write:

C0 = 0 (15.10)

C1 = −{eyezx̂ + ezex ŷ + exey ẑ} (15.11)

C2 = −{
(
eyuz + uyez

)
x̂ + (ezux + uzex) ŷ +

(
exuy + uxey

)
ẑ} (15.12)

wherex̂, ŷ, ẑ are the unit vectors of the reference frame. The tensorT defined by equa-
tion 15.6is equal to:

T = −16

 0 ez ey
ez 0 ex
ey ex 0

 (15.13)

From all the second order contributions to the errors of truncation, this term is the only
one which does not contribute to false currents and to the non-conservation of the mag-
netic flux. Even in the simplest case of a regular cluster the truncation errors given by
equation15.5 to 15.9 are too much intricate to be really useful for analytical consider-
ations. Nevertheless it is possible to obtain a few simple results, for example when the
cluster lies in the equatorial plane of the dipole (in that caseê · û = 0), the linear estimator
of ∇ · B is, accordingly to equation14.16(page353):

R

B
LD[B] =

45a

R
(uxeyez + uyezex + uzexey) (15.14)

Thus the linear estimation of the divergence ofB can be equal to zero, for example for
uz = ex = 1, but that is usually not the case.

15.4 Comparison of the Methods Using Simulated Data

In this section we test the barycentric and solenoidal least-squares estimators of the
gradient of the magnetic field on simulated Cluster data obtained along predicted Cluster
orbits embedded in the Tsyganenko-87 magnetic field model [Tsyganenko, 1987]. The
orbits have been provided by the European Space Operations Centre (ESOC, Darmstadt,
Germany) in the geocentric equatorial inertial frame of reference. Taking into account
the Earth’s rotation and orbital motion [Coeur-Joly et al., 1995], the magnetic data were
computed in geocentric solar ecliptic (GSE) coordinates. An exhaustive investigation is
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beyond the scope of this article, so we have selected a single Cluster orbit, with apogee
in the geotail and hence the whole orbit lying inside the magnetosphere for the moderate
indexKp = 2 which we have chosen. For such quiet conditions the gradient of the mag-
netic field in the outer magnetosphere has a characteristic scale size which is larger than
the tetrahedron itself, and we may expect our determination to be a good approximation to
the true gradient; the situation is much less favourable near perigee, where steeper gradi-
ents are seen with a tetrahedron considerably elongated in the direction of the spacecraft
motion due to large orbital velocity. The precision of the gradient determination depends
also upon the quality of intercalibration of the relevant experiments, and for some Cluster
experiments, for example the magnetic field and the bulk flow velocity of the low energy
plasma, this is critical. This point has been investigated byKhurana et al.[1996] for the
dc magnetic field and will not be addressed here.

15.4.1 Evolution of the Tetrahedron along the Orbit

The geometry of the cluster of spacecraft at a given time can be characterised by vari-
ous geometrical factors which have been introduced and discussed in Chapter13. For this
study we have selected six of these geometrical factors: the elongationE and planarity
P defined in Section13.3.3, and the four parametersQRR,QSR,QR8,QGM which are
defined in Section13.3.1.

Figure15.1shows the variations of these geometrical factors of the tetrahedron along
one orbit between two successive apogees. It is worth noticing that the data are not periodic
owing to the drift of the orbits in the GSE frame of reference. Time is normalised to the
orbital period, and perigee has been chosen to occur att = 0.5 so that apogees correspond
to t = 0 and 1. This particular satellite configuration is isotropic att = 0.975, shortly
before apogee; at that timeE andP are equal to zero and the fourQ factors are equal
to one. The top panel shows the elongationE (dotted curve) and the planarityP (solid
curve). The centre panel shows the variations ofQSR (dotted curve) andQRR (solid
curve), and the bottom panel displaysQGM (dotted curve) andQR8 (solid curve). The
factorsQRR andQR8 have values close to zero, meanwhile the planarity P is close to one,
at timest = 0.14, 0.42, 0.53 and 0.67; this is indicative of a degenerate configuration
of the spacecraft which are coplanar. The variations ofQSR andQGM are smoother.
The low values ofQRR andQR8, as well as the high value of the elongation in the time
interval extending from 0.5 to .7 indicate an unfavourable configuration of the cluster
(either flattened when P is close to one, or elongated when P significantly differs from
one). The shaded bars emphasise the time intervals during which the numerical accuracy
is degraded due to the flattening of the cluster; this point will be made more precise at the
end of the next section, especially by equation15.16(page379) and the following lines.

15.4.2 Estimations ofG[B]

In this section we compare the different estimations of the gradientG[B] along the
selected orbit with the “true” gradient of the Tsyganenko magnetic field model. This
latter gradient was calculated at the same time as the field itself. We compared two finite
difference methods, of respectively second and fourth order with respect to the spatial
increment, which was 200 km. The two methods gave results which are indistinguishable
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Elongation and Planarity of the cluster

Geometric Factors Q
SR
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RR

 of the cluster

Geometric Factors Q
GM
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R8

 of the cluster

Figure 15.1: Characterisation of the tetrahedron along the orbit. The upper panel shows
the variations with normalised time of the elongationE (dotted curve) and planarityP
(solid curve) defined in Section13.3.3. The centre panel shows the variations ofQSR

(dotted curve) andQRR (solid curve). The lower panel shows the variations ofQGM

(dotted curve) andQR8 (solid curve). See Section13.3.1for the definitions of these ge-
ometrical factors. The shaded bars delimit intervals of degraded numerical accuracy (see
Section15.4.3).
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for the present purposes. The fourth order method was used to compute what we will call
the “true” gradient.

In order to compare the different estimations ofG[B] with the true gradient, a series
of plots (Figures15.2–15.10), present the variations of the components ofG[B], or of
various estimates of these components, versus the normalised time in the GSE coordinate
system. The various components ofG[B] have large variations, therefore, instead of the
components∂pBq themselves (withp, q = x, y or z), we have plotted the quantities

Rmean

Bmean

(
∂pBq

)
whereRmeanandBmeanare the respective magnitudes of

Rmean=
1

4

4∑
α=1

rα , andBmean=
1

4

4∑
α=1

Bα

Figures15.2–15.4compare the linear estimates, with and without the condition∇·B =

0, with each other and with the “true” components ofG[B]. The “true” gradient is plotted
as a solid grey curve, while the solenoidal least-squares and the barycentric linear estimates
are respectively represented by the dotted and solid black curves. The unconstrained least-
squares and barycentric linear estimations being identical, as shown in Section15.2.2,
the solid black lines represent estimates computed from both methods. It can be seen
that large deviations of the estimated quantities occur during time intervals marked by
the shaded bars and that the enforcement of the solenoidality condition generally does
not improve the estimation of the gradient of the magnetic field. The deviations from the
exact components are due to the errors of truncation as demonstrated by computing the
quadratic barycentric estimator of the gradient. The exact quadratic estimator defined in
Section14.2.2will not be computable with a four spacecraft mission but the simulation
of the data allows one to compute the supplementary magnetic field vectors required to
build the approximate estimator discussed in the same section. Figures15.5–15.7display
the results provided by quadratic interpolation, which show a significant improvement of
the estimates even throughout most of the singular time intervals marked by shaded bars.
The light grey curves represent the exact components, and the black curves their quadratic
estimates. The predicted components ofG[B] are quite accurate along the whole orbit
except near perigee for components involving partial derivatives with respect to coordinate
y (Figure15.6).

The large deviations from the exact components around times of planarity of the clus-
ter are due to the amplification of the truncation errors by singular configurations of the
spacecraft. When the tetrahedron flattens, the largest of the reciprocal vectors is normal to
the singular plane configuration and diverges as the inverse of the thickness of the tetra-
hedron. In order to demonstrate this amplification we subtract from the reciprocal vectors
their singular components (parallel to the largest reciprocal vector) in the vicinity of the
planar configurations according to the following formulas:

kα,corrected= kα − γ (kα · k̂max)k̂max (15.15)

wherek̂max is the unit vector parallel to the largest reciprocal vector andγ is a numerical
factor which should be equal to zero almost everywhere except in the vicinity of the sin-
gular configurations where it should be equal to one. For any tetrahedron the sum of the
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reciprocal vectors is equal to zero, but as will be shown below the numerical inaccuracy
increases in the vicinity of a planar cluster and the magnitude of this sum is peaked around
the singular times, although remaining small. Thus a practical choice for the functionγ

is:

γ =

[
tanh

(
(k1 + k2 + k3 + k4)

2/S0

)]2
(15.16)

whereS0 is a reference value chosen after inspection of the numerical values of(k1 +

k2 + k3 + k4)
2; in the present caseS0 = 10−18, when measuring the components of

the reciprocal vectors in km−1. The time intervals during whichγ ≥ 0.1 are marked by
vertical shaded bars in all figures of this section. This corrected reciprocal base has been
used to compute a corrected linear barycentric estimator of the gradient of the magnetic
field. Figures15.8–15.10 are to be compared with Figure15.2–15.4; the large errors
affecting the∂x and∂y components aroundt = 0.53 have been drastically reduced by this
correction, as well as errors affecting∂x and∂z components neart = 0.67. This correction
greatly reduces the amplification of the truncation errors by singular reciprocal bases, but
not enough to provide reliable estimates during the singular intervals marked by shaded
bars.

15.4.3 Quality of the Estimations

Numerical Precision

Although we do not know anya priori criterion of quality for the linear estimations,
it is possible to define useful indicators of accuracy for both methods. In the barycentric
method, the sum of the four reciprocal vectors of the tetrahedron formed by the spacecraft
is theoretically equal to zero, but as this property is not used by the computational algo-
rithm, it can be used as a numerical check. Hence an indicator of numerical accuracy is
defined by:

Qbary = log10

(
(k1 + k2 + k3 + k4)

2
)

(15.17)

and is represented by the solid black curve in the centre and bottom panels of Figure15.11
versus time. Measuring components of the reciprocal vectors in km−1 and using simple
precision IEEE arithmetic with words of 32 bits the background value of this indicator is
slightly above−20, but near the critical times the indicator increases and the peak values
are greater than−15, up to−9, at the critical times for which the spacecraft are coplanar.

The method of least-squares requires the inversion of the volumetric tensor, it is thus
natural to check how close to the unit tensor is the product of the volumetric tensor by its
numerically computed inverse. Hence an empirical indicator of the numerical accuracy is
defined by:

QLS =

∑
i 6=j

∣∣∣∣(RR−1
)
i,j

∣∣∣∣ (15.18)

the base 10 logarithm of the sum of the absolute values of the non-diagonal elements of this
product. The variations of this indicator along the orbit are represented by the solid black
curve on the upper panel of Figure15.11; the minimal value is of the order of−16 and
peak values reach−11 exactly at the same critical times found by the former indicator.
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Figure 15.2: Variations of the linear estimations of the componentsRmeanB
−1
mean∂xB along

a “tail orbit” of Cluster versus time normalised to the orbital period. The least-squares
estimates, taking into account the solenoidal constraint∇ · B = 0, are represented by the
dotted black curves, while the barycentric, identical to the least-squares estimate without
the solenoidal condition, are displayed by solid black curves. The solid grey curves are
the true components ofG[B] for the Tsyganenko-87 model. The time resolution is 20
minutes.
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Figure 15.3: As Figure15.2but for the componentsRmeanB
−1
mean∂yB.
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Figure 15.4: As Figure15.2but for the componentsRmeanB
−1
mean∂zB.
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Figure 15.5: ComponentsRmeanB
−1
mean∂xB estimated through a quadratic interpolation of

B for a time resolution of 20 minutes. The quadratic barycentric estimations are displayed
as black curves, while the true components for the Tsyganenko-87 model, represented by
the grey curves, are most of the time hidden by the estimated ones.
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Figure 15.6: ComponentsRmeanB
−1
mean∂yB estimated by quadratic interpolation ofB. Oth-

erwise similar to Figure15.5.
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Figure 15.7: ComponentsRmeanB
−1
mean∂zB estimated by quadratic interpolation ofB. Oth-

erwise similar to Figure15.5.
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Figure 15.8: ComponentsRmeanB
−1
mean∂xB estimated by the corrected linear estimator in

order to reduce the amplification of the truncation errors by singular reciprocal bases. The
exact components are plotted as solid grey curves, and the estimated components as dotted
black curves for the solenoidal estimator and solid black curves for the corrected linear
barycentric estimator.
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Figure 15.9: As Figure15.8but for the componentsRmeanB
−1
mean∂yB.
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Figure 15.10: As Figure15.8but for the componentsRmeanB
−1
mean∂zB.
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Neither indicator requires diagonalisation of the volumetric tensor, both predict equally
well the critical times, but neither describes what occurs to the tetrahedron.

Physical Precision

At the beginning of these investigations it was somewhat naturally thought that the
estimation of∇ · B, the trace of the estimatedG[B], should be indicative of the quality
of the linear interpolation for a solenoidal field, such asB. This quantity ignores the off-
diagonal components, but nevertheless the plots of log10(|∇ ·B|) for the Tsyganenko field
model and the three estimates of the gradient deserve some comments.

1. The Tsyganenko-87 model itself is not completely divergence free, as indicated by
the light-grey curves in the three panels of Figure15.11. Except when the sign
changes, the magnitude of∇ · B is larger than 10−5 nT km−1 everywhere, and is
greater than 10−3 nT km−1 close to the Earth; in fact|∇ · B|/|B| is almost constant
along the orbit.

2. log10(|∇ · B|) computed for the solenoidal least squares estimator is plotted as the
dotted curve of the upper panel of Figure15.11; it varies between−20 and−16,
very small values indicating good respect of the imposed constraint. But, as already
mentioned (Section15.3), this does not guarantee that the resulting linear estimate
is better than the one obtained without this constraint.

3. The linear barycentric estimation (dotted curve of the central panel) is greater than
the divergence of the field model (light-grey curve) by one to three orders of mag-
nitude. The quadratic estimation represented by the dotted line in the bottom panel
follows more closely the divergence of the model, but nevertheless deviates from
the divergence of the model at the third critical time, very near the perigee.

These results emphasise that the crucial point is the applicability of linear interpolation
within the tetrahedron, but unfortunately there is presently no criterion to test this point.
A pseudo-quadratic estimator as been proposed in Chapter14 in an attempt to reduce the
truncation errors by taking advantage of the orbital motion of the cluster; but, as shown
for a planar current sheet model, this estimator is linearly degenerate and is affected by
truncation errors which are of the same order as the truncation errors affecting the linear
estimator.

It is worth noticing once more that truncation errors affecting∇ · B and∇ × B are
independent: the simulations presented in this section illustrate this point especially during
the time interval betweent = 0.85 and 1.0 for which, according to Figures15.8–15.10, all
components ofG[B] involved in∇ × B are accurately estimated meanwhile the compo-
nents involved in∇ · B obviously deviate from the “true” components.

15.5 Future Developments

15.5.1 Filtering of the Data

Real data will require the use of low pass filtering. It is assumed, of course, that the
experimental data is already free from any effects of temporal aliasing, as explained in
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Figure 15.11: Estimated divergences and numerical accuracy indicatorsQLS , for the
solenoidal least-squares estimator (upper panel), andQbary for the linear (central panel)
and quadratic (bottom panel) barycentric estimators. In all frames the black solid curves
represent these accuracy indicators defined by equations15.18 (page379) and 15.17
(page379), respectively, and the light-grey curves represent the variation of log10(|∇ ·B|)

of the Tsyganenko-87 model along the orbit of the tetrahedron (where∇ · B is measured
in nT km−1); near the perigee|∇ · B| is greater than 10−3 nT km−1. The dotted curves
represent the variations of log10(|∇ · B|) of the estimators. The time resolution is 20
minutes.
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Chapter2. The effects we are talking about now are spatial aliasing: it is necessary to
remove short wavelength (i.e., highk) fluctuations which would otherwise degrade the de-
termination of the gradient on the scale of the size of the tetrahedron. The analysis of these
high spatial frequency fluctuations is the subject of Chapter3. The condition of spatial
aliasing (Section14.5.1) is easily derived with the barycentric formalism of Chapter14.
Real data will require averaging over a characteristic time such that the displacement of
the tetrahedron during this time is comparable to, but less than, its size. Averaging over a
longer interval would degrade the resolution.

15.5.2 The Spacecraft Position

The discussion of Section14.3 shows that the precision of the determination of the
satellite position is important. The probable error in the position of the spacecraft is gen-
erally not isotropic in space. This fact must be taken into account in the determination of
the probable errors affecting the experimentally determined gradients. Furthermore, it is
clear that for almost coplanar spacecraft the most important information is the precision
of the spacecraft position in the direction of planarity; for this component of the gradi-
ent estimate problems are most likely to be encountered. It is therefore essential that the
covariance matrix of the position error be computed along the orbit.

The three components of the error in the spacecraft position will vary differently with
position along the orbit. To a first approximation, the component (of the error) parallel
to the spacecraft velocity will have a minimum at apogee (where the orbital velocity is
small) and maximum at perigee; this component depends mainly upon a timing offset. The
components which depend upon a difference of orbital eccentricity or orbital plane will
have the opposite behaviour, being larger near apogee than near perigee. These variations
are similar to the variations of the geometry itself of the Cluster tetrahedron. Therefore
the determination of gradients near apogee, when the tetrahedron is considerably flattened,
may be rather better than predicted by the simple rule that the position accuracy is within
a certain limit, e.g.±5 km. Note that for the numerical demonstration of Section15.4the
orbit was chosen to be isotropic close to apogee, and consequently this flattening was not
obvious. But in general the scientific objectives will require isotropy to be targetted at
lower altitudes, leading to flattening of the tetrahedron near apogee.

It is essential to give more thought to this matter, because the Cluster experimenters
will probably often want to push to the limit their knowledge of the orbital position, es-
pecially when the spacecraft are far from that part of the orbit concerned by a primary
science objective.

15.6 Conclusions

The determination of gradients from measurements by four spacecraft is just the spatial
interpolation of data within the tetrahedron formed by the spacecraft. The homogeneous
least squares method presented in Section12.2complements the theoretical framework of
Chapter14. The unconstrained least square method was proved in Section15.2to be math-
ematically identical to the linear barycentric method described in Section14.2. In principle
the least squares approach allows account to be taken of the solenoidal constraint, but this
does not necessarily improve the estimation of the gradient because, as demonstrated in
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Section15.3, the linearly interpolated gradient of a solenoidal field is generally not di-
vergence free. The simulations presented in Section15.4 show that in practice the two
methods may yield different results, especially in the vicinity of singular configurations of
the tetrahedron, with no indication as to which determination is better.

The errors of truncation may lead to completely erroneous estimates, especially for
nearly planar clusters. Presently, no criterion is available which could give a hint about the
validity of the linear interpolation of the field in between the spacecraft; this linear inter-
polation is the common basis of all methods designed to estimate the gradient of a given
field. Such a criterion is mandatory to give credit or not to these estimates; more investi-
gations are required of this crucial point. Nevertheless, the accuracy indicators discussed
in section15.4.3are reliable warnings of inaccuracy in the vicinity of the planar clusters.
In some cases, a regularisation of the reciprocal base can be attempted as demonstrated
in the same section. The approximate quadratic estimator defined in Section14.2 does
not improve the estimation of the gradient along realistic orbits in a Tsyganenko model of
the geomagnetic field. Note that the least squares method as described in Section12.2is
directly applicable to more than four spacecraft.

The Tsyganenko-87 model we have used does not include a magnetopause, hence the
simulations have been restricted to orbits completely within the magnetosphere, but from
the theoretical analysis of Section14.4 we conclude that a correct determination of the
Chapman-Ferraro currents at the magnetopause will require a small size tetrahedron, with
an inter-spacecraft distance of the order of 100 km; otherwise, the truncation errors will
lead to meaningless estimations of the magnetic gradients and electric currents.

When the truncation errors are acceptably small, the accuracy of the estimated gradient
is determined by the geometrical errors related to the shape of the tetrahedron and to
the uncertainties on the spacecraft positions; to determine these errors it is mandatory
to know the reciprocal vectors and the covariance matrix of the errors of the spacecraft
positions. Lastly, it can be seen that the size, elongation and planarity of the tetrahedron,
together with the three Euler angles describing the orientation of the principle axes (i.e.,
the direction of the axes of elongation and of planarity), are essential parameters for all
multi-spacecraft science.

Acknowledgements

The authors are indebted to P. Robert for the files of simulated magnetic data in GSE coordinates
and for the computation of the geometrical factors. They are also indebted to J. Vogt for having
drawn their attention to the relationship15.2between the volumetric and reciprocal tensors.

Bibliography

Chanteur, G. and Mottez, F., Geometrical tools for Cluster data analysis, inProc. Inter-
national Conf. “Spatio-Temporal Analysis for Resolving plasma Turbulence (START)”,
Aussois, 31 Jan.–5 Feb. 1993, ESA WPP–047, pp. 341–344, European Space Agency,
Paris, France, 1993.

Coeur-Joly, O., Robert, P., Chanteur, G., and Roux, A., Simulated daily summaries of
Cluster four-point magnetic field measurements, inProceedings of Cluster Workshops,



Bibliography 393

Braunschweig, 28–30 Sep. 1994, Toulouse, 16–17 Nov. 1994, ESA SP–371, pp. 223–
227, European Space Agency, Paris, France, 1995.

Khurana, K. K., Kepko, E. L., Kivelson, M. G., and Elphic, R. C., Accurate determination
of magnetic field gradients from four point vector measurements: II. use of natural
constraints on vector data obtained from four spinning spacecraft,IEEE Trans. Magn.,
32, 5193, 1996.

Tsyganenko, N. A., Global quantitative models of the geomagnetic field in the cis-lunar
magnetosphere for different disturbance levels,Planet. Space Sci., 35, 1347–1359,
1987.



394 15. SPATIAL INTERPOLATION: APPLICATION



Reprinted fromAnalysis Methods for Multi-Spacecraft Data
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16.1 Introduction

The four Cluster spacecraft will enable simultaneous measurements of the vector mag-
netic field at the vertices of a tetrahedron. Methods for analysing such data include: a
contour integral method for determining the electric current density (from∇ ×B) in fields
varying on scales relatively large compared to the spacecraft separations, and which was
coined the “curlometer” technique; a wave telescope technique which is most reliable
where the field scale variations are comparable to the spacecraft separations; and a discon-
tinuity analysis technique for cases where the field scale variations are much shorter than
the spacecraft separations. Note that the Curlometer also provides an estimate of∇ ·B via
Gauss’s Theorem. The finite difference equations at the core of the curlometer technique
can also be derived and efficiently solved by making use of barycentric coordinates. A
collection of methods based on barycentric coordinates are fully described in Chapter14.
In the linear approximation, the barycentric estimates for∇ × B and∇ · B are identical
to those defined by contour integrals (as they should be for mathematical consistency).

For this reason, both forms are used here as a matter of mathematical convenience: to
employ the computational efficiency of the barycentric equations for the statistical anal-
ysis, for instance. The resulting estimates ofJ and the divergence ofB are subject to
errors of which there are basically three types. The first relates to measurement uncer-
tainties inB, and in the spatial configuration of the four spacecraft. The second relates to
the linear interpolation which is made between the various measurement points. The third
relates to the simultaneity of the measurements. Sections14.3and14.4present theoretical
investigations of the first and second types of errors respectively.

The influence of these errors on the accuracy of the estimate ofJ or ∇ · B is strongly
related to the shape of the tetrahedron but also to the magnetic structure present. This, of
course, is not known (at least explicitly) for measured data. Since the shape of this tetra-
hedron evolves along the mean trajectory of the 4 spacecraft, it is particularly important to
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396 16. ACCURACY OFCURRENT DENSITY DETERMINATION

study the influence of the shape of the tetrahedron on the accuracy of the estimate of the
current density.

First of all, we identify the general basis for the curlometer method. We briefly explore
the effect of magnetic structure on the quality of the estimate ofJ , particularly highlighting
the possible effect of anisotropic structure on sampling, and set this in the Cluster context.

Then, using randomly simulated configurations for the case of a particular isotropic
magnetic structure, we discuss the following quantitative questions, in some detail: (i)
what parameters we have to use to characterise the shape of a given tetrahedron? (ii) what
is the relation between the geometrical shape of the tetrahedron and the accuracy of the
determination ofJ via the estimate of∇ × B? (iii) can ∇ · B be used as an estimate
of the error1J , as opposed to its use as a general indicator of physical coverage1? and
(iv) when the tetrahedron is relatively flat, is there a relation between the accuracy of the
determination ofJ and the orientation of the current with respect to the orientation of the
tetrahedron? These questions are studied with the help of a numerical simulation based on
a large number of possible tetrahedra and a model for the current structure.

16.2 The Curlometer Technique

16.2.1 Background

Use of the magnetic field alone requires the electric current density to be estimated
from Ampère’s law, which is physically valid over the dynamic range of dc magnetometer
measurements. By treating this current as constant over the tetrahedral volume formed by
the four spacecraft, a difference estimate of∇ × B can be made. This estimate forms the
basis of the curlometer analysis technique. In reality, the current will always vary to some
degree over the tetrahedron and the best (a priori) knowledge of this lies in estimating∇·B

under the same assumptions. Because of the solenoidality of the magnetic field (∇·B = 0),
any non-zero result arising from this estimate of∇ · B arises from the neglected nonlinear
gradients inB (assuming that the error measurement is weak by respect to the error due to
the nonlinear gradients). These are of the same order as the second order terms in∇ × B,
dropped by differencing (see below). This quantity only partly reflects the physical error,
arising from the coverage of the magnetic structure achieved by the spacecraft tetrahedron,
in the context of the gradients contributing to∇ · B. The gradient ofB and the nonlinear
contributions for∇ × B, in particular, are not checked explicitly. The use of the estimate
of ∇ · B serves in this method as a quality indicator only.

During the development of the method the suitability of∇ · B as a measure of the
physical uncertainty was extensively tested. It was concluded that for some structures∇ ·B

does not necessarily form a particularly good estimate of the error inJ . In particular, for
the case of a current tube, if statistically∇ · B and1J show the same variation, there is
no point to point correspondence (see Section16.4.3). This has been also suggested by
comparisons of theJ vector of the Tsyganenko-87 magnetic field model deduced from
the Cluster tetrahedron by the barycentric method with theJ vector deduced by a finite
difference method on an arbitrary small scale.

1What is called here “physical coverage” and “nonlinear contributions” is related to the errors of truncation
(see section14.4).
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For in situanalysis, the significance of∇ ·B should therefore be quantified in terms of
the interpretation of the data being made (see Section16.2.3), i.e., in terms of the properties
of different model structures being implied. Nevertheless, in many instances∇ ·B/|∇×B|

can be used to discuss the quality of the current estimate.
The difference approximation leads via the integral form of Ampère’s law to:

µ0J av · (r1α × r1β) = 1B1α · r1β −1B1β · r1α (16.1)

〈∇ · B〉av|r1α · (r1β × r1γ )| = |

∑
cyclic

1B1α · (r1β × r1γ )| (16.2)

where we have chosen to define differences between spacecraft to be relative to spacecraft
1; α, β, γ = 2, 3 and 4 are indices referring to the apexes of the tetrahedron.J av represents
the measured mean current over the tetrahedron volume (=J estimatedin Section16.3), and
〈∇ · B〉av is the differential estimate of∇ · B for the tetrahedron.r1α and1B1α rep-
resent the separation vectors and field differences between respective spacecraft. These
equations give the current normal to each face of the tetrahedron and therefore represent a
coordinate independent, natural expression of the current relative to the tetrahedral geom-
etry and orientation. As such, they immediately give a reflection of the physical coverage
of the magnetic structure sampled by the spacecraft array (note that the fourth face, not
involving spacecraft 1, forms a redundant estimate, but can be obtained by changing the
reference spacecraft). If independent reference components ofJ av are required, these
can, of course, be extracted by a further transformation, or by direct calculation, using
the cartesian, differential form of the equations, for example, and also with an equiva-
lent coordinate-independent formalism, employing barycentric coordinates. In Chapter14
the use of the barycentric method is completely described, including the extraction of the
difference estimates for∇ × B and∇ · B.

Apart from the physical error (lack of accurate coverage by the spacecraft configura-
tion), the change in the current estimate,δJ , due to errors in the spacecraft separations and
in the magnetic field values measured at each spacecraft, can be estimated through an error
analysis of equation16.1. Other sources of error, such as timing errors, are usually rela-
tively unimportant or are considered part of the field error. The relative measurement error
δJ/|J av| is used as the prime monitor of measurement performance inJ av. It is useful for
understanding the variability found forδJ to express this conceptually as follows:

δJ

|J av|
= FB

δB

1B
+ FS

δr

1r
(16.3)

where the field error and the separation error are taken as component independent for
convenience of expression here.

In general, the form forδJ is not separable, and is nonlinear. The above form, how-
ever, highlights the fact that the relative current error depends fundamentally on the relative
measurement errors (in position and field), scaled by some factors,FB andFS , which de-
pend on the field differences and the separation vectors (i.e., magnetic structure between
the satellites and spacecraft configuration). Measurement and separation errors also con-
tribute to∇ · B itself and may be a large part of the estimate obtainedin situ. Although
for actual data this raises a further issue of interpretation of∇ · B, for this work the use
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of model (simulated) data and known uncertainties allows the effect to be considered sep-
arately.

It should be noted that the method used in this chapter is not trivially extendable to the
case of more than 4 spacecraft. The basis for calculation of spatial gradients changes in
that case since the nonlinear terms can then be checked directly (second order terms in the
field differences can be determined), in principle, or the added redundancy with more than
4 points can be used to improve the physical estimates. Consideration of the significance
of the measurement accuracy would guide how this information is best used.

16.2.2 Application: Cluster Context

The factorsFB andFS above are of order unity in the “best case” situation of a regular
tetrahedral configuration, sampling structures with spatial scales which are well matched
by the overall scale of the tetrahedron. In general, these increase as the tetrahedron dis-
torts, adversely affecting the contribution of these error sources, and typically,FB andFS
are∼2–10, but this varies with magnetic structures also. Because of the critical nature of
the error functions (forJ av but also for other combined parameters) and their sensitivity to
spacecraft formation, the scientific performance of each measurement (not restricted to the
magnetic field) will be highly constrained by orbital evolution. Typical values of the mag-
netic field measurement errors onboard Cluster are∼ 0.1 nT for typical magnetospheric
magnetic fields along the Cluster orbit (up to∼ 1000 nT). For the Cluster mission, a se-
quence of manoeuvres is anticipated which would modify the natural orbital evolution of
the spacecraft configuration. Scientific analysis of a particular plasma environment is lim-
ited by the resulting scale size and shape of the spacecraft tetrahedron. A particular orbit
phase will set both the configurational evolution over an orbit and the overall configuration
scale in each magnetospheric region and this is depicted in Figure16.1.

Two orbit phases are shown which have typically, 1000 km separations (dayside) and
1RE separations (nightside), respectively. The insets in the dayside plot are enlargements
of the projected configurations (×10). Very different evolution of the configuration is
apparent which samples the model magnetic structure, taken from the Tsyganenko-87 field
model, in a highly varied way. The curlometer method above allows the deformation
over an orbit to be monitored in terms of its affect on the error functions forJ av. This
deformation is to the extent that such differential measurements would be prohibited for
significant fractions of the orbit. Similarly, the effect on∇ · B/|∇ × B| can be monitored
over the orbit. Each quantity can be used independently as an indicator of measurement
performance: quality associated with measurement accuracy in the first case and quality of
the physical coverage of gradients in the second case. Other quantities may have different
regions of bad coverage.

In fact (see Figures16.3and16.4), inspection of∇ · B/|∇ × B| andδJ/|J av| reveals
two facts. Firstly, small separations clearly achieve crudely better linearity estimates of
spatial gradients, for some physical structure, since then the linear approximation is more
accurate. Secondly, however, accuracy is limited by the relative measurement errors which
become large at small separations because the absolute errorsδB andδr are roughly con-
stant. Thus, for a fixed orbital evolution, the overall quality represented by each parameter
needs to be balanced: good linearity must still allow good relative measurement accuracy.
This is represented in the Figure16.2.
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Figure 16.1: Dayside and nightside phases proposed for the first year of Cluster, showing
the evolution of the spacecraft configuration.

Note that the curves shown are conceptual and, of course, change relative value de-
pending upon the structure being sampled. The question is: what is achieved for a partic-
ular combined quantity (such asJ ) and for particular phenomena or regions of the orbit?
For instance, the curves may cross at small or large separations and the quality of both the
physical coverage and measurement may be high over a large range of scales, simultane-
ously. Not all magnetic structures are suitable for gradient analysis, of course, and in some
instances other analysis techniques will be required for adequate performance.

A number of simple model structures have, in fact, been studied with simulated tra-
jectories, having a range of spacecraft configurations, using the analysis tool described
briefly in Section16.2.3, below. It is clear from these studies that the characteristics con-
tained in the magnetic structures (spatial variation), plays a critical role in the balance
between the two conceptual curves shown above. The anisotropy and symmetry proper-
ties of the phenomena represented, changes the effect of the orientation of the spacecraft
configuration relative to the structure, alters the contribution of the nonlinear variations to
∇ · B/|∇ × B|, and, of course, affects the error functions definingδJ /|J av|. The charac-
teristic spatial scales of a phenomenon set the appropriate relative scales for the spacecraft
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Figure 16.2: Comparison of quality trends with the overall scale of the spacecraft config-
uration.

configuration (a key factor in defining the Cluster orbital phases). This sensitivity to mag-
netic structure is often complex since sampled events may exhibit a number of properties
(waves on boundaries, flux ropes, etc.) and is beyond the scope of the present chapter.
In the second part of this chapter, rather, a detailed study of configuration dependence is
discussed for a particular, important magnetic structure.

Over an orbit containing some configurational evolution, the two quality indicators
(∇ · B/|∇ × B| andδJ /|J av|) will exhibit individual error profiles, highly sensitive to
both the characteristic anisotropy and spatial scales of the magnetic structure sampled
and the geometry, relative orientation and relative size of the spacecraft configuration.
Figures16.3 and 16.4 show examples of these sensitivities for the case of anticipated
Cluster situations in order to give a brief indication of the key results.

Referring back to the dayside orientation for the orbit shown in Figure16.3, it should
be noted that many other evolutions will result for different starting configurations (here
chosen to be a regular tetrahedron at the northern cusp), but that the overall scale, within
this evolution, is set by the scale of the starting configuration.

Profiles for the two parameters are shown for two, similar choices for dayside phases
in the Figure16.3. This plot shows variation against the true anomaly around the orbit,
with the evolution outside the magnetopause not shown and where the field is sampled
at the times over the orbit for each tetrahedral position. A nominal separation error of
5 km and a measurement error of 0.1 nT in the field have been assumed (no component
error dependence is monitored for simplicity). The parameters monitor poor quality (large
values here) when error contributions are high. Features in the trends arise from a combi-
nation of the effect of local magnetic structure, the relative separation scale and the degree
of tetrahedral distortion. The effect of spacecraft configuration will be more apparent
when sampled structure does not vary too widely or is unimportant for the calculation of
∇ · B/|∇ × B| andδJ/|J av|, the latter being true when the spacecraft configuration scale
is large relative to the model structure for instance (here Tsyganenko-87). Then the value
of ∇ · B/|∇ × B| is large, however, and the estimate of|J av| is unphysical (δJ/|J av| can
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Figure 16.3: Error profiles for∇ · B/|∇ × B| and δJ/|J av| for two cases of dayside
evolution, both with starting configurations at the northern cusp. The Tsyganenko model
is used as model of magnetic structure.
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Figure 16.4: Error profiles for the nightside evolution, starting configuration at the mag-
netotail crossing (T87 model).
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still be used as a quality estimate in this case).
In fact, in the context of the Cluster orbital configurations, it is only for the small

separations shown in Figure16.3(<1000 km) that∇ · B/|∇ × B| remains small. Note
that, because of the different evolution in each dayside case, the details of profile are
different, but that, overall, the trends are similar, particularly the large deviation between
∇ · B/|∇ × B| andδJ/|J av|: the physical coverage remains good, but measurement error
is bad as the spacecraft move away from the strong field region.

Key factors influencing the trends are the overall tetrahedral volume, the shape of the
configuration, the magnitude ofB and the nature of the field curvature. These factors
combine to produce complicated dependencies and thus tetrahedral geometry alone is not
a good indicator for predicting the errors in these cases. The consistent trend to large
error in the plots for instance can be explained by the fact that the field magnitude varies
considerably; falling dramatically as the magnetopause is approached. Generally, for small
field intensities (and hence small differences between the spacecraft) the significance of
the error is enhanced. For strong curvature inB the value of∇ ·B/|∇ ×B| may also grow.
The peak at 30◦ in the left-hand plot, however, can be associated with extreme distortion
in the tetrahedral shape. Similarly, the profiles after 240◦ are very different between the
plots because the evolution is dramatically different (note that for the right-hand case the
configuration is elongated in the direction perpendicular to the plane of view).

Figure16.4shows two cases for the nightside phase, for which a regular tetrahedron
is set up close to the tail current sheet crossing. For these larger separations, while error
quality is higher overall, reflecting the less critical nature of the separation error,∇ · B

is now large (not shown for clarity). The evolution for the left-hand plot shows two clear
regions of severe distortion (as indicated by the insets, scaled by x10): one between 120◦–
180◦ and one centred on 270◦. These positions correspond to large errors in the current
estimate. Moreover, the current density peaks through the current sheet so thatδJ/|J av|

is suppressed. The right-hand plot shows the orbit plotted in GSM coordinates. While,
clearly, the trends differ, in particular with regard to the positions of the peaks, the striking
feature is perhaps the similarity in profiles. In the right-hand plot the current sheet is
more clearly identified and the variation over the inner dayside magnetopause is smoother
since the cusp structure is not well sampled. The error peaks are still clearly identified
with extreme tetrahedral distortion, however; now with a double peak corresponding to
the positions ‘2’ and ‘3’.

Thus, for these large configurations, the effect of magnetic structure inδJ/|J av| has
been reduced, so thatFS andFB depend mainly on tetrahedral geometry. This is in contrast
to the dayside phases where the effect of the sampled magnetic structure masks the effect
of the tetrahedral geometry. The dependence of∇·B andδJ/|J av| on tetrahedral geometry
is covered quantitatively in detail for specific model structure in the next section.

16.2.3 Analysis Technique

The preceding discussion has concentrated on issues most relating to the analysis of
in situ data (for which there is noa priori knowledge of magnetic structure) and results
in a conceptual method arising from the combined use of∇ · B andδJ/|J av| as quality
monitors relating to the curlometer technique. The use of∇ · B makes no distinction be-
tween those spatial gradients which contribute differently to∇ · B and∇ × B: there is
an assumption that the terms in∇ · B, as sampled, are as well represented, in combina-
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tion, as the gradient terms in∇ × B, or as poorly represented. The conceptual flow may
contain further interpretation (or assumption) of event properties, however, following an
initial analysis and combination of the data. This, of course, guides the application of the
technique. The evidence obtained from simple models (e.g. where the direction of∇ × B

does not change) is that∇ · B works well for indicating poor coverage forJ , at least in
statistical sense. Such a technique has been designed and tested with a variety of simulated
situations and is briefly described below.

Although an estimate for the current density can always be made, the above discussion
suggests that two key areas of quality control can be pursued: the physical error, repre-
sented (crudely) by∇ · B/|∇ × B|, and the measurement error, represented byδJ/|J av|.
The estimate of∇ · B itself separates the nature of the analysis which can be performed
on actual events. Even if∇ ·B/|∇ ×B| is well behaved, measurement quality may not be
high for all components ofJ , and this must be monitored as part of the analysis. A poor
estimate of∇ ·B/|∇ ×B| indicates a possibly poor physical estimate of some components
of J , requiring further (independent) interpretation of the sampled structure (for example,
the size of the components of the gradient or stationarity properties). If∇ · B/|∇ × B| is
not well behaved, therefore, gradient analysis can still be performed on individual terms
in the dyadic∇B and the time dependence of the event can be checked.

The technique has been used to investigate a number of simulated events using a variety
of magnetic structures. It is clear from this study that for strongly anisotropic structures,
having spatial scales at least of the order of the spatial scales of the spacecraft configu-
ration, the orientation of the configuration with respect to model is crucial as suggested
above. For some orientations the estimates show better coverage with distorted configura-
tions than for regular configurations when comparing the estimatedJ to the mean current
for the model.

16.3 Accuracy of Current Density Determination

16.3.1 Parameters Used to Define the Shape of a Tetrahedron

Chapter13is dedicated to the study of “quality factors” which could describe the shape
of a tetrahedron. In the past, the relationship between the accuracy of the current density
determination and the shape of the tetrahedron has been studied with various 1-D param-
eters. The main result was that there exist two categories of 1-D parameter: one which
attempts to describe the geometrical shape, and a second which is directly connected to
the relative accuracy of the measurement. This was a conclusion deduced from observation
and simulation, but not explained. Chapter13 studies this observation, and has checked
the validity of the 1-D parameters. The main conclusion of that chapter is that the best
way to describe the shape of the tetrahedron, and understand what happens, is to use a 2-D
geometric factor, made up of two parameters, theelongation Eandplanarity Pparameters,
which are deduced from the volumetric tensor (see Chapters12and13).

Here we take again this method, and all parameters such as the total difference between
the estimated and the theoretical, mean|J | defined by the model,1J/J (see precise
definition in Section16.3.5), and parameters such as∇ ·B and∇ ×B will be studied in an
elongation-planarity (E-P ) diagram, which allows us to characterise more precisely the
relationship between the shape of the tetrahedron and the accuracy of the estimate of the
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current density, and furthermore to understood why, in certain cases, the estimate of the
measurement is good, and why, in other cases, this estimate is bad. ⇒16.1

16.3.2 Simulation Method

The following method has been used to check the possible relation between the shape
of the tetrahedron and the accuracy of the current density determination:

• firstly, we use a high number of tetrahedra, corresponding to several possible geo-
metric configurations, taken from a “configurations reservoir”;

• secondly, we use a model of current density structure, with a characteristic scale
larger than the size of the tetrahedron, such that all the vertices of the tetrahedron
are contained inside the current structure;

• thirdly, we add independent noise on theB magnetic components at the 4 spacecraft
positions (the four vertices of the tetrahedron) and we compute vector parameters
such as∇ · B,∇ × B, and the relative error1J/J on the determination ofJ .

16.3.3 The Tetrahedron Reservoir

The shape of the tetrahedron is characterised by theE-P parameter. We try to identify
a possible relationship between the value of these parameters and the accuracy of the
estimate of∇ × B and ∇ · B. Firstly, to be sure that various kinds of tetrahedra are
taken into account, we use the “homogeneous tetrahedra reservoir” defined in13.5.1of
Chapter13. This reservoir contains about 1000 tetrahedra and offers an homogeneous
coverage of theE-P plane. So, this reservoir contains a wide variety of configurations.
To avoid any bias, the tetrahedra taken from the reservoir are reprocessed as follows: (i)
they are computed in the barycentric coordinates, (ii) all the tetrahedra are normalised to
the same mean inter-spacecraft distance〈D〉, (iii) their orientations are perturbed so as to
have a random orientation in space, and (iv) the position of the centre of each tetrahedron
is translated to−2500 km, in order to avoid the centre of the current structure which could
be a particular case.

16.3.4 The Current Structure Models

The goal is to simulate the crossing of a current structure by the Cluster constellation.
We have therefore to define a current structure model. The chosen model is described
in Figures16.5and16.6: it consists of a cylindrical current tube, with an homogeneous
current density (Figure16.5), or a Gaussian current density profile (Figure16.6). In all
cases, we assume that the size of the Cluster tetrahedron is smaller than the size of the
current density structure, so that all the spacecraft are simultaneously located inside the
current density structure. Typical values are〈D〉 = 1000 km,R or σ = 5000 km,Jo =

10−8 amp/m2.
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Figure 16.5: Current tube with homogeneous current density profile.
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Figure 16.6: Current tube with Gaussian current density profile.
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16.3.5 The Computation ofJ and ∇ · B

The uncertainty in the measurements ofB (or the uncertainty in the restitution of the
spacecraft attitude) is simulated by adding a random noise on the 3 components of the 4
Bα vectors. Similarly a random noise is added to the 4rα vectors describing the positions
of the 4 spacecraft. The amplitude1B of the noise added on the 4 magnetic field vectors
is independent of the components, and proportional to|B|. The uncertainty1r in the
knowledge of the spacecraft position is taken to be proportional to〈D〉, the average inter-
spacecraft distance.1B/B or 1r/r represent the relative accuracy in the determination
of Bα andrα. The relative errors1B/B and1r/r are defined as:

1B/B = 1B/
1

N

4∑
α=1

|Bα|

1r/r = 1r/
1

N

4∑
α=1

|rα|

Typical values for1r/r are 1%, which correspond to the nominal values given by the
Cluster project.∇ ·B andJ = ∇ ×B/µ0 are computed from the perturbed simulated data
by the barycentric coordinates method, and we obtain an estimate of theJ or ∇ × B/µo
vector which is compared to the real value of the average ofJ at each vertex given by the
model. Although the uncertainty in the modulus and the direction ofJ have been studied,
we present here only the results corresponding to the modulus ofJ , that we note hereafter
J . Thus the relative accuracy of the estimate ofJ ,1J/J , can be estimated. The definition
of 1J/J is:

1J/J =
µ01J

|∇ × B|model
=

|J estimated
| − |J model

|

|J model
|

(16.4)

where|J model
| is the mean value of the 4|Ji | values of the model at the 4 vertices of

the tetrahedron, and|J estimated
| is the estimate of|J | by the barycentric method, which

is equivalent with|J av| used in Section16.2. Of course, from Amp̀ere’s law, and taking
into account the different kinds of errors, we noteµ0|J

estimated
| = |∇ × B|

estimated. It has
been shown that the errors1B/B or 1r/r have the same effect on the accuracy1J/J .
Therefore, for the sake of simplicity, we will only consider the perturbation1r/r. This
computation is made for all the tetrahedra taken from the reservoir defined in Chapter13,
thus all theE-P plane is covered.

16.4 Results

16.4.1 Influence of the Shape of the Tetrahedron on the Relative Ac-
curacy 1J/J

First we consider an homogeneous current density profile, and therefore there is no er-
ror associated with the linear interpolation between the measurement made at the 4 space-
craft locations; only the uncertainties on the positions of the measurement points are taken
into account (1r/r = 1%,1B/B = 0).
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The main results are shown in Figure16.7, where we have plotted the relative accuracy
1J/J in anE-P diagram. The size and the colours of the circles indicate the values of
1J/J : for 1J/J = 0, the radius of the circle is just an invisible point, the largest circles
correspond to1J/J ≥ 10%. Note that there is no small circle hidden behind a large one,⇒16.2
the circles being sorted by size before plotting.

Adopting the five types of tetrahedra defined in Chapter13as description of shape, the
main conclusion is that for a large fraction of the diagram, corresponding to the “Pseudo-
Spheres type” and to a large fraction of the “Potatoes type”, the relative error1J/J re-
mains below 2%. For values of the elongation or planarity parameter larger than about 0.6,⇒16.3
the errors reach 3% or more. ForE or P > 0.9, which corresponds to a very long or a⇒16.2
very flat tetrahedron, the error can reach 10% and more, especially of course when bothE ⇒16.2
andP get of the order of unity. As a matter of fact, the error increases roughly with the
radiusr =

√
(E2 + P 2), but this variation is not linear.

16.4.2 Influence of the Shape of the Tetrahedron on the Estimate of
∇ · B/|∇ × B|

Similar results are shown in the Figure16.8, for ∇ · B and∇ × B estimated from the
simulated measurement values. Notice that the current density profile being homogeneous,
the theoretical value of|∇ × B| is the same for all the points, and the|∇ × B| estimated
values differs from the theoretical ones according the results of Figure16.7where1J/J
is defined by equation16.4(see Section16.3.5).

The theoretical value of∇ ·B is obviously equal to zero. Since∇ ·B is not a normalised
quantity, we have chosen to display the estimate of the ratio∇ ·B/|∇ ×B| rather than the
value of∇ · B. The colour code is the same as for1J/J . Roughly speaking, the diagram
looks the same as for1J/J , the “Pseudo-Spheres” and “Potatoes” types gives the lower
values of the divergence, and a large value ofE orP leads to a large value of the estimated
divergence.

16.4.3 Relationship between1J/J and ∇ · B/|∇ × B|

Since the∇ · B/|∇ × B| diagram looks the same as the1J/J diagram, one would
expect that the estimated ratio∇ · B/|∇ × B| is an estimate of the error1J/J . This is
statistically true (see previous section), but a more careful investigation shows that there
is no one to one correspondence between the two diagrams; a large value of1J/J can
correspond to a small value of∇ · B/|∇ × B| ratio, andvice versa: good estimates ofJ
can correspond to large value of the divergence (large∇ ·B/|∇ ×B| ). This is particularly
true for large values ofE or P .

In order to reveal a possible relationship between1J/J and∇ · B/|∇ × B|, we have
plotted these quantities in together in Figure16.9. The colour code and the symbols corre-
spond to the family of the tetrahedra defined in Chapter13(circle for Pseudo-Spheres, hor-
izontal ellipsoid for Cigars, triangle for Pancakes, diamond for Knife Blade, and oblique
ellipsoid for Potatoes).

A possible relationship between these two parameter would result in the alignment of
the representative points. This is not observed; the distribution of the points has no pre-
ferred direction. Of course the area of the “Pseudo-Spheres” (round symbols) is restricted
to the central part of the diagram, close to zero, while the other types cover all the diagram.
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Figure 16.7: Influence of the shape of the tetrahedron on the estimate of|J |.
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Figure 16.8: Influence of the shape of the tetrahedron on the estimate of the ratio
∇ · B/|∇ × B|.
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Figure 16.9: Relationship between the error1J/J and the ratio∇ · B/|∇ × B|.

The non-existence of a correlation between∇ ·B and1J can be explained by the fact
that the computation of∇ · B and∇ × B involve different combinations of the compo-
nents of the dyadic∇B. The divergence is obtained from the diagonal terms, while the
curl is built from the off-diagonal terms. These terms being perturbed by the addition of
an independent random noise on the 12 components defining the 4 spacecraft positions
to simulate the uncertainties on the measurement of these positions, the corresponding
errors on the gradient tensor are not dependent. Practically, if the errors on the various
components are effectively independent, it means that we cannot use the value of the es-
timated divergence to estimate the error1J due to the measurement uncertainties. Thus,
for sampling “blind events”, the uncertainty onJ can be calculated by equation16.3(see
Section16.2). Moreover, this result means that a particular configuration shape (classi-
fied byE-P ) does not alone absolutely order the measurement error, except statistically
(all orientations); the relative orientation to the magnetic structure also influences this (see
Section13.2on “Measurement Performance”, page324).

16.4.4 Influence of the Current Direction on the Error 1J/J

In the present section, we investigate the possible influence of the direction of the
current with respect to the largest face of the tetrahedron on the errors. Figure16.10shows
the result: the relative error1J/J is plotted versus the angleθ between the direction of
the current and the normal to the main plane of the tetrahedron. The main plane of the
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Figure 16.10: Influence of the current density direction on the error1J/J .

tetrahedron is defined as the plane containing the major and middle semiaxes of the inertial
ellipsoid, thus the normal to this plane is the minor semiaxis.

As defined in Section16.4.3, a colour code and a symbol are used to separate the
different families of tetrahedra defined in Chapter13. The “Pseudo-Spheres” have been
removed from the figure because the main plane has no meaning for a sphere. One could
expect to find in this diagram a relationship between1J/J andθ , showing for instance
that the quality of the estimate would be better when the current is orthogonal to the main
plane. Examination of Figure16.10 show that the (expected) minimum of1J/J for
θ = 0◦ or θ = 180◦ seems roughly clear. One can observe a slight tendency in the
case of the “Pancakes”, for which the main plane has of course the clearest meaning, but
this relationship is not very obvious because the distribution of the point in this diagram is
not homogeneous along theθ axis, and there is not enough point nearθ = 0◦ or θ = 180◦

to get a clear-cut conclusion. Therefore, practically, it seems that the angleθ plays a role
in the organisation of the diagram, and error1J/J can be related to this angle, at least for
the particular model of an homogeneous current tube.

16.4.5 Heterogeneous Current Profile

The estimate of the current density inside the volume defined by the tetrahedron relies
on the assumption that the magnetic field varies linearly between two spacecraft. If the
current density profile is not homogeneous in space (as it is the case here), higher orders
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derivatives introduce a key source of errors in the estimate of∇ × B and ∇ · B. To
study its effect, we use a Gaussian shape for the current density profile, such as the one
shown in Figure16.6, and define an heterogeneity factorh = 〈D〉/σ where〈D〉 is the
mean inter-spacecraft distance andσ is the root mean square deviation of the Gaussian. In
order to better illustrate the effect of heterogeneity of the profile, we hereafter neglect the
uncertainties1B/B and1r/r which are set to zero.

Figure16.11shows the relationship between the shape of the tetrahedron, again de-
fined by theE andP parameters, and the accuracy1J/J of the estimate, for a low value
of the heterogeneity factor.

The chosen value:h=0.1, being low, the profile of the current structure is not very
heterogeneous at the scale of the Cluster tetrahedron, thus the relative error1J/J is very
low, except for large values ofE orP . For large values ofE andP we find a result similar
to the homogeneous case (but then with a relative error1r/r of 1%, see Figure16.7
before). As before, the error grows up rapidly as soon as the tetrahedron degenerates to a
very flat or a very elongated configuration. Increasing the heterogeneity factor, for instance
h=0.2 (Figure16.12), leads to a rapid growth of the error1J/J , but the conclusion about
the shape remains similar.

Nevertheless, it seems that the heterogeneous case is more sensitive to a flat or a linear
tetrahedron than the homogeneous case; in other words it seems that the errors due to
the linear interpolation are more sensitive for a non-regular tetrahedron that the errors
associated with uncertainty on1r/r or1B/B. This is particularly true for the∇ ·B/|∇×

B| ratio. Figures16.13and16.14show the ratio∇ · B/|∇ × B| for h=0.1 andh=0.2.
Comparisons between Figures16.13and 16.14, and between Figures16.11and 16.12
show that∇ · B/|∇ × B| is more sensitive to the configuration than1J/J . Since the
errors on∇ · B and|∇ × B| are unrelated, the total error on the∇ · B/|∇ × B| ratio is
larger (no closely quantitative correspondence is anyway implied).

We have checked that the other conclusions, obtained in the homogeneous case, remain
the same in the heterogeneous case. In particular, Figures16.9and16.10look the same
with a finite low value ofh. Thus, even in the heterogeneous case, there is no point to
point correlation between1J/J and∇ ·B/|∇ ×B|. The relationship between1J/J and
the angleθ is apparent, particularly near the limiting valuesθ = 0◦ or θ = 180◦, with the
same restriction than the one for the homogeneous case.

16.5 Conclusions

The curlometer technique, for in situ measurements, uses two parameters to monitor
different quality aspects:∇ ·B/|∇ ×B| andδJ/|J av|. A large value of∇ ·B, due to non-
linear dependence in the gradients contributing to∇ · B (assuming that the measurement
errors are weak regarding the physical error), may indicate thatJ is badly represented by
the data, unless the sampling is favourable. The sampling achieved arises from both the
configuration parameters (including relative orientation and scale) and the particular mag-
netic structure encountered (which defines the character of terms in the gradients matrix
of B). But, of course, when handling real data, we have to assume thatJ will be badly
measured, as indicated by∇ · B, until we know otherwise. In this regard, other analysis
techniques or model assumptions, which need to be checked for consistency, may be used
iteratively with the curlometer to improve understanding of an event. When∇ ·B is small,
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Figure 16.11: Influence of the shape of the tetrahedron on the estimate ofJ for a low
degree of heterogeneity (h = 0.1).
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Figure 16.12: Same as Figure16.11, but for a higher degree of heterogeneity (h = 0.2).
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Figure 16.13: Influence of the shape of the tetrahedron on the estimated ratio∇·B/|∇×B|,
for a low degree of heterogeneity (h=0.1,1B/B=1r/r = 0).
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Figure 16.14: Same as Figure16.13, but for a higher degree of heterogeneity (h=0.2).
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we can assume thatJ remains statistically (and statistically only, see below the conclu-
sion about the relationship between∇ · B andδJ ) well represented by the data unless the
measurement error contributionδJ/|J av| (coming fromδB andδr), to the error inJ , is
large.

We therefore have two nearly independent parameters for thein situmonitoring:∇ ·B

which may indicates a physical sampling error when the nonlinear terms dominate, and
δJ/|J av| which identifies measurement accuracy. It should be understood that not all
situations are conducive to the technique and full analysis is performed by hierarchical
application of a number of different techniques.

A significant result from Section16.2is that∇ · B is large for the Cluster orbit phases
given, where the Cluster tetrahedron is moving into the Tsyganenko-87 magnetic field
model. The parameterδj/|J av| is smaller, overall, for the larger separations. This is more
or less as expected:J is physically better represented by the data when the tetrahedral
dimensions are small, butδj/|J av| is smaller for large configurations, due to the combined
effects of larger field differences between the satellites and a small (∼1%) relative error in
the separations. For the mission phases considered here, an optimum range of separation
scales, where both the physical estimate and the measurement accuracy remain good, does
not exist. The parameters show several instances where the physical coverage (roughly
represented by∇ · B) is insufficient to identify overall quality for the measurement.

To characterise the shape of the tetrahedron, as we have seen in Chapter12 and13,
the best way is to use the elongation and planarity parameters (E, P ) defined and used in
Chapter13 for the description of the shape. Its orientation in space is defined by the three
orthogonal vectors corresponding to the directions of the three axes of the pseudo-ellipsoid
computed from the volumetric tensor defined in Chapter12. Vectorc corresponds to the
minor axis and is used for description of the orientation of the main face. By introducing
theE-P diagram to plot quantities such as the relative accuracy1J/J or other interesting
quantities, we have a good tool to analyse the relationship between a scientific parameter
and the shape of the tetrahedron, for a given event model. In the same manner, by using
theθ angle between thec vector and the direction of the current, we can analyse the effect
of the orientation of the tetrahedron on the accuracy of the measurement.

The relationship between the shape of the tetrahedron and1J/J has been shown by
a simulation of the crossing, by 4 spacecraft, of a particular current density structure. This
simulation allows an independent estimate of the effects of the various error sources, such
as uncertainties on the position of the spacecraft, on the magnetometer measurements,
and errors due to the spatial interpolation used for the computation of the various vector
gradients. The simulation gives the relative accuracy1J/J of the measurement for all
variables. In particular, the accuracy1J/J has been plotted in an (E-P ) diagram, which
organises the results well and relates easily the shape of the tetrahedron to the accuracy
of the estimate ofJ or ∇ · B. Furthermore, theE-P diagram is useful to get a quantita-
tive estimate of this influence, and to check whether a regular tetrahedron leads to a more
accurate estimate ofJ and∇ · B than the corresponding estimates for a distorted tetra-
hedron. Roughly speaking, the distance between the representative point and the origin is
proportional to the error on the accuracy of the estimate of both these quantities which,
statistically only, show the same trend (see below).

The conclusions are roughly the same for homogeneous and for heterogeneous cases,
but it seems that the error due to linear interpolation, in the heterogeneous case, is more
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sensitive to a non-regular tetrahedron than the errors due to a relative uncertainty1r/r on
the positions. This is particularly true for the∇ ·B/|∇×B| ratio. In a future work, it would
be interesting to quantify the amplitude of the linearity errors versus the heterogeneity
parameter.

A potential relationship between∇ ·B and1J has been studied in detail. Statistically,
the ratio∇ · B/|∇ × B| has the same behaviour as1J/J , but on close inspection there is
no one to one correspondence. There are at least two reasons for this. Firstly, one reason is
obvious: since∇ ·B and∇ ×B are computed from different terms of the dyadic∇B used
by the barycentric method (see Chapters14 and15), and unless the errors are dependent
(this can be nevertheless the case for special structures), there is no point to point corre-
lation between the estimated∇ · B and the estimated∇ × B and therefore no correlation
between∇ · B/|∇ × B| and1J/J . A second additional reason is that the orientation
of the tetrahedron in particular cases, associated with the particular current density struc-
ture used, plays a controlling role in this lack of correspondence which has to be more
explained. Thus, if the various contributions to measurement errors are independent or if
the nonlinear contributions to∇ · B and∇ × B are independent, then∇ · B should not be
used as a reliable estimate of the overall accuracy of the measurement of J. Nevertheless,
for straight current tubes, the statistical behaviour of∇ · B/|∇ × B| looks the same as
1J/J , which gives justification of the use of∇ · B as an indication of the quality of the
physical coverage if the measurement errors can be neglected, or of the measurement error
if the current structure is homogeneous.

The influence of the direction of the currentwith respect to the orientation of the tetra-
hedron has been examined. Indeed, for a nearly flat tetrahedron, one would expect a
relationship between the angleθ (defined as the angle between the direction of the current
and the normal to the main plane of the tetrahedron) and the1J/J error. The simulation
shows that a relation exists, but the low number of points nearθ close to 0◦ or 180◦ leads
to a reserved conclusion. Other simulations are necessary to better clarify this relation,
and in particular to identify the behaviour in this context of the different type of tetrahedra
such as Pancakes, Knife Blades, Cigars, etc.

All these conclusions, of course, could be modified for another type of magnetic struc-
ture. The effect of different characteristic magnetic properties (events sampled) on mea-
surement performance needs to be investigated more thoroughly, particularly with regard
to anisotropic structure. Tools and simulations used in this chapter are well suited for such
an event study and should be performed in conjunction with other possible methods.
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Accuracy of Plasma Moment Derivatives
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Introduction

Fundamental conservation equations in plasma fluid theories involve spatial and tem-
poral derivatives of plasma moments like density, bulk velocity and pressure (see Chap-
ter6). Multi-satellite missions offer the opportunity to estimate such derivatives. The pur-
pose of this chapter is to investigate the plasma moment derivative accuracy by algebraic
means, i.e. formulas for the mean square errors are derived. We consider two sources
of error: those of measurement and those of spacecraft position. Partial and directional
derivatives are investigated first. Then the application to divergence and curl estimates is
discussed.

We start from a simplified satellite configuration to clarify some basic aspects of
derivative estimation accuracy. Error formulas for general cluster geometries are deduced
thereafter. Applications of the obtained error formulas to the case of the Earth’s magneto-
sphere are discussed.

The estimation of spatial gradients with clusters of spacecraft is also the subject of
Chapter15, where the principles of the analysis techniques are described, with special em-
phasis is on magnetic field measurements. The investigations of the accuracy of (electric)
current density estimations in Chapter16 (see also references therein) are examples for
statistical studies, where measurements of large sets of satellite clusters in a given model
field are used to determine the deviations of the measured values from the given ones. This
approach is in some sense complementary to the one chosen in the present chapter, where
only algebraic means are used and the emphasis is on plasma moment derivatives.

It is important to note that the methods of analysis investigated in this chapter are only
applicable to spatial variationswhere the scale lengths are not smaller than the spacecraft
separation distance. The differences of the measured values at the distinct spacecraft can
then be used to estimate the derivatives. Other methods of data analysis, for example cross-
correlation techniques, are required if the spatial scale of the structure of interest is small
compared with the inter-spacecraft distance. Discontinuities and shocks are examples for
such small-scale structures. They are discussed in Chapters10and11.

Two types of indices are used. Greek letters (α, β, . . .) take values from the set{0, 1, 2,
3}. These numbers are used to distinguish different spacecraft. Latin characters (i, j, . . .)
indicate the range{1, 2, 3} and are usually used for the cartesian components of a vector.

419
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Figure 17.1: Sketch of the three-dimensional model satellite configuration used in Sec-
tion 17.1.

17.1 Error Estimates from a Simplified Model

In the following we estimate the accuracy of derivative determination on the basis of
the simplified satellite configuration sketched in Figure17.1: The position vectors are
(0,0,0), (1x1, 0, 0), (0,1x2, 0), (0, 0,1x3). The special cluster geometry together with
the choice of the coordinate axes offer a convenient possibility to determine partial deriva-
tives: Letg denote an arbitrary physical quantity, then∂g/∂xi can be estimated by the
satellite pair(0, i). In this situation it is inconvenient to use different types of characters
for component indices and spacecraft numbers. In order to distinguish the latter from the
former in conflicting cases, we write spacecraft numbers in square brackets:[0], [1], [2],
[3].

A difference operator1[i0] is introduced by the relation:

1[i0]g = g[i] − g[0] (17.1)

whereg[i] andg[0] denotes the measured value of the physical quantityg at spacecraft[i]
and[0], respectively.

17.1.1 Partial Derivative Estimation Accuracy

Partial derivatives are key quantities in the derivative estimation process: gradient,
divergence and curl are linear combinations of such expressions. Therefore, partial deriva-
tives are the starting point of our investigation.∂g/∂xi can be approximated in the follow-
ing way:

∂g

∂xi
'

1[i0]g

1[i0]xi
≡

g[i] − g[0]

xi[i] − xi[0]

(17.2)

The accuracy of this estimator is studied in detail in Appendix17.A.1. Expressions for
linear errors are derived there which are squared and ensemble averaged (denoted by a
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horizontal line over the averaged quantities) to obtain mean square errors. Cross terms,
i.e. averages of products of different derivatives, are treated in the appendix as well. We
summarise the resulting equations:

(
δ

[
∂g

∂xi

])2

=

{
2

(1xi)2

}(
(δg)2 + |∇g|2(δx)2

)
(17.3)
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∂xj
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}(
[(∇g) · (∇h)] (δx)2

)
(17.6)

The formulas concerning the cross terms are valid ifg andh are different physical quan-
tities (two scalar functions or two components of the same vector field) with uncorrelated
errors andi 6= j . Here(δx)2 and(δg)2 should be interpreted as mean square errors of
the spacecraft position determination and the measurement of the quantityg, respectively.
Often relative accuracies are more important than absolute ones, i.e. the residual errors
after inter-spacecraft calibration should be taken as a measure for the quantities(δx)2 and
(δg)2. More details can be found in Appendix17.A.1.

17.1.2 Discussion of Competing Error Terms

In the error formulas given above there are two factors which can contribute to the
partial derivative inaccuracies. The curly brackets{} contain the influence of the satellite
cluster geometry. The other factor comprises the contribution of the two error sources.
In order to compare the competing error terms(δg)2 and |∇g|2(δx)2 we denote by3 a
typical inter-spacecraft distance and introduce the quantity:

L2
∇g =

|g|2

|∇g|2

L∇g is the gradient scale length ofg.
Since small-scale structures like discontinuities and shocks cannot be treated with the

finite difference method investigated here, we can restrict ourselves to those cases where
the length scaleL∇g is comparable to3 or larger. Thus, the quantity

|∇g| δx

|g|
'

δx

L∇g

=
3

L∇g

δx

3

should be smaller or at least not larger than the relative position errorδx/3, which we
expect to be around 1%. On the other hand, typical values for the relative uncertainties
δg/|g| for various plasma velocity momentsg are of the order of 10%, maybe 5% after
inter-spacecraft calibration (see Chapter6). Such differences are amplified in the error
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formulas because square values are added. Thus, with regard to plasma moment derivative
estimation it is reasonable to assume

|∇g|2(δx)2 � (δg)2

[(∇g) · (∇h)] (δx)2 � (δg)2 , (δh)2

i.e. to neglect the contribution of spacecraft position inaccuracies againstg-measurement
errors. Consequently, the cross terms(δ[∂g/∂xi])(δ[∂h/∂xj ]) and(δ[∂g/∂xi])(δ[∂h/∂xi])
can be ignored and the other error formulas simplify:(

δ

[
∂g

∂xi

])2

'
2(δg)2

(1xi)2
(17.7)(

δ

[
∂g

∂xi

])(
δ

[
∂g

∂xj

])
'

(δg)2

1xi1xj
(17.8)

We make use of this approximation in those cases (divergence and curl estimation) where
considerable simplifications can be achieved this way.

Errors of magnetic field measurements are usually much smaller than plasma moment
inaccuracies. Thus, if e.g. the electric current is determined by the spacecraft cluster via
∇ × B, then the spacecraft position errors may contribute significantly and thus the cross
terms cannot be safely neglected. Error formulas which are deduced on the basis of the
above approximation can be understood as a lower limit for the total error in such a case.

17.1.3 Directional Derivative Estimation Accuracy

Directional derivatives, also known as (unit) vector gradients, may serve as a measure
for variations of physical quantities along a predefined unit vectorê, which is given e.g. by
the magnetic field direction or a discontinuity normal vector. They also play an important
role in time derivative estimation.

The directional derivative of a quantityg can be approximated by:

ê · ∇g ≡ (ê · ∇)g =

3∑
i=1

ei
∂g

∂xi
'

3∑
i=1

ei
1[i0]g

1[i0]xi

The mean square error of this estimator is given by the following expression if inaccuracies
from imperfect knowledge of̂e are neglected:

(
δ
[
ê · ∇g

])2
=

(
3∑
i=1

ei δ

[
∂g

∂xi

])( 3∑
j=1

ej δ

[
∂g

∂xj

])

=

3∑
i=1

3∑
j=1

eiej

(
δ

[
∂g

∂xi

])(
δ

[
∂g

∂xj

])

=

{
3∑
i=1

3∑
j=1

(1 + δij )
eiej

1xi1xj

}(
(δg)2 + |∇g|2(δx)2

)

=


(

3∑
i=1

ei

1xi

)2

+

3∑
i=1

(
ei

1xi

)2
((δg)2 + |∇g|2(δx)2

)
(17.9)
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δij denotes the Kronecker symbol (= 1 if i = j , otherwise= 0). The expression in
curly brackets is a measure for the sensitivity of the spacecraft cluster in directionê. It
corresponds to a positive definite quadratic form and thus to an ellipsoidal surface. The
directions of highest and lowest sensitivity correspond to principle axes of the ellipsoid.

Uncertainties in̂e introduce additional errors: If the cartesian component errorsδei are
uncorrelated and their mean square values are of equal size(δei)2 = (δe)2, the additional
terms can be written as|∇g|2(δe)2. We do not pursue this source of error further because
its contribution to the total mean square error depends very much on the accuracy of theê

determination.
In some cases it might be interesting to have a measure for the omnidirectional sen-

sitivity of the spacecraft cluster, i.e. a mean value independent of direction. In order to
obtain such a mean value we average over all possible directions, i.e. over all possible unit
vectors and denote the result by〈. . .〉ê. This procedure leads to:〈(

δ
[
ê · ∇g

])2〉
ê

=
1

3

{
2

3∑
i=1

1

(1xi)2

}(
(δg)2 + |∇g|2(δx)2

)
(17.10)

This expression may also serve as a measure for the magnitude error(δ|∇g|)2.

17.1.4 Time Derivative Estimation Accuracy

Conservation equations in fluid theories relate spatial derivatives to time derivatives
∂g/∂t at a fixed location in an inertial coordinate frame. The choice of the inertial sys-
tem depends on the physical processes of interest. It may be appropriate, for example,
to choose a coordinate frame where the magnetospheric boundaries are at rest. On the
other hand, satellite measurements lead to time seriesgα(t) in a coordinate frame which
is movingwith the spacecraft velocityuα relative to the chosen coordinate frame. The
corresponding time derivative Dg/Dt can be obtained directly from the measurements and
is related to the time derivative at a fixed location by:(

Dg

Dt

)
α

=
∂g

∂t

∣∣∣∣
rα

+ uα · ∇|rα g

rα denotes the position vector of spacecraftα. Summing up these equations and dividing
by 4 yields an expression where average values of various quantitiesY appear:〈Yα〉α ≡

(1/4)
∑3
α=0 Yα. We denote the deviations from the average values by1Yα = Yα−〈Yα〉α.

With the help of a Taylor expansion it can be shown that

∂g

∂t

∣∣∣∣
rMC

'

〈
∂g

∂t

∣∣∣∣
rα

〉
α

'

〈(
Dg

Dt

)
α

〉
α

− 〈uα〉α · ∇|〈rα〉α g

'
d〈gα〉α

dt
− uMC · ∇|rMC g (17.11)

when terms of second order in1rα and1uα are disregarded.rMC ≡ 〈rα〉α is the
mesocentre of the satellite configuration anduMC ≡ 〈uα〉α its velocity.

The directional derivative on the right-hand side of the averaged equation and its accu-
racy can be estimated with the formulas given in the last section (the spacecraft velocities
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can be assumed to be very accurately known). Since the temporal resolution is usually
better than the spatial resolution, we expect the moving time derivative Dg/Dt to be more
accurate than the directional derivative. Thus, the error of the time derivative∂g/∂t should
be mainly determined by the error of the directional derivativeuMC · ∇g.

17.1.5 Divergence Estimation Accuracy

The divergence of a vector fieldV (such as the bulk velocity, the heat flux vector or
the energy flux density vector) can be estimated by the model satellite configuration in
Figure17.1in the following way:

∇ · V '

3∑
i=1

1[i0]Vi

1xi
≡

3∑
i=1

Vi[i] − Vi[0]

xi[i] − xi[0]

(17.12)

This estimator has a mean square error of:

(δ [∇ · V ])2 =

(
3∑
i=1

δ

[
∂Vi

∂xi

])( 3∑
j=1

δ

[
∂Vj

∂xj

])

=

3∑
i=1

3∑
j=1

(
δ

[
∂Vi

∂xi

])(
δ

[
∂Vj

∂xj

])

=

{
2

3∑
i=1

1

(1xi)2

}
(δV )2

+

3∑
i=1

3∑
j=1

(1 + δij )
[(∇Vi) · (∇Vj )](δx)

2

1xi1xj
(17.13)

It has been assumed that the errors of the different components ofV are uncorrelated and
that their mean square values are equal:(δVi)

2
= (δV )2.

Considerable simplification is achieved when the approximation|∇Vi |
2(δx)2 � (δV )2

is used that was discussed earlier:

(δ [∇ · V ])2 '

{
2

3∑
i=1

1

(1xi)2

}
(δV )2 (17.14)

As an example we consider a vector field of the following form

V =

 V1
V2
V3

 =
ξ

3

 x1
x2
x3

 =
ξ

3
r

whereξ is an arbitrary scalar. It is easy to show that∇ ·V = ξ . The general error formula
reduces to:

(δ [∇ · V ])2 =

{
2

3∑
i=1

1

(1xi)2

}(
(δV )2 +

ξ2

9
(δx)2

)
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17.1.6 Curl Estimation Accuracy: The General Case

The curl of the bulk velocityV is called the vorticity:� = ∇ × V . In Chapter6
the physical importance of this quantity is discussed. In the following we investigate the
accuracy of a vorticity estimator based on the model satellite configuration sketched in
Figure17.1. The results can be easily transferred to other vector fields such as the heat
flux vector or the energy flux density vector.

Cartesian Components of the Vorticity Vector

Thei-th component of the vorticity is given by the formula:

�i = (∇ × V )i =
∂Vk

∂xj
−
∂Vj

∂xk
'

1[j0]Vk

1xj
−
1[k0]Vj

1xk
(17.15)

where(i, j, k) must be a cyclic permutation of(1, 2, 3). The procedure to compute the
mean square error is similar to the divergence estimation case. The expression

δ�i = δ

[
∂Vk

∂xj

]
− δ

[
∂Vj

∂xk

]
(17.16)

is squared and ensemble averaged. We finally obtain:

(δ�i)2 =

(
δ

[
∂Vk

∂xj

])2

+

(
δ

[
∂Vj

∂xk

])2

− 2

(
δ

[
∂Vk

∂xj

])(
δ

[
∂Vj

∂xk

])
=

{
2

(1xj )2
+

2

(1xk)2

}
(δV )2

+

{
2|∇Vk|

2

(1xj )2
+

2|∇Vj |
2

(1xk)2
−

2(∇Vk) · (∇Vj )

1xj1xk

}
(δx)2 (17.17)

As in the divergence estimation case, using|∇Vj,k|
2(δx)2 � (δV )2 leads to a much

simpler expression:

(δ�i)2 '

{
2

(1xj )2
+

2

(1xk)2

}
(δV )2 (17.18)

The following shear field can serve as an example:

V =
1

2
� × r =

1

2

 �1
�2
�3

×

 x1
x2
x3


In this case the mean square error is given by:

(δ�i)2 =

{
2

(1xj )2
+

2

(1xk)2

}
(δV )2 +

1

2

{
�2
i +�2

j

(1xj )2
+
�2
i +�2

k

(1xk)2
+

�j�k

1xj1xk

}
(δx)2

It should be noted that the curl of a vector field depends only on the anti-symmetric part
JA = (J − JT )/2 of the (jacobian) matrixJ = (∇V )T , i.e. J is the transpose of the
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dyadic tensor∇V : Jij = (∇V )j i = ∂Vi/∂xj . The example vector field is special with
regard to curl estimation because it can be shown that its jacobian matrix is already anti-
symmetric. A non-zero symmetric partJS = (J + JT )/2 contributes further error terms
which are proportional to the spacecraft position uncertainties(δx)2 and thus leads to even
more complicated expressions. Therefore, in the remaining part of this section we make
use of the approximation|∇Vj,k|2(δx)2 � (δV )2 which is well justified in the Earth’s
magnetosphere for typical values of the errors(δV )2 and (δx)2 as we pointed out in a
previous section.

Magnitude of the Vorticity Vector

The mean square error of the vorticity magnitude� ≡ |�| is computed in the appendix
(Chapter17.A.2). The result is:

�2(δ�)2 = 2

{
�2

2 +�2
3

(1x1)2
+
�2

3 +�2
1

(1x2)2
+
�2

1 +�2
2

(1x3)2

}
(δV )2

− 2

{
�1�2

1x11x2
+

�2�3

1x21x3
+

�3�1

1x31x1

}
(δV )2 (17.19)

If we are interested mainly in the influence of the shape of the satellite configuration on
the magnitude error we can get rid of the vorticity direction dependence by performing an
average over the sphere� = constant. This procedure leads to the following expression:

〈
(δ�)2

〉
�=const

=
2

3

{
2

3∑
i=1

1

(1xi)2

}
(δV )2 (17.20)

The influence of the satellite configuration on the averaged magnitude error is contained
in the expression in{} brackets. We may refer to it as a geometric factor of the spacecraft
tetrahedron. It is dominated by the shortest separation length of the configuration. This
expression appeared in the equations for the divergence estimation error and the averaged
directional derivative error as well. It is a key quantity with regard to the accuracy of
derivative estimation by the spacecraft cluster.

17.1.7 Curl Estimation Accuracy: The Special Case1x1 = 1x2

In this section we investigate the special case where two separation distances1xi are
equal. In order to distinguish the special from the general case we introduce the subscripts
‘⊥’ and ‘‖’ by 1x⊥ = 1x1 = 1x2 and1x‖ = 1x3 (this notation should not be con-
fused with magnetic-field-aligned coordinate systems or the like). It is now appropriate to
express the vorticity as:

� =

 �1
�2
�3

 =

 �⊥ cosλ
�⊥ sinλ
�‖

 =

 � cosλ sinφ
� sinλ sinφ
� cosφ


λ is the azimuth measured from thex1 axis andφ the polar angle of the vector� in a
polar coordinate system where the polar axis is alongx3 ≡ x‖. The situation is sketched
in Figure17.2for the caseλ = 0◦.
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Figure 17.2: The special case1x1 = 1x2 = 1x⊥ (and1x3 = 1x‖): Sketch of the
spacecraft positions, the vorticity field and the anglesφ andθ for the caseλ = 0◦. The
fourth spacecraft is at distance1x⊥ out of the plane of the figure.

The Errors δ�‖, δ�⊥, and δλ

Since the parallel component is cartesian, the mean square error is given by:(
δ�‖

)2
≡ (δ�3)

2
=

4(δV )2

(1x⊥)2
(17.21)

This expression does not depend on the angleλ.
The mean square errors of�⊥ andλ are calculated in Appendix17.A.3. The results

are:

(δ�⊥)2 =

{
2 − sin 2λ

(1x⊥)2
+

2

(1x‖)2

}
(δV )2 (17.22)

�2
⊥
(δλ)2 =

{
2 + sin 2λ

(1x⊥)2
+

2

(1x‖)2

}
(δV )2 (17.23)

In Appendix17.A.3it is pointed out that the dependence of the errors on the angleλ is of
minor importance. Thus, in most cases it should be sufficient to use the mean values (i.e.
averaged over the angleλ):〈

�2
⊥
(δλ)2

〉
λ

=

〈
(δ�⊥)2

〉
λ

=

{
2

(1x⊥)2
+

2

(1x‖)2

}
(δV )2 (17.24)

The mean values coincide with the actual values if�1 = 0 or�2 = 0.

The Influence ofφ = tan−1(�⊥/�‖)

The polar angleφ is related to the vorticity components and magnitude:

�‖ = � cosφ

�⊥ = � sinφ
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In the following we concentrate on the influence of the polar angleφ on the errors(δ�)2

and�2(δφ)2. To eliminate the azimuthal dependence we perform averages over the angle
λ.

Three configurations are of special interest:

1x‖ � 1x⊥ : “long” tetrahedron

1x‖ ' 1x⊥ : “regular” tetrahedron

1x‖ � 1x⊥ : “flat” tetrahedron

The angleθ , defined through:

1x‖ = 1r cosθ

1x⊥ = 1r sinθ

where1r =

√
(1x‖)2 + (1x⊥)2, may serve as a measure for the shape of the satellite

configuration: tanθ = 1x⊥/1x‖ (see also Figure17.2).

The mean square magnitude error(δ�)2 and the mean square directional error(δφ)2

are calculated in Appendix17.A.3. The results are:〈
(δ�)2

〉
λ

�2
=

{
2

(�1x⊥)2
+

2

(�1x‖)2

}
sin2 φ (δV )2 +

4 cos2 φ (δV )2

(�1x⊥)

=

{
2

sin2 θ

}
(δV )2

(�1r)2
+ 2

{
cos2 φ

sin2 θ
+

sin2 φ

cos2 θ

}
(δV )2

(�1r)2
(17.25)

(δφ)2 =

{
2

(�1x⊥)2
+

2

(�1x‖)2

}
cos2 φ (δV )2 +

4 sin2 φ (δV )2

(�1x⊥)

=

{
2

sin2 θ

}
(δV )2

(�1r)2
+ 2

{
sin2 φ

sin2 θ
+

cos2 φ

cos2 θ

}
(δV )2

(�1r)2
(17.26)

The scaling quantity�1r is a measure for the typical bulk velocity jump over the distance
1r.

The relative magnitude errorδ�/� ≡

(〈
(δ�)2

〉
λ
/�2

)1/2
(i.e. the normalised stan-

dard deviation of�) as a function of the anglesθ andφ is shown in Figure17.3. A value
of 1% for the scaled errorδV/(�1r) has been chosen for convenience. Since the standard
deviationδ�/� is proportional to the scaled errorδV/(�1r), the quality of the results
does not depend on it. A value ofp% yields errors which are simplyp times higher.
Realistic error values in the Earth’s magnetosphere are discussed in Section17.3.

In Figure17.3there is a strong divergence forθ → 0◦ andθ → 90◦. For θ near 0◦

(long tetrahedra) the error is very large for all vorticity directions, i.e. there is no particular
direction which allows a much more accurate determination of the magnitude than other
directions. For moderate values ofθ (more or less regular tetrahedra) the variability of
the relative errorδ�/� with the angleφ becomes rather weak. This picture changes for
very flat tetrahedra,θ ≈ 90◦. In general the error becomes rather large, but if the vorticity
vector is parallel to thex‖-direction,φ ≈ 0◦, the magnitude can be determined quite
accurately at the same time.
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Figure 17.3: Relative mean error of the vorticity magnitude as a function of anglesθ

andφ. A scaled errorδV/(�1r) of 1% has been assumed. Top: contour plot. Bottom:
magnitude error as a function of the angleφ for five distinct values ofθ : 1◦ (—), 5◦ (– –),
45◦ (– · –), 85◦ (– · · · –), 89◦ (· · ·).
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Figure17.4shows the directional errorδφ ≡

(〈
(δφ)2

〉
λ

)1/2
for the same value of the

scaled error as above. Once again a strong divergence of the error is found forθ → 0◦

andθ → 90◦. Very long tetrahedra lead to largeδφ for all vorticity directions. The error
becomes much smaller for moderate values ofθ , i.e. regular tetrahedra. The behaviour of
δφ for very flat satellite configuration,θ ≈ 90◦, is in contrast to the magnitude error: the
vorticity direction may be determined with an acceptable accuracy only whenφ ≈ 90◦,
i.e. when the vorticity vector is perpendicular to thex‖-direction. We conclude that for a
degenerate configuration there may be special cases where either the vorticity direction or
the magnitude can be determined with some accuracy, but never both quantities.

17.2 Arbitrary Satellite Configurations

The previous section referred to the special satellite configuration sketched in Fig-
ure 17.1. In this section we turn to the general case, i.e. four-point derivatives from ar-
bitrary cluster tetrahedra. They can be obtained with the help of barycentric coordinates
which are briefly reviewed below. The error formulas derived with the help of this method
allow to define a cluster geometric factor for the general case

17.2.1 Derivatives from Barycentric Coordinates

Barycentric coordinates are discussed extensively in Chapter14. Briefly, they provide
a convenient means to linearly interpolate a physical quantityg inside a satellite cluster
tetrahedron by using the measured valuesgα at the four spacecraft positionsrα:

g̃(r) =

3∑
α=0

µα(r)gα

where:
µα(r) = 1 + kα · (r − rα)

g̃ denotes the linear function that interpolates between the measurements. The vectorskα
are given by the formula:

kα =
rβγ × rβλ

rβα · (rβγ × rβλ)

(α, β, γ, λ) must be a permutation of(0, 1, 2, 3). Relative position vectors are denoted by
rαβ = rβ − rα. The set{kα} is called the reciprocal base of the tetrahedron.

Vector functions, such asV , can be handled in a similar way by applying the above
formulas to the cartesian components. Sinceg̃ andṼ are linear functions, the calculation
of the derivatives can be done quite easily. The results are:

∇g ' ∇g̃ =

3∑
α=0

kαgα (17.27)

ê · ∇g ' ê · ∇g̃ =

3∑
α=0

(ê · kα)gα (17.28)
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Figure 17.4: Mean error of the vorticity direction as a function of the anglesθ andφ. A
scaled errorδV/(�1r) of 1% has been assumed. Top: contour plots. Bottom: directional
error as a function of the angleφ for five distinct values ofθ : 1◦ (—), 5◦ (– –), 45◦ (– · –),
85◦ (– · · · –), 89◦ (· · ·).
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∇ · V ' ∇ · Ṽ =

3∑
α=0

kα · V α (17.29)

∇ × V ' ∇ × Ṽ =

3∑
α=0

kα × V α (17.30)

The element(i, j) of the matrix∇V is given by:

∂Vj

∂xi
≡ (∇V )ij '

3∑
α=0

(kαV α)ij ≡

3∑
α=0

kαiVαj (17.31)

With regard to error estimation it is important to notice that∇ ×V and∇ ·V are just linear
combinations of various(∇V )ij ’s and thus of terms likekαiVαj , with i = j or i 6= j .

Local time derivatives such as∂g/∂t can be estimated with the help of moving time
derivatives Dg/Dt and the directional derivativesuMC · ∇g in the same way as discussed
in section17.1.4(uMC is the velocity of the mesocentre of the spacecraft cluster).

It should be noted that there are other methods to compute estimates from multi-
satellite measurements for the above derivatives, e.g. contour integrals or a combination of
the measured finite differences. All these methods have to interpolate the measurements
in a certain way, at least implicitly. As long as the underlying interpolation is linear—and
that is all one can get from a single set of four point measurements—the various methods
must lead to identical results because of the uniqueness of the linear interpolation function.
Higher-order interpolations are possible only when measurements at more than one time
are used.

17.2.2 Error Estimation

Mean square error formulas for various derivative operators in the general case are
derived in Appendix17.B. As discussed in a previous section, contributions from the
spacecraft position uncertainties should be of minor importance to these errors. Thus, only⇒17.1
measurement errors such as(δg)2 and (δV )2 are considered. Furthermore, correlations
between measurement errors of different spacecraft are neglected. Different components
of vector field measurement errors are treated as uncorrelated quantities. We summarise
the results from Appendix17.B. ⇒17.2

The mean square error of a directional derivative can be written as:

(
δ[ê · ∇g]

)2
=

{
3∑
α=0

(ê · kα)
2

}
(δg)2 (17.32)

In particular, the mean square errors of partial derivatives such as∂g/∂xi and∂Vj/∂xi are
given by: (

δ

[
∂g

∂xi

])2

=

{
3∑
α=0

k2
αi

}
(δg)2 (17.33)

(
δ

(
∂Vj

∂xi

))2

=

{
3∑
α=0

k2
αi

}
(δV )2 (17.34)
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Averaging the directional derivative error over all possible unit vectorsê leads to a mean
value which is independent of direction:〈(

δ
[
ê · ∇g

])2〉
ê

=
1

3

{∑
α

|kα|
2

}
(δg)2 (17.35)

The divergence estimation error is given by:

(δ[∇ · V ])2 =

{
3∑
α=0

|kα|
2

}
(δV )2 (17.36)

For thei-th component of the vorticity we find:

(δ�i)2 =

{
3∑
α=0

3∑
l=1

(êi × kα)
2
l

}
(δV )2 ≡

{
3∑
α=0

∑
j 6=i

k2
αj

}
(δV )2 (17.37)

whereêi denotes the unit vector in thexi-direction.
The mean square error of the vorticity magnitude� ≡ |�| ≡ |∇ × V | can be written

as:

�2(δ�)2 =

{
�2
∑
α

|kα|
2

−

∑
i,α,m

�i�mkαmkαi

}
(δV )2 (17.38)

If the influence of the vorticity direction on the error is of minor interest, an average for-
mula over the sphere� = constant could be useful:〈

(δ�)2
〉
�=const

=
2

3

{
3∑
α=0

|kα|
2

}
(δV )2 (17.39)

The terms in curly brackets contain the influence of the satellite configuration on the
above mentioned square errors. We may refer to them as various geometric factors of the
spacecraft cluster (CGF).

It is easy to check the following relation for the special satellite configuration sketched
in figure17.1: {

3∑
α=0

(kαi)
2

}
=

2

(1xi)2

which leads to: {
3∑
α=0

|kα|
2

}
= 2

3∑
i=1

1

(1xi)2

With the help of these expression the formulas derived in the previous sections can be
regained.

Of special interest is the sum
{∑3

α=0 |kα|
2
}

which appears in both the curl and diver-

gence estimation case. If the factor 2/3 in the curl estimation error formula is disregarded,
an estimate for the accuracy of both the curl and the divergence determination can be
written as: 〈

(δ�)2
〉
�=const

' (δ[∇ · V ])2 '

{
3∑
α=0

|kα|
2

}
(δV )2 (17.40)
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This should be a useful expression because it is applicable to arbitrary satellite configura-
tions and very easy to handle. ⇒17.3

The Error Formulas and the Volumetric Tensor

In Chapter12, section12.4, the volumetric tensorR is introduced. In the mesocentre
frame of reference, i.e.

∑3
α=0 rα = 0, it can be written asR =

1
4

∑3
α=0 rαr

T
α (be aware

thatrα denotes a column vector andrTα a row vector). Since the inverse of the volumetric
tensor is related to the reciprocal vectors byR−1

= 4
∑3
α=0 kαk

T
α , the formula for the ⇒17.4

mean square error of a directional derivative (see above) can be rearranged:

(
δ[ê · ∇g]

)2
/(δg)2 =

{
3∑
α=0

(ê · kα)
2

}
= ê

T

(
3∑
α=0

kαk
T
α

)
ê = ê

TR−1ê/4 (17.41)

This is the quadratic form associated with the matrixR−1. If ê is a unit eigenvector, we
obtain the inverse of the corresponding characteristic dimension squared. Therefore, the
characteristic directions minimise/maximise the quartic form and thus the directional error.

Furthermore, the quantity
{∑3

α=0 |kα|
2
}
, which can be interpreted as a cluster geo-

metric factor, is 0.25 times the trace of the matrixR−1. ⇒17.4

17.3 Application to the Earth’s Magnetosphere

In the following we discuss the application of the obtained results to the Earth’s magne-
tosphere. The error formulas are evaluated by inserting typical values. A simple procedure
to estimate plasma moment derivatives and their accuracies is suggested. We start with a
short discussion of a time averaging process which can improve the accuracy of plasma
moment derivative estimation significantly.

Time Averaging

The error formulas derived in this study are valid for a set of four-point measurements
at a single time. A time average leads to mean values for the derivatives of interest which
usually have an improved statistical significance compared to the corresponding single
measurements (in time). Such a time average process can only be done at the cost of time
resolution. But in our case this should not matter too much because we expect the time
resolution (times the cluster velocityu) to be much better than the resolution in space. Fur-
thermore, to be consistent with the assumption of linear varying velocity fields, the deriva-
tive of interest should not deviate much from its mean value on a length scale comparable
to a typical inter-spacecraft distance3 (or some fraction of it). It may be prescribed or
computed from the relative spacecraft positionsrαβ with the help of the formula:

32
=

1

6

∑
α<β

|rαβ |
2

Therefore, as long as the time interval is smaller than3 divided by the cluster velocityu,
averaging may improve the derivative estimation procedure: ifN points in time are used,
standard deviations are expected to decrease by a factor of

√
N .
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Nonlinear Variations

Since the barycentric coordinate method provides basically a linear interpolation be-
tween the measured values of the cluster tetrahedron, the derivatives computed with this
method are meaningful only as long as the underlying physical quantity is predominantly
a linear function of the space coordinates. Nonlinear variations imply non-constant deriva-
tives. Thus, as a measure of their influence we suggest the square deviation of an individual
partial derivative from its mean value:(

δ

[
∂g

∂xi

])2

nonlin

≡

〈(
∂g

∂xi
−

〈
∂g

∂xi

〉
3

)2
〉
3

(17.42)

〈. . .〉3 denotes a (time) average over some distance along the cluster orbit whose length
should be of the order of a typical inter-spacecraft distance3 (see above). This formula
can be easily transferred to the various components of the jacobian matrix of a vector
field. With regard to curl and divergence estimation we suggest also the consideration of
the quantities:

(δ�)2nonlin ≡

〈
(� − 〈�〉3)

2
〉
3

(17.43)

and
(δ[∇ · V ])2nonlin ≡

〈
(∇ · V − 〈∇ · V 〉3)

2
〉
3

(17.44)

These quantities should be compared with a threshold value to judge whether the linear
assumption is justified or not. The square mean value of the corresponding derivative may
be useful in such a comparison. However, this should be tested with real (or simulated)
data.

Approximate Evaluation of the Error Formulas

Now we try to get an idea of the accuracies that can be achieved in the plasma moment
derivative estimation process. The error formulas derived earlier are evaluated with the
help of typical instrument and spacecraft position inaccuracies and expected values for
velocity inhomogeneities in the Earth’s magnetosphere.

We look at the particle pressure gradient first and examine the accuracy of thei-th par-
tial derivative with the help of the error formulas based on the simplified cluster geometry
sketched in Figure17.1:(

δ

[
∂p

∂xi

])2

=

{
2

(1xi)2

}(
(δp)2 + |∇p|

2(δx)2
)

=

{
2|p|

2

(1xi)2

}(
(δp)2

|p|2
+

|∇p|
2

|p|2
(δx)2

)

=

{
2|p|

2

(1xi)2

}(
(δp)2

|p|2
+
(δx)2

L2
∇p

)
The gradient lengthL∇p is implicitly defined through the last relation (see also Sec-
tion 17.1.2). For an arbitrary spacecraft configuration the factor{2/(1xi)2} must be re-
placed by{

∑3
α=0(kαi)

2
}. As pointed out in a previous section, we expect the relative error
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(δp)2/|p|
2 to be larger than the scaled error(δx)2/L2

∇p. Thus, the normalised standard
deviation is given by:

δ[∂p/∂xi]

|∂p/∂xi |
'

√
2δp

1xi |∂p/∂xi |
=

√
2L∂ip
1xi

δp

|p|
(17.45)

with the length scaleL∂ip = |p|/|∂p/∂xi |. If this quantity is of the order of the inter-
spacecraft distance1xi , the (normalised) error of thei-th partial derivative is of the order
of the relative errorδp/|p| (around 10%, for details see Chapter6). The error of thei-th
partial derivative increases with larger length scales.

As a second example we use the∇×V error formulas of the symmetric case (equations
17.25and17.26) with φ ' 45◦ andθ ' 45◦ and get for the standard deviations:

δ�

�
' δφ '

√
8
δV

�1r

Usually the quantityδV/V is better known than the scaled errorδV/(�1r). They are
related in the following way:

δV

�1r
=

(
δV

V

)
(V/�)

1r
≡

(
δV

V

)
Lshear

1r

where the shear length has been implicitly defined asLshear= V/�. If absolute calibration
accuracy is considered, the errorδV/V should be around 10% (see Chapter6 for details).
More important for derivative estimation is the relative calibration accuracy of the plasma
instruments on the different spacecraft: on such a basis the errorδV/V can be assumed to
be 5%.

If the shear length is of the order of the inter-spacecraft distance1r ' 3, the scaled
errorδV/(�1r) will be around 10%. Inserting this value into the above mentioned error
formulas yieldsδ�/� ' δφ ' 30%. As noted above, time averaging can improve
this accuracy. The time resolution of the measured bulk velocityV can be assumed to
be about 4 seconds, and the relative motion of the spacecraft cluster with respect to the
magnetospheric boundaries is of the order of 10 km/s. Thus, along an orbit trajectory of
length3 = 1000 km there are about 25 measurements of the derivatives, which improves
the accuracy by a factor of

√
25 = 5. Thus, the mean error of the time averaged vorticity

is of the order:δ〈�〉3/〈�〉3 ' δ〈φ〉3 ' 5%. The situation gets worse for degenerate
satellite configurations and weaker inhomogeneities, i.e. larger shear lengths.

The shear length introduced above is the relevant length scale if∇ × V is calculated.
A more general inhomogeneity length scale can be defined with the help of the norm of
the jacobian matrix:L

∇V = V/|∇V |.

Relation to Previous Work

Since magnetic field measurements provide an accuracy which is comparable to or
even better than the spacecraft position determination accuracy, the error formulas of
this chapter cannot be compared directly with the results of the statistical studies con-
cerning current density determination (see Section17.1.2 for a more detailed discus-
sion). But we can look at the work ofMartz, Sauvaud, and R̀eme [1993] (MSR93),
where the simplified spacecraft configuration sketched in Figure17.1was used in the case
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1x1 = 1x2 = 1x3 ≡ D to estimate the diamagnetic current, i.e. the electric current
stemming from the pressure gradient term in the MHD momentum equation. In Section
6.3 ofMSR93the influence of the ratioD/L∇p (denoted∇p/p by MSR93) and the rela-
tive experiment inaccuracyδA/A (called intercalibration error byMSR93) is investigated.
The last quantity corresponds to the relative error in pressure estimationδp/|p|. Possible
errors in spacecraft position determination are ignored. Thus, we rearrange equation17.45
and get:

δ[∂p/∂xi]

|∂p/∂xi |
'

√
2L∂ip
1xi

δp

|p|
'

(
δA/A

∇p/p

)
MSR93

This formula fits the variation of the relative error withδA/A and ∇p/p, which was
computed on the basis of a statistical study and is sketched in Figure 15 ofMSR93.

A Road Map to Plasma Moment Derivative Estimation

A procedure to estimate plasma moment derivatives and their errors should at least
consider the following three steps:

1. Take the plasma moments (densityρ, bulk velocityV , pressurep) and compute the
derivatives of interest with the help of the reciprocal base of the cluster tetrahedron
{kα} (Eqs.17.27-17.31).

2. Compute the cluster geometric factor and the square error of the interesting deriva-
tive with the help of the errors formulas17.32-17.40. If the resulting numbers are
too large, the spacecraft cluster is not sensitive enough to determine such deriva-
tives, at least from a set of four-point measurements at a single time. Averaging may
improve the situation.

3. Check the influence of nonlinear variations: Compute the square deviation of the in-
teresting derivative from its mean value and check if it is small enough (Eqs.17.42-
17.44). If not, a discontinuity analysis technique may be appropriate, i.e. a special
nonlinear model has to be assumed and a set of parameters has to be fitted to the
data.

Summary

In order to illustrate some basic aspects of plasma moment derivative accuracy, the
first part of this report deals with a simplified cluster geometry. The main contribution to
the derivative inaccuracies stems from measurement errors. The lack of knowledge of the
exact spacecraft positions should be of minor importance.

With regard to curl and divergence estimation accuracy, large deviations from a reg-
ular tetrahedron, i.e. degenerate spacecraft configurations, cause in general large errors.
Omnidirectional sensitivity is required in particular if both magnitude and direction of the
vorticity vector or the divergence of the velocity field are to be determined. There are only
very few exceptions where degenerate configurations, i.e. flat or even long tetrahedra, are
of any use at all.

Arbitrary spacecraft configurations can be treated with the help of barycentric coor-
dinates. The reciprocal base of the tetrahedron can be used to define a cluster geometric
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factor. We expect it to be key quantity with regard to the determination of all plasma
moment derivatives.

In the last section some applications of the results and the error formulas to the Earth’s
magnetosphere are discussed. Time averaging can improve the accuracy significantly.
Furthermore, it can be used to compute a measure of the importance of nonlinear vari-
ations. The important steps in the process of plasma moment derivative estimation are
summarised.

Appendix

17.A Details of Error Estimation: Simplified Geometry

17.A.1 Error Estimates for Partial Derivatives

On the basis of the model satellite configuration sketched in Figure17.1 the partial
derivative∂g/∂xi can be approximated in the following way:

∂g

∂xi
'

1[i0]g

1[i0]xi
≡

g[i] − g[0]

xi[i] − xi[0]

wherer [α] ≡ (x1, x2, x3)[α] ≡ (x1[α], x2[α], x3[α]) denotes the measured value of the
position of satellite[α]. g can be a (scalar) function or a single component of a vector
field. Hereg[α] denotes the measured value ofg at satellite[α].

Sources of Error

Two sources of error are considered:

1. g-measurement errors: δg[α]. They stem e.g. from imperfect calibration of the in-
struments which measure the quantityg.

2. Spacecraft position errors: δr [α]. The true spacecraft positions are not the measured
valuesr [α], but r [α] + δr [α]. The measurements ofg take place at the latter points
in space.

We name themprimary errors. The measured values ofg can be written in the following
way:

g[α] = g(r [α] + δr [α]) + δg[α] ' g(r [α])+ (∇g) · δr [α] + δg[α]

This applies if nonlinear variations ofg are neglected (they are discussed in a separate
section). Since a linear relationshipg(r) implies homogeneous partial derivatives, it is not
necessary to specify the location where∇g is taken.

With the help of the last expression the formula for the∂g/∂xi estimator given above
can be easily rearranged:

g[i] − g[0]

xi[i] − xi[0]

=
g(r [i])− g(r [0])

xi[i] − xi[0]

+
(∇g) · (δr [i] − δr [0])+ (δg[i] − δg[0])

xi[i] − xi[0]
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The first term on the right-hand side equals∂g/∂xi becauseg is assumed to vary linear
with xi . Thus, the second term is the error of the estimator:

δ

[
∂g

∂xi

]
=

1

1xi

[
(δg[i] − δg[0])+ (∇g) · (δr [i] − δr [0])

]
=

1

1xi

[
(δg[i] − δg[0])+

3∑
j=1

∂g

∂xj
(δxj [i] − δxj [0])

]
(17.46)

where1xi ≡ 1[i0]xi ≡ xi[i] − xi[0].

Mean Square Errors and Correlations of Primary Errors

In order to compute the mean square error of the partial derivative estimator we square
δ[∂g/∂xi] and perform an ensemble average. We obtain:

(
δ

[
∂g

∂xi

])2

=

=
1

(1xi)2

(δg[i] − δg[0]

)2
+

3∑
j=1

(
∂g

∂xj

(
δxj [i] − δxj [0]

))2
 (17.47)

It has been assumed that theg-measurement errors are statistically independent from the
errors of the spacecraft position determination.

The last formula simplifies when correlations ofdifferent componentsof the spacecraft
position errors can be neglected:

(
δ

[
∂g

∂xi

])2

=

=
1

(1xi)2

[(
δg[i] − δg[0]

)2
+

3∑
j=1

(
∂g

∂xj

)2 (
δxj [i] − δxj [0]

)2] (17.48)

(δxj [i] − δxj [0]) denotes thej -th component of therelativeposition error. It depends e.g.
on the geocentric distance and on the orientation of the spacecraft cluster.

Further simplifications can be achieved if measurement errors (of the satellite position
and the quantityg) atdifferent spacecraftare assumed to be uncorrelated:

(
δ

[
∂g

∂xi

])2

=

1
(1xi )

2

[
(δg[i])2 + (δg[0])2 +

∑3
j=1

(
∂g
∂xj

)2 (
(δxj [i])2 + (δxj [0])2

)]
(17.49)

But: since every inter-spacecraft calibration process introduces correlations of the above
neglected type, the last mentioned formula and the associated assumption require further
comments (see below).
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Convenient Error Formulas

The purpose of this report is to find some simplified error formulas for derivatives such
as gradient, divergence and curl. The expressions given above are still too complicated to
produce simple formulas, although all correlations of the primary errorsδg[i], δg[0], δxj [i]
andδxj [0] have already been disregarded. Therefore, we have to make further assumptions:

• The mean square errors of the different spacecraft positions are assumed to be equal
and independent of orientation, i.e.

(δxj [α])2 = (δax)
2

for all j, [α].

• The mean squareg-measurement errors of the different instruments are assumed to
have the same size:

(δg[α])2 = (δag)
2

for all [α].

The indexa in (δax)2 or (δag)2 indicates that these quantities areabsolutecalibration
errors rather thanrelativeones which are discussed below. We finally obtain:(

δ

[
∂g

∂xi

])2

=
2

(1xi)2

(
(δag)

2
+ |∇g|2(δax)

2
)

(17.50)

By the same procedure one can derive a formula for the mean error of the product of
different partial derivative errors (i 6= j ):(

δ

[
∂g

∂xi

])(
δ

[
∂g

∂xj

])
=

1

1xi1xj

(
(δag)

2
+ |∇g|2(δax)

2
)

(17.51)

If h is different fromg (two functions or two components of the same vector field) and the
errorsδg andδh are uncorrelated, we obtain (i 6= j ):(

δ

[
∂g

∂xi

])(
δ

[
∂h

∂xj

])
=

1

1xi1xj

(
[(∇g) · (∇h)] (δax)

2
)

(17.52)

(
δ

[
∂g

∂xi

])(
δ

[
∂h

∂xi

])
=

2

(1xi)2

(
[(∇g) · (∇h)] (δax)

2
)

(17.53)

Suchcross termsappear in the error formulas of divergence and curl estimates. The last
two formulas can be used if correlations of different components of the vector field under
investigation can be neglected.

Inter-Spacecraft Calibration

The aim of inter-spacecraft calibration processes should be the reduction ofrelative er-
rors, e.g.(δg[i] − δg[0])2. This can be achieved by the introduction of a positive correlation
betweenδg[i] andδg[0], i.e. between errors at different spacecraft:

(δg[i] − δg[0])2 = (δg[i])2 + (δg[0])2 − 2(δg[i])(δg[0])
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As before we assume equal absolute errors(δag)
2

= (δg[α])2 for different instruments
[α]. To investigate the basic consequences of the correlation of errors, we use a correlation
coefficientCg

[α][β]
≡ Cg (∈ [0,1]) which is the same for all possible binary combinations

of the various instruments, i.e.

(δg[α])(δg[β]) = C
g
[α][β]

(δag)
2

= Cg(δag)
2

for all [α] 6= [β]. With the help of this assumption one can compute the mean square
relative errors:

(δg[i] − δg[0])2 = 2(1 − Cg) (δag)
2

The correlation of relative errors can be written in the following form ([j ] 6= [i]):

(δg[i] − δg[0])(δg[j ] − δg[0]) = (1 − Cg) (δag)
2

=
1

2
(δg[i] − δg[0])2

Similar formulas can be written down for the relative errors of the spacecraft positions.
In addition to the absolute errors(δag)2 and(δax)2 we define mean square relative errors
by:

(δrg)
2

= (1 − Cg) (δag)
2

=
1

2
(δg[i] − δg[0])2 (17.54)

(δrx)
2

= (1 − Cx) (δax)
2

=
1

2
(δxj [i] − δxj [0])2 (17.55)

It is easy to show that the structure of the equations derived above doesn’t change ifCg,x 6=

0, but the errors must be replaced:(δa{g, x})2 → (δr{g, x})
2. Thus, we finally obtain

(i 6= j ):

(
δ

[
∂g

∂xi

])2

=
2

(1xi)2

(
(δrg)

2
+ |∇g|2(δrx)

2
)

(17.56)

(
δ

[
∂g

∂xi

])(
δ

[
∂g

∂xj

])
=

1

1xi1xj

(
(δrg)

2
+ |∇g|2(δrx)

2
)

(17.57)

(
δ

[
∂g

∂xi

])(
δ

[
∂h

∂xj

])
=

1

1xi1xj

(
[(∇g) · (∇h)] (δrx)

2
)

(17.58)

(
δ

[
∂g

∂xi

])(
δ

[
∂h

∂xi

])
=

2

(1xi)2

(
[(∇g) · (∇h)] (δrx)

2
)

(17.59)

We summarise the assumptions made during the calculation of these expressions: Lin-
ear varying functions or vector field components have been considered in a simplified
satellite configuration. Correlations between different components of the spacecraft po-
sition errorsδr [α] and the measurement errorsδg[α] have been neglected. Furthermore,
we have assumed that measurements taken at different satellites are equally accurate. The
correlations introduced by inter-spacecraft calibrations have been modelled by a fixed cor-
relation coefficient.
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17.A.2 Curl Estimation Accuracy: The General Case

The relation�2
=
∑3
i=1�

2
i leads to the following expression for the errorδ� of the

vorticity magnitude:

�δ� =

3∑
i=1

�iδ�i

The errors of the cartesian components of the vorticity are related to the errors of the partial
derivatives by:

δ�i = δ

[
∂Vk

∂xj

]
− δ

[
∂Vj

∂xk

]
where(i, j, k) must be a cyclic permutation of(1, 2, 3). In order to compute the mean
square error of the vorticity magnitude we have to insert this expression into

∑3
i=1�iδ�i ,

then square and average the result. We assume (as in the divergence error estimation case)
that different components of the bulk velocity have uncorrelated measurement errors and
make use of the approximation|∇Vj,k|2(δx)2 � (δV )2. This leads to:

�2(δ�)2 =

(
�2

1

[(
δ

[
∂V3

∂x2

])2

+

(
δ

[
∂V2

∂x3

])2
]

+ cyclic permutations

)

−

(
2�1�2

(
δ

[
∂V3

∂x2

])(
δ

[
∂V3

∂x1

])
+ cyclic permutations

)

= 2

{
�2

2 +�2
3

(1x1)2
+
�2

3 +�2
1

(1x2)2
+
�2

1 +�2
2

(1x3)2

}
(δV )2

− 2

{
�1�2

1x11x2
+

�2�3

1x21x3
+

�3�1

1x31x1

}
(δV )2 (17.60)

This is still a rather complicated expression for the quantity(δ�)2. It depends on the shape
of the satellite configuration, on the magnitude� and on the direction of the vorticity with
respect to the spacecraft tetrahedron.

The easiest way to isolate the dependence of the magnitude error on the shape of
the satellite configuration is to get rid of the vorticity direction dependence in the above
formula by performing an average over the sphere� = constant:

〈g〉�=const =
1

4π

2π∫
0

dλ

π∫
0

dφ sinφ g(λ, φ)

(φ: polar angle,λ: azimuth). With the help of the relations:〈
�2

1

〉
�=const

�2
=

〈
�2

2

〉
�=const

�2
=

〈
�2

3

〉
�=const

�2
=

1

3
〈�1�2〉�=const

�2
=

〈�2�3〉�=const

�2
=

〈�3�1〉�=const

�2
= 0

we obtain: 〈
(δ�)2

〉
�=const

=
2

3

{
2

3∑
i=1

1

(1xi)2

}
(δV )2 (17.61)
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17.A.3 Curl Estimation Accuracy: The Special Case1x1 = 1x2

The Error δ�⊥

The errorδ�⊥ of the vorticity component in thex1x2 plane obeys the relation:

�⊥δ�⊥ = �1δ�1 + �2δ�2

which can be deduced from�2
⊥

= �2
1 +�2

2. Squaring and averaging yields:

�2
⊥
(δ�⊥)2 = �2

1(δ�1)2 + �2
2(δ�2)2 + 2�1�2(δ�1)(δ�2)

To evaluate these expressions we make use of the same assumptions as in the vorticity
magnitude case (see above). We obtain:

(δ�1)2 = (δ�2)2 =

{
2

(1x⊥)2
+

2

(1x‖)2

}
(δV )2

(δ�1)(δ�2) =
−(δV )2

(1x⊥)2

and finally:

(δ�⊥)2 =

{
2

(1x⊥)2
+

2

(1x‖)2

}
(δV )2 −

2 cosλ sinλ(δV )2

(1x⊥)2

=

{
2 − sin 2λ

(1x⊥)2
+

2

(1x‖)2

}
(δV )2 (17.62)

The Error δλ

The angleλ is given byλ = tan−1(�2/�1). Elementary calculus leads to the follow-
ing relation:

�⊥δλ = cosλδ�2 − sinλδ�1

The mean square error(δλ)2 is derived exactly in the same way as in the(δ�⊥)2 case.
The result is:

�2
⊥
(δλ)2 = sin2 λ (δ�1)2 + cos2 λ (δ�2)2 − 2 sinλ cosλ(δ�1)(δ�2)

=

{
2

(1x⊥)2
+

2

(1x‖)2

}
(δV )2 +

2 cosλ sinλ(δV )2

(1x⊥)2

=

{
2 + sin 2λ

(1x⊥)2
+

2

(1x‖)2

}
(δV )2 (17.63)

Dependence of(δ�⊥)2 and (δλ)2 on the Angleλ

Both errors(δ�⊥)2 and(δλ)2 vary with the angleλ. But if accuracy is gained in the
determination of one quantity it is lost in the determination of the other one because the
sum of both mean square errors does not depend on the angleλ:

�2
⊥
(δλ)2 + (δ�⊥)2 = constant
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Even the variations of the individual errors with the angleλ are rather moderate compared
to their dependence on the separation lengths1x‖ and1x⊥ or on the measurement error
δV : From the formulas given above we can deduce maximum and minimum values of the
mean square errors which cannot deviate more than 50% from the mean value which is
given by: 〈

�2
⊥
(δλ)2

〉
λ

=

〈
(δ�⊥)2

〉
λ

=

{
2

(δx⊥)2
+

2

(δx‖)2

}
(δV )2 (17.64)

Averaging over the angleλ is denoted by〈. . .〉λ. The maximum uncertainty of±50% is
reached only if(1x‖)

2
� (1x⊥)

2, for more regular tetrahedra ((1x‖)
2

≈ (1x⊥)
2) it

should be around±25% which corresponds to a standard deviation of less than±15%.
Thus, in most cases one does not need to take care of the dependence on the angleλ and it
should be sufficient to use the formula for the mean values of�2

⊥
(δλ)2 and(δ�⊥)2.

The Error δ�

Since�2
= �2

⊥
+�2

‖
the vorticity magnitude errorδ� obeys the relation:

�δ� = �⊥δ�⊥ + �‖δ�‖

Squaring and averaging leads to:

�2(δ�)2 = �2
⊥
(δ�⊥)2 + �2

‖
(δ�‖)2 + 2�⊥�‖(δ�⊥)(δ�‖)

The cross term is evaluated in same way as before, the result is:

(δ�⊥)(δ�‖) = − (cosλ+ sinλ)
(δV )2

1x⊥1x‖

Since we are mainly interested in the influence of the polar angleφ = tan−1(�⊥/�‖) on

the error(δ�)2, we perform an average over the azimuthλ. This kills the cross term. We
finally obtain after some rearrangements:〈

(δ�)2
〉
λ

�2
=

�2
⊥

�2

〈
(δ�⊥)2

〉
λ

�2
+
�2

‖

�2

〈
(δ�‖)2

〉
λ

�2

=

{
2

(�1x⊥)2
+

2

(�1x‖)2

}
sin2 φ (δV )2 +

4 cos2 φ (δV )2

(�1x⊥)

=

{
2

sin2 θ

}
(δV )2

(�1r)2
+ 2

{
cos2 φ

sin2 θ
+

sin2 φ

cos2 θ

}
(δV )2

(�1r)2
(17.65)

with 1r =

√
(1x⊥)2 + (1x‖)2 and tanθ = 1x⊥/1x‖.

The Error δφ

The relation tanφ = �⊥/�‖ implies:

�δφ = cosφ δ�⊥ − sinφ δ�‖
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We proceed in the same manner as in theδ� case to obtain the mean square error of the
polar angleφ. We finally get:

(δφ)2 =

{
2

(�1x⊥)2
+

2

(�1x‖)2

}
cos2 φ (δV )2 +

4 sin2 φ (δV )2

(�1x⊥)

=

{
2

sin2 θ

}
(δV )2

(�1r)2
+ 2

{
sin2 φ

sin2 θ
+

cos2 φ

cos2 θ

}
(δV )2

(�1r)2
(17.66)

17.B Details of Error Estimation: General Geometry

In the following we estimate the derivative errors for arbitrary satellite configurations
with the help of barycentric coordinates. Contributions of spacecraft position uncertainties
are neglected, i.e. the approximation|∇g|2(δx)2 � (δg)2 is used. With regard to vector
fieldsV , we treat different components ofδV as uncorrelated quantities. Furthermore, we
assume uncorrelated measurement errors at different spacecraft.

For convenience the summation limits are omitted. We keep in mind that Greek indices
(α, β, . . .) assume values 0,1,2,3 whereas latin indices (i, j, . . .) assume values 1,2,3.

17.B.1 Directional Derivatives and Partial Derivatives

The derivative of a quantityg in the direction of vector̂e is estimated by:

ê · ∇g '

∑
α

(ê · kα)gα

Thus, the error of the directional derivative can be written as:

δ[ê · ∇g] =

∑
α

(ê · kα)δgα

Squaring and averaging yields:(
δ[ê · ∇g]

)2
=

∑
α,β

(ê · kα) (ê · kβ) (δgα)(δgβ)

The assumptions mentioned above imply:

(δgα)(δgβ) = δαβ(δg)
2

whereδαβ denotes the Kronecker symbol (= 1 if α = β, otherwise= 0). We finally get:

(
δ[ê · ∇g]

)2
=

{∑
α

(ê · kα)
2

}
(δg)2 (17.67)

The mean square error of a partial derivative is found by insertingê = êi (unit vector in
directionxi): (

δ

[
∂g

∂xi

])2

=

{∑
α

k2
αi

}
(δg)2 (17.68)
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The result can be transferred to the elements of the jacobian matrix of a vector fieldV :(
δ

[
∂Vj

∂xi

])2

=

{∑
α

k2
αi

}
(δV )2 (17.69)

A mean value for the directional derivative error can be obtained by averaging over the set
of unit vectorsê, i.e. over all possible directions:〈(

δ
[
ê · ∇g

])2〉
ê

=
1

3

{∑
α

|kα|
2

}
(δg)2 (17.70)

17.B.2 Divergence Estimation Accuracy

From the estimator for the divergence of a vector fieldV

∇ · V '

∑
α

kα · V α

we can deduce the error:

δ[∇ · V ] '

∑
α

kα · δV α =

∑
α,i

kαiδVαi

Squaring and averaging leads to:

(δ[∇ · V ])2 =

∑
α,β,i,j

kαikβj (δVαi)(δVβj )

We make use of the assumptions concerning the uncorrelated measurement errors:

(δVαi)(δVβj ) = δαβδij (δV )
2

and finally obtain:

(δ[∇ · V ])2 =

{∑
α,i

k2
αi

}
(δV )2 =

{∑
α

|kα|
2

}
(δV )2 (17.71)

17.B.3 Curl Estimation Accuracy

The estimator for thei-th cartesian component of the vorticity can be written in the
following form:

�i = (∇ × V ) · êi '

∑
α

(kα × V α) · êi =

∑
α

(êi × kα) · V α

=

∑
α,j

(êi × kα)jVαj

We proceed in the same way as above to calculate the mean square errors and get:

(δ�i)2 =

{∑
α,j

(êi × kα)
2
j

}
(δV )2 (17.72)
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The vorticity magnitude error is related to the component errors by:

�δ� =

∑
i

�iδ�i =

∑
i,α,j

�i(êi × kα)j δVαj =

∑
i,α,j,l,m

�iεj lm(êi)lkαmδVαj

The symbolεj lm denotes the total anti-symmetric tensor (= 1, if (j, l, m) cyclic permuta-
tion of (1, 2, 3); = −1, if anti-cyclic; otherwise zero).(êi)l denotes thel-th component of
unit vectorêi , thus(êi)l = δil and

�δ� =

∑
i,α,j,m

�iεjimkαmδVαj

Squaring and averaging yields:

�2(δ�)2 =

∑
i,α,j,m

∑
n,β,p,q

�i�nεjimεpnqkαmkβq δVαj δVβp︸ ︷︷ ︸
=δαβδjp(δV )

2

= (δV )2
∑

i,α,m,n,q

�i�nkαmkαq
∑
j

εjimεjnq︸ ︷︷ ︸
=δinδmq−δiqδmn

We finally obtain:

�2(δ�)2 = (δV )2
∑
i,α,m

�i�ikαmkαm − (δV )2
∑
i,α,m

�i�mkαmkαi

=

{
�2
∑
α

|kα|
2

−

∑
i,α,m

�i�mkαmkαi

}
(δV )2 (17.73)

The last expression simplifies when averaged over the sphere� = constant, i.e. over
all possible vorticity directions. The result is:

〈
(δ�)2

〉
�=const

=
2

3

{∑
α

|kα|
2

}
(δV )2 (17.74)
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18.1 Introduction

The primary advantage of multi-spacecraftin situ measurements is the principal op-
portunity to discriminate spatial structures from temporal evolutions. These two aspects
of space processes are undistinguishably intermixed in single satellite measurements. Fur-
ther, multi-spacecraft measurements allow the determination of divergences, gradients,
curls, currents, wave vectors and other non-scalar parameters—in principle. The inter-
pretation of multi-spacecraft measurements often depends, however, on the underlying
models.

Numerical modelling and simulation is useful for multi-spacecraft investigations first
to develop and test specific analysis methods. Numerical simulations are able to provide
test data before the satellites are launched.

The second purpose of numerical modelling and simulations for multi-spacecraft in-
vestigations is to support the interpretation. The systematic errors of single satellite ob-
servations were usually large enough to suffice with more or less qualitative models for
data interpretation. The potentially higher information content of future multi-spacecraft
investigations, however, can be deduced only by comparison of the observations with ap-
propriate numerical modelling and simulation results.

The third purpose of numerical modelling and simulations for multi-spacecraft data
analysis results from the very aim of a multi-spacecraft mission: to better understand
the essentials of the plasma dynamics in space and time from just a few measurable pa-
rameters of plasma, particles and fields obtained just along the satellite orbits. In this,
multi-spacecraft missions have still to cope with the principal limits ofin situ satellite
measurements: they have to solve inverse problems with only an insufficient amount of
information available, although they are more discriminative in principle. The limited
number of measurements and the insufficient spatial coverage can be dealt with only by
means of models.

Many different numerical modelling and simulation approaches to space plasma prob-
lems exist. Before choosing a concrete approach one has to realise that no code can answer
all questions. Despite the amazing growth of computer resources, numerical simulations

449
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never will duplicate nature. Their purpose is, instead, to verify hypotheses about the es-
sential links and laws in nature. The way they do this is to predict consequences of model
assumptions which then can be compared with observations. The choice of the most ap-
propriate code is governed, therefore, by the specifics of the problem one has in mind.

How can one decide what numerical model and simulation approach is most appro-
priate for a given multi-spacecraft measurement? The criterion is to simplify the space
plasma phenomena as much as possible, while still describing the most essential interac-
tions. Indeed, one has to take into account that most space plasmas are collisionless. As
a result interactions by binary collisions are negligible while weak interactions via collec-
tive electromagnetic forces prevail. Fortunately, depending on the problem at hand, parts
of the interactions decouple. Since the derivation of most appropriate numerical models is
still an on-going research topic, a coverage of all existing approaches and problems in a
handbook chapter is impossible. Hints to the extended literature are given in the short but
incomplete bibliography at the end of this chapter.

The aim of this chapter is to demonstrate by means of typical examples the utility and
limitations of the three main numerical modelling and simulation approaches for multi-
spacecraft measurements. In Section18.2 we illustrate the possibilities of test particle
calculations, in Section18.3of a magnetohydrodynamic modelling of fields and macro-
scopic plasma parameters, neglecting particle interactions and kinetic effects while in Sec-
tion 18.4the use of self-consistent kinetic plasma simulations is treated.

Test particle calculations provide an appropriate treatment mainly of acceleration and
propagation of energetic particles (Section18.2). They help to utilise non-adiabatic accel-
eration and propagation effects for the remote sensing of particle energisation processes
(Section18.2.1) as well as the mass-dependent spectra formation (Section18.2.2).

Conversely, if one is interested in the macroscopic dynamics of fields and plasmas
rather than in particle effects, it is better to take a fluid approach. In Section18.3 we
demonstrate the applicability of fluid approaches by several examples of applying single-
fluid resistive magnetohydrodynamic (MHD) simulations in order to discriminate physical
hypotheses by multi-satellite plasma and field observations. We give examples of how even
the simplest MHD approach still can help to identify new wave modes (Section18.3.1), to
discrimate magnetopause entry mechanisms (Section18.3.2) or mechanisms of the mag-
netotail energy release (Section18.3.3).

On the other hand, it has become obvious over the past decades of exploring space
plasmas that the most important processes (transport through boundaries, the sudden re-
leases of energy, the acceleration of particles to high energies, collisionless shock waves
and reconnection) are essentially controlled by the interactions of particles and their col-
lective fields. Kinetic processes, however, cannot be described by fluid models. However,
only the simplest kinetic plasma models, like one-dimensional electromagnetic or two-
dimensional electrostatic models, are analytically solvable. More realistic models have
necessarily to be treated numerically. In Section18.4 we demonstrate utilities and lim-
itations of currently available kinetic simulation approaches for multi-spacecraft obser-
vations. Although modern computer technique makes the numerical simulation of more
and more complicated models possible, they easily reach any technical limit. One way
to cope with this is to simplify the approach by neglecting some less important interac-
tions. In Sections18.4.1, 18.4.2, and18.4.3we give examples of such restricted kinetic
approaches. We focus especially on those, which were developed in the framework of the
European Simulation Network preparing the first attempt of a Cluster mission [Burgess,
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1994; Chanteur and Roux, 1997]. A fully adequate kinetic description, however, must be
self-consistent, considering all particle species, their full electromagnetic field effect and
the complete feedback of the fields to the particles. Only at this level can simulations
reveal all cross-scale dynamic space plasma phenomena. Fully three-dimensional self-
consistent kinetic simulations have now been started. In Section18.4.4we demonstrate
their opportunities for multi-spacecraft observations.

18.2 Test Particle Calculations

Multi-spacecraft missions provide for the first time simultaneously measured spatially
distributed observations of the three-dimensional velocity space spectra of particles cov-
ering a broad energy range, including mass separation. These measurements contain a
vast amount of information about the mechanisms of particle energisation in space. Al-
though, strictly speaking, only self-consistent kinetic simulations can describe the underly-
ing plasma processes adequately (see Section18.4.4), important features of the distribution
can be modelled in the much simpler test particle approach, at least for energetic particles.
The test particle approach neglects all particle interactions, considering only the action of
external forces. The trajectories of particles are, therefore, calculated in prescribed elec-
tric and magnetic fields neglecting any feedback reactions of particle flows. This usually
restricts the applicability of the test particle approach to energetic particles, their energy
and angular spectra, their propagation and spatial distribution and calls for best possible
field models.

Mathematically the test particle approach leads to a system of nonlinear but ordinary
differential equations. In a simply connected phase space, the Liouville theorem allows
the reconstruction of phase space distributions by mapping along test particle orbits. If,
in addition, perturbation methods are applicable, as in slowly and smoothly varying fields,
test particle orbits can easily be found using adiabatic invariants as approximate integrals
of motion. Typical applications of this approach are described in Chapter7. The meth-
ods presented there are suitable as long as the phase space structure is regular and simply
connected. The phase space is regular if the equations of motion are integrable or almost
integrable. The latter applies, for example, if the particles are magnetised and the magnetic
momentµ is conserved. In this situation a straightforward application of the Liouville the-
orem allows predictions of distribution functions using just a few typical particle orbits.
Important predictions can be made in this limit, like theD-shape of the distribution func-
tion with a lower energy cutoff, the spatial dispersion by velocity filtering of particles,
accelerated at different moments of time to different energies for the diagnostics of time-
dependent reconnection, for example, at the dayside magnetopause (see Chapter7).

In reality, however, the phase space can be much more complex. Over the past ten
years it became obvious that the phase space of energetic particles in space is not always
regular. Deviations from the regularity of motion may cause the formation of structures in
configurational and velocity space. In Section18.2.1we demonstrate results of test particle
calculations leading beyond the limits of adiabaticity and a straightforward applicability
of the Liouville theorem. We show how the consequent structuring of energetic particle
flows in space and velocity space, resulting from non-adiabatic effects, can be used for
remote sensing in multi-satellite studies. In Section18.2.2we then demonstrate the use of
the test particle approach in interpreting multi-spacecraft mass-spectrometer results.
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Figure 18.1: H+ orbits illustrating the non-adiabatic scattering and acceleration near a
reconnection X-line.

18.2.1 Non-adiabatic Particle Motion

The regularity of the phase space and adiabaticity of charged particle orbits breaks
down in inhomogeneous as well as in rapidly changing fields. Both effects can cause a
violation of the conservation of the magnetic momentµ = m v2

⊥
/|B|, for example in

boundaries with their strongly inhomogeneous fields. As a result, the equations of motion
can become non-integrable, the particle motion is non-gyrotropic, non-adiabatic scattering
and deterministic chaos can occur. If this happens then trajectories started nearby each
other diverge considerably over finite distances. In this case the application of the Liouville
theorem must be handled with care. On the other hand the properties of non-adiabatic
scattering can be used for multi-spacecraft remote diagnostics. Observable features caused
by non-adiabatic motion are non-gyrotropic distribution functions, non-monotonic and
multiple-peaked spectra. Let us illustrate the formation of multiple-peaked spectra by
acceleration in a reconnection field

B = Bo tanh(Z) êx + Bn tanh(X · Bn/Bo) êz; ê = E = Eo êy . (18.1)

Figure18.1depicts three projections of test H+ orbits and one orbit projection in mixed
space-velocity space (lower right) in a field given by equation18.1. The parameters are
chosen, in accordance to the geomagnetic tail,Bn/Bo = 0.1 andEo = 0.1 · vA Bo, where
vA is the Alfv́en velocity in the ambient plasma. The test particle orbits are obtained
launching initially cold protons, i.e. with at a thermal velocityVth � Eo/Bn, atZ = 1
from different positions in theX direction.
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Figure18.1shows how the protons first gyrate and drift toward the equatorial plane
Z = 0. Near the equator they become accelerated while meandering across the equatorial
plane. The upper left panel of the figure depicts how particles, started near each other, can
reach quite different locations in space. As one can see they even switch easily between
the upper and lower half space! It is this behaviour that makes the phase space irregular.
It lets any application of the Liouville theorem sensitively depend on the choice of test
particle orbits. On the other hand, non-adiabatic motion and also chaotic scattering are
obviously generated by solving deterministic equations. They control the formation of
process-specific new structures. The small ellipses in the centre of the lower right panel
of Figure 18.1 indicate for example the temporary existence of a quasi-integral of the
motion during the acceleration phase. The upper right panel of Figure18.1, on the other
hand, demonstrates that the ejection points of the accelerated ions are bunched. Since the
particle energy gain is directly proportional to the shift of the particles in they-direction
(see equations18.1), the resulting particle energy is modulated accordingly. This effect
forms structures in velocity space and energy spectrum.

Reconnection accelerates particles to highest energies along and inside the magnetic
field separatrix as shown in the upper left panel of Figure18.1. There the selective non-
adiabatic scattering splits the ion flow into beamlets which continue to diverge in space due
to velocity filtering outside the acceleration region. The histogram in Figure18.2depicts
the spatial distribution of the count rates of energetic particles formed by reconnection in
a field model according to equation18.1 versus the distance from the equatorial plane.
Figure18.3 additionally resolves the velocity spectrum for different distances from the
equatorial plane. Altogether this shows that the chaotic scattering of particles accelerated
by reconnection does not at all mean a loss of information. Instead, non-adiabatic and
chaotic scattering cause the formation of structures in space and velocity space which can
be used for remote diagnostics. The dispersion between the beamlets is even enhanced
by the velocity filter effect. As a result the whole magnetosphere can act as a mass spec-
trometer. The modulation of the energy spectrum detected by several satellites gives addi-
tional indications of the acceleration process. It allows the conclusion about whether the
ions were accelerated by reconnection, which causes a modulation with velocity peaks at
vN ∝ (N +

1
2)

2/3 (Eo/Bn)
2/3 with N = integers, for current sheet accelerationvN ∝ Nα

with α = 1 . . . 2 in dependence on the tail magnetic field variation.
The simultaneous measurement of the energetic particle flow structure, observed from

different satellite positions in multi-spacecraft studies, can act as a dispersiometer as
demonstrated by Figure18.4. The figure illustrates the spatial scaling of the dispersion
of protons, accelerated 20RE away from the spacecraft. While the beamlets of energetic
protons (50 keV and higher) are well resolved by the four Cluster-type satellites, a fifth
spacecraft, like Interball or Geotail located further away, will see the lower energy parti-
cles stemming from the same acceleration region.

18.2.2 Mass-dependent Energetic Particle Spectra

There are more utilities to interprete multi-spacecraft observations of energetic ions
in the framework of the test particle approach. The RAPID time-of-flight spectrometer
onboard the Cluster spacecraft, for example, will resolve, in addition to the energy spec-
tra, the mass composition of energetic particle from dozens of keV up to MeV energies.
Let us consider the acceleration of O+ ions, 16 times heavier than protons, in the recon-
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Figure 18.2: Histogram of the particle count rate due to beamlet formation by scattering
of reconnection-accelerated protons.

Figure 18.3: Spatio-velocity space distribution function due to non-adiabatic scattering
versus the distancez from the equatorial plane.
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Figure 18.4: Four Cluster satellites and one additional spacecraft forming a dispersiometer
using the Earth’s magnetic field as a energy spectrometer [fromBüchner, 1990].

nection field given by equation18.1. One finds important similarities but also significant
differences compared to the protons. Figure18.5 illustrates the acceleration of O+ ions
by the same orbit projections used in Figure18.1. Although the principal features of the
non-adiabatic acceleration process of H+ and O+ are the same, one sees that the ener-
gies gained are much higher for the latter. Due to the higher ion mass, however, the final
velocities of the accelerated oxygen ions are even smaller than the proton velocities. A
comparison of the velocity spectra (Figure18.6) shows clearly how the rigidity of the ve-
locity spectra increases with ion mass. A recently developed theory allows the fitting of
the spectra. According toBüchner[1995] the spectral function is

f (v) ∝
M1/2

v3/2

Bn · Enorm

Bo · Eo
exp

{
−

2Bn · Enorm

3Bo · Eo
M1/2v3/2

}
(18.2)

whereEnorm is a normalisation parameter.
The theoretical spectra predicted by equation18.2 are also shown in Figure18.6 as

solid lines together with the results of test particle calculations, indicated by solid circles,
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Figure 18.5: O+ orbits illustrating chaotic scattering near a reconnection X-line.

squares and triangles for H+, He++ and O+, respectively. Due to the characteristicε/b
dependence of the spectra this important parameter of the accelerating field can be di-
rectly obtained from fitting the observed spectra. Note that the three spectra of H+, He+

and O+ shown in Figure18.6, belong to different beamlets and appear at spatially dislo-
cated positions. The observation of different ion species by different Cluster spacecraft
will, therefore, provide insights into the structure of the acceleration region just by remote
sensing.

So far we have illustrated consequences of the non-adiabatic particle dynamics rel-
evant to multi-spacecraft observations by using analytically prescribed electromagnetic
fields. The use of analytically prescribed fields allows the principal theoretical under-
standing and the prediction of observable non-adiabatic effects. In order to get closer to
the concrete situation of a multi-spacecraft observation, one can also combine the test
particle approach with empirical models, like those of Fairfield [Delcourt et al., 1990]
or Tsyganenko [Ashour-Abdalla et al., 1993]. A dynamic evolution of the fields can be
taken from analytical models [Chapman and Watkins, 1993], from local MHD simulations
[Scholer and Jamnitzki, 1987], from two-dimensional turbulent reconnection [Ambrosiano
et al., 1988], from three-dimensional MHD reconnection [Birn and Hesse, 1994], or even
from global MHD simulations (see Section18.3) [Joyce et al., 1995]. These modifications
enhance the predictive power of test particle calculations, they are also appropriate to de-
scribe the transport and propagation of energetic particles over larger distances. As for all
test particle approaches, however, they still neglect the feedback of the particles to the field
configuration. Hence, they too cannot correctly describe the action of the self-consistent
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Figure 18.6: Calculated O+, He++ and H+ test particle spectraf(v) versusv and fitted
curves corresponding to equation18.2.

electric fields which are so important in shocks, double layers, reconnection or other im-
portant energisation sites in space plasmas. They are not applicable, therefore, to describe
the thermal component of the plasma. For the latter, one has to apply self-consistent kinetic
plasma simulations of the plasma and the fields. Before turning to the most difficult case of
self-consistent kinetic plasma simulations in Section18.4we will discuss in Section18.3
the advantages and limitations of MHD models for multi-spacecraft investigations.

18.3 Magnetohydrodynamic Modelling

If the multi-spacecraft investigations are aimed at the study of plasma flows and macro-
scopic, slowly varying electromagnetic fields and not at the self-consistent formation of
distribution functions nor at the investigation of wave-particle resonances or other essen-
tially kinetic effects, then magnetofluid approaches are most appropriate. The applicability
of magnetohydrodynamic (MHD) or more sophisticated fluid approaches is based on the
fact that correlated electromagnetic forces let space plasma behave, under certain circum-
stances, like a conducting or even ideally conducting magnetised fluid. The technical
advantage of fluid approaches is that they do not have to follow the details of particle mo-
tion. They, instead, consider the dynamics of fluid elements which represent the average
and undifferentiated behaviour of many particles at once. In combination with appropriate
boundary conditions and assumed transport coefficients, the partial differential equations
of fluid mechanics describe, therefore, the slow evolution of observable macroscopic pa-
rameters well, as there are density, bulk flows, temperature, pressure and magnetic fields.
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Since fluid models of typically inhomogeneous and highly variable in time, space plasmas
cannot be solved analytically, numerical simulations have to be carried out. In the form
of so-called global models, numerical fluid models allow the simulation of large regions
including the whole magnetosphere and the local solar wind [e.g.Fedder and Lyon, 1995;
Ogino et al., 1994; Raeder, 1994]. For multi-spacecraft investigations, global fluid models
can be best used on top of empirical models in order to describe the general situation of
the magnetosphere. Due to there large grid distances global fluid models, however, do
not resolve the typical Cluster distance scales. But these are typically the scales at which
physical effects, other than kinetic effects, start to work. While global fluid simulations
provide background information for Cluster-type multi-spacecraft measurements, more fo-
cused and higher resolution fluid simulations are necessary to accompany the investigation
concentrating on key parts of the magnetosphere, such as boundaries, the inner edge of the
plasma sheet, the cusp or the magnetosheath. We mention, again, that the smaller scale
limits of magnetofluid approaches excluding kinetic effects are the ion gyroradii and time
intervals which compare with the characteristic particle time scales.

Fluid models exist ranging from the simplest single fluid magnetohydrodynamic
(MHD) approach to fields, temperature, density, bulk flow velocities and plasma pressure,
to models considering temperature anisotropies, several ion components, heat fluxes etc.
For example, the Chew-Goldberger-Low approach to collisionless plasmas, considers the
temperatures parallel and perpendicular to the magnetic field separately. In combination
with test particle calculations (Section18.2), fluid simulations can also help to estimate
spectra and distribution functions of energetic particles in evolving macroscopic fields but
only in a non-self-consistent way.

Still, non-global numerical MHD models will play an important role for interpreting
multi-spacecraft observations. In this section we give examples of how MHD simulations
can reveal temporal variations of field parameters and plasma parameters at satellite po-
sitions. Numerical MHD simulations allow one to derive the parameter variations along
satellite orbits due to the motion of plasma and field structures relative to the spacecraft.
This way they generate data for developing and testing, e.g. multi-spacecraft wave anal-
ysis methods (see Section18.3.1), they allow the recognition of the three-dimensional
structure and the temporal evolution of space plasmas by multi-spacecraft measurements.
We demonstrate the latter for multi-spacecraft investigations of the magnetopause in Sec-
tion 18.3.2and for the investigation of substorm related energy release processes in Sec-
tion 18.3.3.

18.3.1 Identification of Wave Modes

In this section we give an example of the heuristic power of numerical MHD mod-
elling which supports the development and testing of multi-spacecraft data analysis meth-
ods. The examples deal with a method of estimating spatial and temporal power spectra
from multi-spacecraft measurements of electromagnetic fields, as described in Chapters3
and4. The method is basically a minimum variance analysis modified for wavelength and
direction filtering. It has been tested to identify a nonlinear wave coupling process. Inde-
pendent checks of the selection rules for frequencies and wave vectors have been carried
out without making assumptions about the dispersion relation of the modes. The waves
were generated by a two-dimensional half-compressible MHD code. Initial conditions of
the simulation were chosen in a way that slow, fast, and shear Alfvén waves should be
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expected. At assumed satellite positions the values of the electromagnetic fields and of
the plasma density were diagnosed. Processing of these simulated data in accordance with
the generalised minimum variance analysis recovered the three expected wave modes. In
addition, however, a new mode was found, which was not present when initialising the
simulation. It was practically impossible to identify the new mode by classical methods.
Further theoretical investigations have then shown that such a mode arises from coupling
between one of the shear waves and the first harmonic of the slow wave. This example is
a good demonstration of the power of combining multipoint wave diagnostics with sim-
ulations. In the following section we aim at the multi-spacecraft recognition of typical
signatures of large scale processes at the magnetopause and in the magnetotail.

18.3.2 Magnetopause Entry Mechanisms

The magnetopause plays an important role in solar-terrestrial relations, being the inter-
face between the solar wind and magnetosphere. Its first theoretical description was given
by Chapman and Ferraro in 1931. Since then the mechanism of the interaction between
the magnetised solar wind and the Earth’s magnetic field and magnetospheric plasma are
still not properly understood. Multi-spacecraft investigations are expected to contribute to
the solution of the puzzles concerned.

One important magnetopause transport mechanism which has to be considered is mag-
netic reconnection. Reconnection magnetically opens the magnetosphere through the mag-
netopause.Otto et al.[1993] have first used an MHD model of three-dimensional magne-
topause reconnection to provide data from simulations for multi-spacecraft measurements.
For this purpose the authors chose a simple model equilibrium for the dayside magne-
topause. They allowed reconnection by imposing a localised finite resistivity. When com-
paring the simulated data with single satellite observations of flux transfer events (FTE),
the simulation revealed a plausible match to the corresponding traces emerging from the
simulation. Nevertheless, the interpretation of single spacecraft measurements remained
ambiguous: an important alternative transport mechanism through the boundary, magne-
topause oscillations, could create similar signatures! In order to discriminate between
the different mechanisms multi-spacecraft measurements combined with numerical MHD
modelling would be of use, as we will demonstrate here.

The starting point of the following simulations is the fact that the bulk velocity of the
slowed solar wind in the magnetosheath still exceeds the magnetospheric plasma velocity
at the inner side of the magnetopause by far. As a result, a Kelvin-Helmholtz instability
(KHI) may be excited and the resulting surface waves may cause transport through the
magnetopause, at least of energy and momentum, perhaps also of plasma particles if going
beyond the ideal MHD approach. It is, however, difficult to verify a KHI-generated wave
experimentally since it causes complex three-dimensional vortex structures corresponding
to extraordinary large amplitude oscillations. Their signatures are, unfortunately, similar
to those of FTEs. Single satellite observations, in the past interpreted as FTEs, are am-
biguous, even when considering ideal MHD beyond accelerated and intermixed plasma.
It is, therefore, an open question, whether the characteristic bipolar magnetic field signa-
tures are due to magnetic reconnection or due to magnetopause oscillations. In addition
to reconnection and KHI, similar signatures may also be caused by solar wind pressure
pulses. Only multi-spacecraft measurements can allow a distinction between the poten-
tial candidates if combined with numerical MHD modelling of the magnetic fields, plasma
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Figure 18.7: Magnetic field lines, projected into a planeY=const. after 5, 30 and 44τA.
The half-spaceX < 0 correspond to the magnetosphere, whileX > 0 corresponds to the
magnetosheath.

flow and pressure distribution. Magnetopause MHD simulations can be carried out for dif-
ferent ambient magnetic shear and wave vectors. Thus, they may yield information about
the circumstances under which observed strong temporal and spatial variations are due to
a KHI, due to pressure pulses or due to reconnection.

To give an example, we have initialised a two-dimensional magnetopause model for an
asymptotic magnetic shear angle of 135◦ between the ambient fields of the magnetosheath
and magnetosphere. In order to cause a KHI, an asymptotic velocity shear of1v = 4vA
was chosen between the magnetospheric (x < 0) and the magnetosheath side (x > 0).
This value of1v is in accordance with the theoretically predicted threshold of KHI (about
2vA).

Figures18.7and18.8illustrate a simulated Kelvin-Helmholtz unstable magnetopause.
Figure18.7depicts the instantaneous magnetic field configuration after 5, 30 and 44τA,
whereτA denotes the Alfv́en transient times of a wave propagating through the current
sheet. If rescaled to typical magnetopause parameters, theτA unit is of the order of one
second. Figure18.8shows time series of the magnetic field, velocity, electric field, mass
density, thermal pressure and total pressure calculated from the simulation runs at two
different satellite positions. The satellites are spaced about 1000 km apart (the normalising
distance in Figure18.7). This is a typical separation for the Cluster project as well as for
the Interball-1 main probe and its sub-satellite Magion 4 in the first flight-phase. In our
example, the satellite positions are assumed to be at rest with respect to the magnetopause,
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PositionX = −0.5, Z = 39.5 (inside the magnetosphere).

PositionX = 0.5, Z = 39.5 (in the magnetosheath).

Figure 18.8: Simulated time series of the relevant macroscopic plasma and field parameters
obtained at assumed satellite positions in the simulation box depicted in Figure18.7. For
the three upper panels (B, V , E) the solid, dotted and dashed lines represent thel (z), m
(−y) andn (x) components, respectively. For the bottom panel, the plots show the mass
densityρ (solid), thermal pressure (dotted), total pressure (dashed).
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one in the magnetosphere (X = −0.5,Z = 39.5) and the other in the magnetosheath (X =

0.5, Z = 39.5). Both satellites see large KHI-induced oscillations in the later part of the
time series. Also, the satellites observe a large scale KHI-wave structure. Both satellites
indicate an increase of the normal component of the magnetic field. The satellite on the
magnetospheric side observes an increase inBz and the satellite initially located in the
magnetosheath even measures a change of sign ofBz. With single-spacecraft observations
only, one would not be able to decide on the magnetosheath side, whether there is a large
scale wave or whether the satellite simply crosses the central current sheet. A correlated
analysis of both data sets, however, helps to interpret the observations correctly.

More information can be obtained from the magnetosheath satellite time series by
determining the magnetopause normal using a minimum variance analysis of the magnetic
field and a maximum variance analysis of the electric field, respectively (see Chapter8).
Figure18.9 shows the results of both variance analysis techniques. The vectorsı̂, ̂ , k̂

denote the eigenvectors corresponding to maximum, intermediate and minimum variance,
respectively. The component of the eigenvectors are given inl̂ (≡ z), m̂ (≡ −y) and
n̂ (≡ x) in this order. From our simulations we know that the magnetopause normal
should have a stronĝn component and somêl component due to the wave structure. The
maximum variance analysis on the electric field yields such a result, while that of the
minimum variance analysis of the magnetic field is completely different. Again, with the
data from the magnetosheath satellite alone it would be impossible to decide which result
is correct. However, using the two satellites together, a correlated analysis indicates a KHI
wave, as mentioned above. Thus, fluctuations of the magnetic field, especially of then̂

component, may make the minimum variance analysis of the magnetic field fail, while the
maximum variance analysis of the electric field becomes more credible. More systematic
data analysis will include additional diagnostics like the search for a deHoffmann-Teller
frame of reference (where the electric field vanishes and the magnetic field is at rest, see
Chapter9), a test of the Walén relation (Section9.3.3of Chapter9), the investigation of the
boundary orientation and motion (Chapter11). They all can be tested by using the results
of MHD magnetopause simulations as indicated above. Notice that extensions of the MHD
modelling approach are necessary when considering the high-latitude magnetopause and
the cusp region, where one has to consider the Earth’s magnetic field explicitly. Such
simulations can be used for systematic studies of three-dimensional reconnection and its
dependence of the orientation of the interplanetary magnetic field to be compared with
multi-spacecraftin situmeasurements.

18.3.3 Magnetotail Energy Release

Another important aim of multi-spacecraft investigations, where the comparison with
numerical MHD modelling and simulations is needed, is the investigation of substorms
and the dynamics of the corresponding energy release processes in the Earth’s magnetotail.
While kinetic simulations are needed to understand the causes of substorms and geomag-
netic activity (see Section18.4), MHD modelling will be of use for considering the large
scale consequences of the magnetospheric activity by means of multi-spacecraft observa-
tions. Reconnection, again, is the main mechanism to be considered in order to understand
the magnetospheric activity. Since reconnection is a non-local, three-dimensional and
non-stationary process, numerical simulations are necessary to derive the consequences
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Figure 18.9: Results of a minimum variance analysis of the MHD simulated magnetic
field data, and a maximum variance analysis of the simulated electric field data of the
magnetosheath satellite crossing the central current sheet. Theı̂, ̂ , k̂ vectors denote the
eigenvectors of maximum, intermediate and minimum variance, respectively, given inl̂,
m̂, n̂ coordinates.
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Figure 18.10: Reconnecting magnetic field at different moments of time.

Figure 18.11: Satellite positions used for the multi-spacecraft diagnosis carried out in
Section18.3.3.
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of different models. This concerns the evolution of flux tubes, the plasmoid dynamics, a
detailed analysis of the plasma flows and systematic studies of the influence of different
microscopic transport models on the nonlinear evolution of reconnection. In particular,
studies of the evolution of the current density distribution are of interest with respect to
multi-spacecraft data interpretation. Simulated multi-spacecraft data time series yield then
the opportunity of a direct comparison with satellite data.

In order to demonstrate the strength of numerical MHD modelling for interpreting
multi-spacecraft data, we have diagnosed a tail reconnection simulation from the points
of view of four satellites, located around a reconnection region. The simulation is three-
dimensional, starting with a two-dimensional tail equilibrium, invariant in theY -direction.
At t = 0 a Gaussian shaped three-dimensional resistivity profile is imposed, localised near
X = −10RE andY = Z = 0 in the equatorial plane. The start configuration includes
a far-Earth neutral line nearX = −50RE . Figure18.10depicts magnetic field lines at
two different moments of time during a MHD simulated three-dimensional magnetotail
evolution. In the figureX, Y , Z correspond to GSM coordinates given in Earth radii
(RE). Following the global evolution of the configuration, three-dimensional reconnection
evolves together with a developing plasmoid structure.

From the simulation data, time series can be deduced as they would be seen from four
different satellite positions. The spacecraft are all positioned around the reconnection re-
gion located atX = −10 RE , X = 0 andZ = 0 (Figure18.11). For demonstration
purposes a case is shown where all four satellites are at rest with respect to the reconnec-
tion region. The satellites are located northward of the equatorial plane at a distance of
Z = 0.3 RE . Two satellites are located earthward of the reconnection region. The corre-
sponding data time series at these positions are shown in Figure18.12and Figure18.14,
respectively. Two more satellites are situated tailward of the reconnection region (Fig-
ure18.13and Figure18.15, respectively).

Although the three-dimensional dynamics of the configuration is rather complicated,
a correlated analysis of the simulated time series of data yields clear signatures of three-
dimensional magnetic reconnection. Satellite 1 atX = −8 RE , Y = −0.6 RE , Z =

0.3 RE (Figure18.12) measures a positive, i.e. earthward directed, velocityvx , together
with a positiveBz. Satellite 2 atx = −12, y = −0.6, z = 0.3 (Figure18.13), located
tailwards of the reconnection region, measures tailward-directed plasma flow (negativevx)
and a negativeBz component. The same feature is found in the data sets of satellites 3 and
4, located at the duskside aty = 0.6 (Figures18.14and18.15). The time series ofvx
andBz of the earthward satellite (Figure18.14) correspond to that found in Figure18.12.
Thevx, Bz data in Figure18.15(tailward located satellite) fit the feature in Figure18.13.
Inflow and outflow from the flanks of the reconnection region can be studied in detail from
the data sets obtained for the satellite cluster. Even just concentrating on the observation
of vx andBz, the correlated analysis of multi-spacecraft measurements would yield infor-
mation about the consequences of three-dimensional MHD reconnection for macroscopic
parameters, allowing a distinction between different model approaches of geomagnetic
activity phenomena.

What MHD models do not allow in principle is the investigation of the microscopic
nature of the energy release processes, based on wave-particle resonances or other kinetic
effects. Particle effects have to be addressed by kinetic models, which, again, require
numerical simulations as described in the following sections of this chapter.
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Figure 18.12: Simulated time series of plasma and field data measured at satellite position
1 (X = −8 RE , Y = −0.6 RE , Z = 0.3 RE). For the three upper panels (B, V , E)
the solid, dotted, dashed lines represent thex, y, z components, respectively. For the
bottom panel, the plots are mass densityρ (solid), thermal pressure (dotted), total pressure
(dashed).

Figure 18.13: Simulated time series of plasma and field data measured at satellite posi-
tion 2 (x = −12, y = −0.6, z = 0.3). The line types have the same meaning as in
Figure18.12.
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Figure 18.14: Simulated time series of plasma and field data measured at satellite position
3 (X = −8 RE , Y = 0.6 RE , Z = 0.3 RE). For the three upper panels (B, V , E) the
solid, dotted and dashed lines represent theX, Y andZ components, respectively. For the
bottom panel, the plots are mass densityρ (solid), thermal pressure (dotted), total pressure
(dashed).

Figure 18.15: Simulated time series of plasma and field data measured at satellite position
4 (X = −12RE , Y = 0.6RE , Z = 0.3RE). The line types are same as in Figure18.14.
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18.4 Kinetic Plasma Simulations

Although test particle simulations, discussed in Section18.2, can be used to interpret
multi-spacecraft measurements of energetic particles, they are not self-consistent. Hence,
they do not describe, e.g., plasma heating or feedback of particles on the fields. MHD sim-
ulations, discussed in Section18.3are self-consistent, but they still neglect particle effects.
They are limited to spatial scales larger than ion gyroradii and to time intervals longer
than gyro- and plasma periods. They do not reveal particle distribution functions and
spectra self-consistently. These limits can be overcome only by a self-consistent kinetic
plasma description. Unfortunately, only the simplest kinetic models, like one-dimensional
electromagnetic or two-dimensional electrostatic approaches, can be treated analytically.
They are useful for demonstration purposes, having helped to understand, e.g., the prin-
ciples of local cylotron resonances, of Landau damping, and unstable wave generation.
For low-amplitude waves the corresponding nonlinear differential equations can be lin-
earised and quasi-linear methods describe a weak feedback of waves on the particles.
Even some essentially nonlinear equations are analytically solvable, describing, for ex-
ample, low-dimensional collapse and solitons. Nevertheless, these models and equations
over-simplify reality. They do not properly describe the situation met in multi-satellite
studies. In slightly more realistic considerations of, e.g., wave-particle resonances in in-
homogeneous plasmas, one has to deal with several coupled partial differential equations
for the electromagnetic fields combined with nonlinear ordinary differential equations of
the particle motion. For their solution analytical methods fail. Kinetic simulations help to
describe the consequences of particle and field interactions self-consistently [e.g.Winske
and Omidi, 1996].

In self-consistent kinetic plasma simulations, now available, fields are calculated on
finite grids of limited size although gridless solutions are possible in principle. The field
values are interpolated with a high degree of accuracy to any spatial position. In particle-
in-cell (PIC) codes, particles are clustered in so-called macro-particles; they move in the
fields interpolated between the grid-points. Macroscopic moments like density, pressure
tensor elements, temperatures, heat flows as well as phase space distribution functions are
calculated from the particles at any time step by relating the relative contribution of all
particles to a grid point. Due to the box-type simulation approach, the choice of initial and
boundary conditions is very important. As a matter of fact, their choice requires high so-
phistication. The most important limit of kinetic plasma simulations arises, however, from
the finite number of particles, which is dictated by the limits of computer resources. For
special applications, therefore, a restriction to not fully self-consistent kinetic simulations
may be of use. In Section18.4.1(Fokker-Planck simulations), Section18.4.2(guiding-
centre oriented gyrokinetic simulations), and Section18.4.3(hybrid simulations) we give
examples of different restricted kinetic approaches, developed in the framework of the Eu-
ropean network preparing the first Cluster mission. In Section18.4.4we finally turn to
fully self-consistent kinetic electromagnetic plasma simulations which have now started
to be carried out in three dimensions necessary for comparison with multi-spacecraft mea-
surements. We will illustrate the opportunities of fully kinetic plasma simulations by re-
sults obtained with the three-dimensional, fully self-consistent particle code GISMO.
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18.4.1 Fokker-Planck Simulations

Phase space diffusion processes can be investigated by numerically solving Fokker-
Planck equations of the space density evolution. A group at AEA Culham, United King-
dom, has designed a two-dimensional and finite difference Fokker-Planck code that de-
scribes the diffusive acceleration of electrons by resonant lower hybrid waves. A simula-
tion of processes producing the non-thermal velocity distributions of the auroral electrons
has illustrated the opportunities of this approach. In the context of multi-spacecraft obser-
vations Fokker-Planck simulations can be used for testing theoretically derived transport
coefficients and comparing their predictions of the phase space evolution (scattering pro-
cesses, etc.) with observations.

18.4.2 Guiding Centre Simulations

Guiding centre codes follow just the guiding centres of one or more particle species
(mostly electrons) instead of the particles themselves. Such an approach is applicable as
long as the particles are magnetised, conserving the first adiabatic moment of motionµ

(Section18.2.1) and as long as the gyration phase is unimportant.
In a collaboration of three groups of the European Simulation Network for Cluster

(CETP,École Polytechnique, and Culham) an implicit electromagnetic code designed at
the École Polytechnique was extended to simulate the dynamics of the guiding centres
of the electrons. This new scheme does not require projections on the local magnetic
field, hence it should be more efficient than previous guiding centre codes. Starting from
a guiding-centre approximation, one can reduce the calculation efforts of a kinetic code
even further. A group at Rutherford Appleton Laboratory, for example, has designed an
explicit electromagnetic code in the so-called Darwin approximation of Maxwell’s equa-
tions which neglects inductive electric fields. They make use of a guiding-centre approach
for electrons and considering ring-shaped ion distributions. Simulations of tearing modes
and drift waves are among potential applications of this operational two-dimensional code.

18.4.3 Hybrid Simulations

Hybrid plasma simulations combine the kinetic treatment of one or several plasma
species as particles with a fluid model of the remaining plasma components. They have
been developed and broadly used over the past ten years, for example, for investigating the
ion acceleration at shock waves or the role of waves in shock formation [Dubouloz and
Scholer, 1993], or f;or investigations of certain aspects of the reconnection process [Hess
et al., 1995]. In the framework of the European simulation network, a new numerical
scheme for hybrid simulations has been designed [Matthews, 1994]. Both one- and two-
dimensional implementations have been made and tested. The ability of this code to handle
multiple ion species efficiently makes it a valuable tool to investigate the physics of colli-
sionless shocks in the solar wind, low-frequency micro-instabilities at the magnetopause,
and the associated diffusion of ions through the magnetopause. The new scheme, called
Current Advance Method and Cyclic Leapfrog (CAM-CL), is distinct from other hybrid
schemes. First, multiple ion species may be treated with only a single computational pass
through the particle data. While the moment method advances the fluid velocity, CAM
advances the ionic current density and therefore computes more efficiently the dynamics
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of multiple ion species. This current advance is made easier by the collection of a free
streaming ionic current density. CL is a leapfrog scheme for advancing the magnetic field,
adapted from the modified midpoint method. It allows sub-stepping of the magnetic field.
An application of this code which will be of use for multi-spacecraft diagnostics is the
diagnosis of ion distribution functions formed by reconnection [Scholer and Lottermoser,
1997].

18.4.4 Fully Self-consistent Kinetic Plasma Simulations

In many cases, however, the simplifications of restricted kinetic plasma simulations,
discussed in Sections18.4.1–18.4.3, go too far. They over-simplify if, e.g., particle reso-
nance effects cannot be neglected for neither the electrons nor the ions. Typical examples
of resonance effects are plasma instabilities, the dissipation of waves as in collisionless
shocks, reconnection problems, or other microscale-based energy releases. In such cases,
fully self-consistent kinetic plasma simulations have to be carried out. Not only do they
contain all the plasma physics self-consistently, they also provide the necessary resolution
of spatial, temporal, angular and velocity information for the planned multi-spacecraft
diagnostics.

Self-consistent kinetic plasma simulations are based on the solution of a huge number
of differential equations, the Maxwell equations for the fields and the equations of motion
of many particles. All this information has to be stored, at least temporarily. The PIC
approach reduces the amount of equations and information to be stored because many
particles together are represented by a smaller number of “macro-particles”. Details of
the method can be found in the literature, [e.g.Birdsall and Langdon, 1991; Matsumoto
and Sato, 1985; Tajima, 1989]. But the number of macro-particles must still be large
enough to guarantee a sufficient statistical significance of the calculated plasma density
and currents. These days several millions can still can be handled by workstations. Tens
of millions of macro-particles, have to be dealt with by parallel computers. Even with
the best existing computers, however, problems like the simulation of time dependent,
statistically significant distribution functions in three dimensions, the treatment of large
boxes and realistic mass ratios (usually of the order ten or a hundred forMi/me) are still
unsolved.

Let us demonstrate opportunities and limitations of fully self-consistent particle sim-
ulations by presenting new results on the instability and decay dynamics of collisionless
current sheets. The latter has to do with the very cause for reconnection, like at substorm
onsets. It is also a typical example of the necessity of considering both ions and electrons
kinetically. In the simplest case of a laminar Harris-type current-sheet the theoretically
predicted decay is due to an absolutely growing tearing mode leading to two-dimensional
reconnection. Unfortunately, the predicted mode of current sheet decay was observed
neither at the Earth’s magnetopause nor in the magnetotail. Indeed, as it can be shown
theoretically, sheets containing a finite cross-sheet normal magnetic field component are
stable—at least in two dimensions. Two-dimensional fully self-consistent kinetic plasma
simulations have confirmed this result.

The situation changes completely in three spatial dimensions. Since the consequences
of three-dimensional non-local kinetic interactions cannot be considered analytically, one
has to carry out kinetic plasma simulations to reveal the properties of the three-dimensional
current sheet decay as well as typical signatures of this process for experimental multi-
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Figure 18.16: Three-dimensional Harris-type current sheet decay: perspective view at an
isodensity surface (lower panel) and cuts through its meridian (upper panel–y = 0.125)
and equatorial plane (z = 0.25) [afterBüchner and Kuska, 1996].
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Figure 18.17: Current instability, observed by four satellites.

spacecraft investigations. A kinetic approach is needed since particle properties of both
electrons and ions have to be considered. In our demonstration we use results obtained
with the GISMO code, a three-dimensional, electromagnetic, fully kinetic code which we
have developed especially for multi-spacecraft applications. As usual for PIC codes, since
one has to resolve the full electron dynamics, an artificial mass ratio must be set, other-
wise the time scales, to be resolved, would cover too many orders of magnitude. At the
moment the mass ratios applied reach up to 1:256. This allows the consideration both
of the electron-ion mass separation and of the role of heavy ions, e.g. of ionospheric O+

ions, 16 times heavier than protons. Figure18.16summarises the resulting structure of a
three-dimensional Harris current sheet decay. The upper two plots depict cross-sections
of the three-dimensional isodensity surfaces through the meridian and equatorial planes,
respectively, while the lower panel shows a three-dimensional perspective view of the iso-
surface of 2/3 of the maximum plasma density distribution. How does such structure arise?
An investigation by the same code has shown that in the case of thin current sheets, re-
connection in three dimensions is preceded by a bulk current instability. This instability
forms density structures depicted in Figure18.17. The figure shows an instantaneous iso-
density surface zoomed out of the current sheet centre region. Before reconnection starts,
the thin current sheet becomes modulated by a sausage-type bulk instability. The result-
ing density modulation, shown in the figure, propagates at about the ion drift speed in the
current direction. Such structure formation can be observed, obviously, only by means of
multi-satellite studies. We put four satellites, positioned at distances which correspond to
those of four Cluster spacecraft, in the figure. This way the figure demonstrates that multi-
spacecraft observations are able to recognise the moving current sheet density structure
which should precede magnetotail reconnection. The instability illustrated by Figure18.17
enables the growth of magnetic fields connecting the two half spaces above and below the
sheet. As soon as these fields have reached a certain strength fast reconnection starts. The
three-dimensional combination of sausage and reconnection instability develops at a much
faster rate rather than the two-dimensional tearing instability. In loop-like fields (with a
finite cross-sheet magnetic field component present from the very beginning), the creation
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Figure 18.18: Three-dimensional reconnection magnetic field, sheared due to Hall cur-
rents.

of reconnection magnetic fields across the sheet allows reconnection while the classical
tearing instability cannot develop at all.

However, the fully kinetic plasma simulations by GISMO have shown more features
of interest for multi-spacecraft studies which cannot be seen in MHD models. As a con-
sequence of the mass differences between electrons and ions they have revealed, e.g. that
reconnection is surrounded by a three-dimensional Hall current system. The latter causes
a sheared magnetic field structure shown in Figure18.18which can be used to identify
three-dimensional reconnection in the magnetospheric tail by multi-spacecraft magnetic
field measurements.

Other multi-spacecraft investigations which can be carried out by comparing with nu-
merical PIC-code simulation results, are the consequences of the presence of heavy ions
of ionospheric origin like O+ in the magnetosphere. These are the possible causal roles of
ionospheric ions in initiating at least subsequent substorms and storms and their heating
as indications of specific energisation processes.

Another feature, which was not explained on the basis of single spacecraft observations
alone and which requires self-consistent kinetic plasma simulations are so-called bursty
bulk flows (BBF) in the magnetotail. Fully kinetic GISMO simulations reveal that BBFs
may indicate just the transitional states between very localised and patchy acceleration and
larger scale coherent reconnection. While BBF would correspond to small scale transient
releases of energy from the overstressed magnetotail, the formation of plasmoids would
be indicative of a large scale instability on the scale of the whole tail.

Although the limitations of computer resources still strain the performance of kinetic
plasma simulations, kinetic codes will soon allow the self-consistent determination of
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spatial-temporal variations of velocity space distributions and the simulation of larger
boxes and mass ratios, realistic enough to be directly compared with multi-spacecraft mea-
surements.

Summary and Conclusion

With the coming era of multi-spacecraft measurements the analysis of satellite data
will become much more quantitative and discriminative as compared with single point
observations.

In order to deduce the potentially rich information contained in multi-spacecraft ob-
servations, however, numerical modelling and simulations have to be applied. Numerical
simulations are needed starting with the development and testing of specific analysis meth-
ods, all the more for the interpretation of real data. In the latter process, numerical models
will have to fill the gap between hypotheses and real data.

Nowadays one can chose among many existing numerical modelling and simulation
approaches in accordance with the physical problem one intends to solve. In this chapter
we have discussed opportunities, applicability and limitations of numerical modelling and
simulations for multi-spacecraft investigations giving examples based on the three main
approaches.

The test particle approach, discussed in Section18.2, is quite relevant for the multi-
spacecraft diagnostics of remote acceleration processes using energetic particles as trac-
ers. The non-adiabatic energetic particle dynamics in the inhomogeneous cosmic elec-
tromagnetic fields and plasma boundaries forms the basis for remote multi-spacecraft
diagnostics—resulting space and velocity space distributions can be well described in the
framework of a test particle approach (Section18.2.1). Utilising the results of numerical
test particle calculations, multi-spacecraft configurations can even form a dispersiometer
using the Earth’s magnetic field as a mass and energy spectrometer. Test particle calcu-
lations are a particularly valuable tool for the interpretation of mass-separating particle
spectra (Section18.2.2). A combination of the test particle approach with empirical or
large scale magnetohydrodynamic field models, providing spatially distributed and time
dependent fields, can be used to predict the propagation of energetic particles. The suc-
cess of test particle calculations depends on the quality of the field models used since
they are not calculated self-consistently. In most cases the test particle approach is not
applicable to the thermal plasma component.

Fluid approaches like magnetohydrodynamics (MHD), discussed in Section18.3, are
self-consistent, if transport coefficients are postulated, i.e. as long as kinetic details and
smaller scales can be neglected. Fluid modelling continues to be of worth to describe and
analyse slowly varying fields, flows, density, pressure and temperatures. As demonstrated
in Section18.3, MHD simulations are well suited to predict and analyse the evolution of
fields and macroscopic plasma parameters in space and time, for example, for low fre-
quency plasma waves, magnetopause transport scenarios, and the magnetospheric energy
release processes. In particular we have cited in Section18.3.1the successful identifica-
tion of wave modes using numerical MHD modelling, in Section18.3.2the abilities of
MHD models to predict discriminating signatures of surface waves generated by KHI, in
contrast to magnetopause reconnection as the two main candidates for the transport be-
tween solar wind and magnetosphere through the magnetopause. The prediction of typical
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multi-spacecraft signatures in plasma flows and magnetic field variations in a reconnecting
magnetospheric tail have been discussed in Section18.3.3.

The importance of kinetic plasma simulations for multi-spacecraft measurements has
been argued for in Section18.4. Only self-consistent kinetic plasma simulations can meet
the sophistication of advanced multi-spacecraft space plasma and particle diagnostics.
Only they contain all plasma phenomena and can provide complete information about
velocity space distributions for any given point and related to any moment of time dur-
ing the simulation run together with the fields, evolving with the particles and plasma.
The combination of multi-spacecraft observations and kinetic plasma simulations allows
the investigation of the real plasma dynamics below the spatio-temporal resolution of the
MHD approximation, of wave-particle resonance effects as well as of the consequences of
the mass difference between electrons and ions.

Since fully kinetic simulations consume considerable computer resources, one may
apply restricted kinetic codes for special applications. We have demonstrated utilities and
limitations of restricted kinetic simulations by citing codes, developed in the framework
of a European network program supporting numerical simulations for multi-spacecraft
missions in (Sections18.4.1-18.4.3). A first kind of restricted simulation uses known
numerical schemes. It targets operational codes to do physical simulations in the short
term. Restricted kinetic simulations of a second kind are more exploratory. They aim
at the design of new numerical schemes, especially tailored to investigate the physics of
boundary layers where the large, typical fluid scales, and the small, typically kinetic scales
interact (see Section18.4.3). They can be of use for comparison with multi-spacecraft
observations as well.

Finally, in Section18.4.4we have demonstrated how multi-spacecraft observations
in combination with self-consistent kinetic plasma simulations enable the understanding
of essentially kinetic plasma physical processes like, e.g., energy release in collisionless
space plasmas. As an example we have treated the dynamic evolution of current sheets, a
process, essentially governed by kinetic plasma effects. We have demonstrated the devel-
opment of a three-dimensional kinetic current instability and the transition to reconnection.
The mass separation causes a three-dimensional Hall current system around a reconnec-
tion region which can be used for multi-spacecraft diagnostics. Other effects which can
be described only by kinetic simulations, are the influence of heavy ions, the transition
from localised and patchy energy releases to larger scale coherent structures, the spatial
and temporal variation of distribution functions as fine indicators of the physical processes
in collisionless plasmas. In contrast to test particle calculations, kinetic simulations al-
low the derivation of the shape and spatial variation of the velocity space distribution of
all particles, not only of the energetic ones, in a self-consistent way. The limiting factor
of self-consistent kinetic plasma simulations is the necessity to resolve the Debye length
and the plasma period as well as the electron cyclotron period, whichever is smaller. The
propagation of electromagnetic waves between the grid points must be resolved as well.
Further, the number of particles followed is always limited. If one intends to simulate
realistic plasma regimes one has to limit the simulation box size. Global kinetic plasma
simulations are, therefore, in contrast to global MHD simulations, a totally future effort.

Summing up, the rich information contained in multi-spacecraft measurements, can
evidently be deduced only with the help of appropriate numerical modelling and simu-
lations efforts. For this purpose the different approaches have to be further developed
according to different aims, especially kinetic plasma simulations, to be available at the
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moment when multi-spacecraft observations become reality.

Acknowledgements

The DARA contribution to H. Wiechen’s work (contract 50 QN 9202) and the DFG contribution
to the development of GISMO by J.-P. Kuska (contract Bu 777 2-1) are gratefully acknowledged
as well as helpful contacts and discussions with the Cluster team, especially with A. Balogh, G.
Paschmann, G. Chanteur, P. W. Daly, S. J. Schwartz and B. Wilken.

Bibliography

Ambrosiano, J., Matthaeus, W. H., Goldstein, M. L., and Plarte, D., Test particle acceler-
ation in turbulent reconnecting magnetic fields,J. Geophys. Res., 93, 14 383, 1988.
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Büchner, J., Energetic particles in the magnetotail: Cluster and Regatta as a dispersiometer,
in Proceedings of the International Workshop on “Space Plasma Physics Investigations
by Cluster and Regatta”, Graz, Feb. 20–22,1990, ESA SP–306, p. 117, European Space
Agency, Paris, France, 1990.
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Notes

The use of endnotes and their markers in the text is described in thePrefaceto the elec-
tronic edition.

Note0.1 (page1)
For the electronic version, a new first paragraph and expanded list of references have been
added to the Introduction.

Note0.2 (page3)
In lieu of a chapter on turbulence, see the article by

Horbury, T. S., Cluster II analysis of turbulence using correlation functions, in
Proceedings of the Cluster-II Workshop Multiscale/Multipoint Plasma Mea-
surements, Imperial College, London, 22–24 September 1999, ESA SP-449,
pp. 89–97, European Space Agency, Paris, France, 2000,

a reprintof which is attached to this book.

Note1.1 (page29)
For actual calculation of the Morlet wavelet transform1.37 from a time series sampled
at finite sampling frequency, the integral can simply be replaced by its Riemann sum ap-
proximation. The result is still classified as a continuous wavelet transform (CWT), which
usually is evaluated at more discrete values ofτ andf than actually allowed by the time-
frequency resolution of Panel (d) in Figure1.2. There is at least one obvious reason for this
practice: plot routines for representing a function of two variables (τ andf ) often require
the function to be evaluated on a uniform rectangular grid (like Panels (a)–(c) rather than
(d) in Figure1.2). The term discrete wavelet transform (DWT) is usually reserved for the
coefficients describing the expansion of the time series in a set of discrete of functions ob-
tained by stretching and translation of the mother wavelet by factors of two, thus directly
corresponding to Panel (d) in Figure1.2 (Najmi, A.-H. and Sadowsky, J., The continuous
wavelet transform and variable resolution time-frequency analysis,Johns Hopkins APL
Technical Digest, 18, 134–139, 1997).

Note2.1 (page43)
Techniques for spectral and cross-correlation estimators based on irregularly sampled
and/or unsynchronised data do exist, but we do not consider them here. The calculation of
gradients, and also time series of mixed parameters (i.e., those calculated using data from
more than one time series) necessitate resampling the original data.

Note2.2 (page48)
In the paper edition, the words “increased” and “reduced” were interchanged in points 1
and 2, since they were meant to refer to the time resolution. An increased sample interval
corresponds to reduced time resolution, and vice versa. The words now correctly refer to
the sample interval.

Note6.1 (page138)
For a more recent example, see Fazakerley, A. and Szita, S., Multi-point science with the
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Cluster plasma electron data, inProceedings of the Cluster-II Workshop Multiscale/Multipoint
Plasma Measurements, Imperial College, London, 22–24 September 1999, ESA SP-449,
pp. 155–161, European Space Agency, Paris, France, 2000, especially the figure on page 159
of that work.

Note7.1 (page169)
In the paper edition, equation7.22, was erroneously given as:

f (r, v) = fo(r, v)

[
1 + v̂ · εo + Rg · ∇ ln fo(r, v)− V · v̂
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i.e., the last partial derivative on the first line was missing a ln function.

Note8.1 (page186)
Because of the assumption of one-dimensionality, i.e.,∂/∂x = 0 = ∂/∂y, Faraday’s law
becomes:

∂Bz/∂t = −(∇ × E)z = ∂Ex/∂y − ∂Ey/∂x = 0

Note8.2 (page188)
Note that the variance of the actual measured data set is used rather than the variance
estimate for an ensemble, of which the measured set is a member. Such an estimate would
be larger by the factorM/(M − 1) and so would the eigenvalues of the variance matrix.

Note8.3 (page198)
For MVAB with constraint〈B〉 · n̂ = 0 (Section8.2.6), the angular error (radians) for
rotation ofn̂ ≡ xmin in the plane perpendicular to〈B〉 is

±

{
λmaxλmin/(M − 1)(λmax − λmin)

2
}1/2

while for rotation aboutxmax it is

±

{
〈B · xmin)

2
〉/(M − 1)|〈B〉|

2
}1/2

xmax andxmin being the eigenvectors corresponding toλmax andλmin (in variance space,
the major and minor axes of the shaded ellipse in Figure8.5).

Note8.4 (page200)
Kawano and Higuchi [private communication] have pointed out that only the fluctuating
part (the noise) superimposed on the underlying signal but not the signal itself, should be
resampled in the bootstrap technique so that each simulated realisation of the data is a
sum of the resampled noise and the deterministic signal. However, forλ3 � λ2 (as is the
case for the event studied in this chapter), it can be shown that the bootstrap error estimate
for n̂, but not for〈B〉 · x3, remains accurate even if the noise is not separated from the
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signal. To properly obtain the uncertainty in〈B〉 · x3 under the conditionλ3 � λ2, it is
sufficient to resample only the fluctuations inBn, because the (unknown) fluctuations in
the systematically varying tangential field components produce a negligible effect. With
the resampling performed in this manner, the numerical value of the bootstrap uncertainty
in 〈B〉 ·x3 agrees with the analytical estimate in equation8.24(i.e.,±1.63 nT for the event
studied).

Note8.5 (page207)
A. V. Khrabrov [private communication] has shown that the MVAρv determination of̂n
andun can be formulated as an eigenvalue problem in a manner similar to that described by
Khrabrov and Sonnerup[1998] for the case of the electric field analysis, thereby avoiding
a cumbersome iterative process.

Khrabrov, A. V. and Sonnerup, B. U.̈O., Orientation and motion of current layers: Mini-
mization of the Faraday residue,Geophys. Res. Lett., 25, 2372–2376, 1998.

Note8.6 (page216)
The constraint〈B3〉 = 0 should be corrected to read〈B〉 · n̂ = 0. Note also that use of
this constraint fails to provide an improvedn̂ vector in the special case of a TD such that
λ2 ' λ3 and〈B2〉 ' 〈B3〉 ' 0.

Note9.1 (page227)
The data used to obtain numerical results in this chapter in fact exhibit small deviations
from the values in Table8.4. The latter data yieldV HT = (−122.6,−223.6, 75.6) km/s
instead. Other numerical results in this chapter also change slightly.

Note9.2 (page241)
For the data in Table8.4, the results are slightly different:

V HT0 = (−102.2,−204.3, 22.1) km/s

aHT = (−0.62,−0.53, 0.87) km/s2

Numerical values, given in the remainder of Section9.5, also change slightly.

Note9.3 (page246)
When the current sheet is close to being a tangential discontinuity, as is the case for the
event studied in this chapter, separation of the noise may not be necessary in determining
the bootstrap errors forV HT.

Note11.1(page296)
This issue has been discussed in detail by

Dunlop, M. W. and Woodward, T. I., Analysis of thick, non-linear boundaries
using the discontinuity analyser,Ann. Geophys., 17, 984–995, 1999.

An extractfrom this article is attached to this book.

Note14.1(page350)
The equations presented here may also be used to explain the simulation results of Sec-
tion 16.3. See for example
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Chanteur, G., Accuracy of field gradient estimations by Cluster: Explanation
of its dependency upon elongation and planarity of the tetrahedron, inPro-
ceedings of the Cluster-II Workshop Multiscale/Multipoint Plasma Measure-
ments, Imperial College, London, 22–24 September 1999, ESA SP-449, pp.
265–268, European Space Agency, Paris, France, 2000,

a reprintof which is attached to this book.

Note16.1(page405)
For a theoretical explanation of the simulation results, see thearticlereferred to in Note14.1.

Note16.2(page408)
In the paper edition, the percentages quoted on page408and in Figures16.7, 16.8, 16.11–
16.14were 10 times too high; i.e., they incorrectly ranged 0–100%, instead of 0–10%.

Note16.3(page408)
Note that this error is comparable to the relative uncertainty1r/r = 1%.

Note17.1(page432)
Errors affecting magnetic gradients result from both physical and geometrical uncertain-
ties by contrast with errors affecting plasma gradients. Section14.3 presents a general
discussion of these two contributions. Beyond this difference, it is worth underlining that
angular averaging leads to the appearance of the trace of the reciprocal tensor in the fol-
lowing equation17.35or 17.70and equation 14 in thearticle referred to in Note14.1.

Note17.2(page432)
Assuming that electric field measurement errors are also considerably larger than space-
craft position inaccuracies (see Section17.1.2), the error formulas for plasma moment
derivatives should be applicable to electric field spatial derivatives as well. This way, error
estimates of∇ · E and∇ × E can be obtained.

Note17.3(page434)
The “omni-directional” error equations of Section17.2.2, in particular17.35, 17.36, and
17.39, can be comprised into a single symbolic formula as

〈
(δDf )2

〉
=

f

3

{∑
α

|kα|
2

}
≡

f

3
Tr (K)

Here,Df denotes a derivative operator withf “degrees of freedom”, and the left-hand
side denotes the expectation value of the associated mean square error averaged over all
possible directions. Since the directional derivative acts in one direction only,f = 1
which results in equation17.35. The curl operator is effectively two-dimensional (recall
Stokes’ theorem), hencef = 2 which yields equation17.36. The div operator acts in
all three spatial dimensions, thusf = 3 which leads to equation17.39. K =

∑
α kαk

T
α

denotes the reciprocal tensor.
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Note17.4(page434)
In the paper edition, the reciprocal volumetric tensor was erroneously given as

R−1
=

3∑
α=0

kαk
T
α

i.e., the factor of 4 was missing. This also affects equation17.41and the last statement of
this section about the trace ofR−1.
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Analysis of thick, non-planar boundaries using the discontinuity analyser

M. W. Dunlop and T. I. Woodward

Space Physics Group, Physics Department, Imperial College of Science, Technology and Medicine, London, SW7 2BZ, UK.

ABSTRACT

The advent of missions comprised of phased arrays of spacecraft, with separation distances ranging down to at least meso-
scales, provides the scientific community with an opportunity to accurately analyse the spatial and temporal dependencies of
structures in space plasmas.  Exploitation of the multi-point data sets, giving vastly more information than in previous missions,
thereby allows unique study of their small scale physics.  It remains an outstanding problem, however, to understand in what
way comparative information across spacecraft is best built into any analysis of the combined data.  Different investigations
appear to demand different methods of data co-ordination.  Of the various multi-spacecraft data analysis techniques developed
to affect this exploitation, the so-called discontinuity analyser has been designed to investigate the macroscopic properties
(topology and motion) of boundaries, revealed by multi-spacecraft magnetometer data, where the possibility of at least
mesoscale structure is considered.  It has been found that the analysis of planar structures is more straightforward than the
analysis of non-planar boundaries, where the effects of topology and motion become interwoven in the data, and we argue here
that it becomes necessary to customise the analysis for non-planar events to the type of structure at hand. One issue central to
the discontinuity analyser, for instance, is the calculation of normal vectors to the structure. In the case of planar and ‘thin’
non-planar structures, the method of normal determination is well-defined, although subject to uncertainties arising from
unwanted signatures.  In the case of ‘thick’, non-planar structures, however, the method of determination becomes particularly
sensitive to the type of physical sampling that is present. It is the purpose of this article to firstly review the discontinuity
analyser technique and secondly, to discuss the analysis of the normals to thick non-planar structures detected in magnetometer
data.

[Reprinted from Ann. Geophysicae, 17, 984-995 (1999)]
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1. Introduction

Knowledge of the motion and size of structures in space plasmas provides vital clues as to their physics (such as
composition, structure, relationship to the local and/or global plasma conditions).  For example, the determination of motional
parameters for a non-dispersive structure permits the separation of spatial and temporal variations, which in situ produce mixed
effects in time series data signatures.  Single spacecraft measurements are generally insufficient for the unambiguous separation
of spatial and temporal dependencies, however, except under rather extraordinary circumstances [e.g. Fairfield and Feldman,
1975].  Measurements made by two or more satellites, which happen to be appropriately or fortuitously positioned, can help to
unravel this mixed spatio-temporal behaviour, often through simple timing studies.  Indeed several unplanned conjunctions of
spacecraft, as well as planned, dual satellite missions (such as the ISEE and AMPTE missions) have resulted in numerous
studies whose important conclusions hinge on establishing such knowledge of the motion of some underlying structure. For
example, Greenstadt and co-workers used multi-spacecraft data sets to analyse the terrestrial bow shock and propose formation
mechanisms based on the thicknesses they determined [e.g. Greenstadt et al., 1975 and Morse and Greenstadt, 1976]. During
the ISEE-1 and –2 era, dual spacecraft data sets were again used to separate both spatial and temporal behaviour [e.g. Russell
and Greenstadt, 1979; Bame et al., 1979; Russell et al., 1982 and Mellot and Greenstadt, 1984].  Non-planar boundary surface
topology, thickness of the boundary layer, and motion has been of interest to investigators in, for example, the solar wind where
interplanetary shocks have been studied [e.g. Chao and Lepping, 1974; and Lepping and Chao, 1976].  Another topic where
such macroscopic properties have been sought are magnetopause surface waves: for example, Song et al. [1988] used
simultaneous data from the closely separated ISEE-1 and –2 spacecraft to determine the amplitude, wavelength and period of
these waves.

A major objective of the European Space Agency’s four spacecraft Cluster mission is to affect this spatio-temporal
separation on a routine basis and on spatial scales down to, at least, mesoscale variations.  The above studies used data
measured during the fortuitous conjunctions of several satellites, separated by distances large compared to the typical Cluster
separations [Dunlop et al., 1990].  With the mission a reality again for launch in the year 2000, further investigation in this area
is of paramount significance to the fruitful exploitation of what would be a unique data set. Clearly, such a phased array of at
least four spacecraft is generally sufficient to resolve 3-D information. Nevertheless, properties of highly time dependant
structures, or those which vary on spatial scales which are small compared to the array size, still present obvious problems for
modeling, empirically, observed behaviour.  Under certain assumptions, for example those of stationarity or comparative spatial
scales, some particular analysis may be possible.  But a fundamental problem always exists: how should the comparative
information between spacecraft be built into any analysis?  The determination of different properties demands different
methods of co-ordination [Dunlop et al. 1988]; often having a large overlap between them, with parameters in common.  In
terms of boundary analysis, although there is an apparent distinction between macroscopic parameters (such as motion,
orientation and form) and the boundary structure itself (as sampled individually by each spacecraft), it isn’t always a priori
obvious how spacecraft differences are to be combined with time series information, except where the boundary is planar or
‘thin’ [Dunlop and Woodward, 1998].  Both sources of information may in principle provide independent knowledge of the
boundary normals, for instance, but depend on these key boundary properties.  The effect of different physical structure in the
boundary can therefore provide a context for the time series analysis and needs to be known at some level of detail, depending
upon behaviour.  The general problem posed in extending the analysis to multi-spacecraft data in curved geometry is how to
combine the information self-consistently when the single spacecraft assumptions on the macroscopic behaviour are relaxed.

Dunlop and Woodward [1998] describe in detail a multi-spacecraft magnetometer data analysis technique, which they call
the Discontinuity Analyser (DA), designed to determine the structure, orientation and motion of boundaries using calculated
normal vectors at each spacecraft to the structure as well as the associated times of encounter with the structure. Their
technique is focused on the use of magnetometer data only, primarily for data resolution considerations. The method is
applicable to thin, non-dispersive, simple planar and non-planar structures detected by a small array of closely separated
spacecraft. Their requirement of “thin” structures, where the thickness of the structure is far less than its local radius of
curvature, is fundamental to the design of their method, since a unique normal direction at any point on a curved surface is only
well-defined when the structure is thin.  The requirement is not so critical where the boundary is planar, however.  Clearly, not
all structures detected in space may fit this requirement on their thickness.  Nevertheless, this problem is generally present in
other treatments of boundaries, and relates to the issue of how to deal with comparative information, raised above.

The purpose of this paper is twofold: firstly, to summarize, in a practical way, the discontinuity analyser; and secondly, to
discuss the issues for such analysis of thick, non-planar boundaries.  A pivotal concept of the non-planar technique is the degree
of certainty one has in the normal vectors determined at each spacecraft. The subject of normal determination in the presence of
thick boundaries is the topic of the next section, where we discuss the variation of the normal determined using minimum
variance analysis [Sonnerup and Cahill, 1967] for a curved, thick, 2-D model boundary under various conditions of sampling,
namely data interval length, symmetry about the centre of the event, data resolution and spacecraft trajectory. A similar theme
of analysis, appropriate to real spacecraft data, is presented for a barium release recorded in the magnetometer data of the
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AMPTE-IRM/UKS spacecraft pair in section 3, confirming the model analysis. In the last section, we conclude with a
discussion of the DA and the ramifications on it of the thick boundary normal analysis.

2. Thick, non-planar boundaries

In the presence of curved field geometry, normal determination is a subtle issue, particularly when the boundary is not thin.
Systematic uncertainties on the normals arise, and these disrupt the delicate balance of information indicated in Table I. This
then questions the validity of performing a surface analysis, since uncertainties in the normals imply uncertainties in both the
topology and the acceleration of the structure. In contrast to the discrete methodology, Dunlop and Woodward [1998]
introduced the concept of the combined approach which recognises that independent determination of the normals can be
compromised. This methodology is based on the fully self-consistent determination of the surface topology and motion of the
structure past the spacecraft array, cast in the framework of an inversion problem. They also discussed a compromise
methodology between that of the discrete analysis and that of the combined approach. In this they suggested the explicit use of
single-spacecraft determined normals weighted by confidence factors. In the following section we discuss normal determination
in the presence of thick, non-planar boundaries, first presenting the conceptual scenario and then illustrating our ideas with an
analysis of a model 2-D structure. This is followed up in section 3 with the analysis of an event recorded in the dual spacecraft
AMPTE-IRM/UKS mission.

2.1. Normal determination

In single spacecraft analysis, normal determination is affected by the direction of motion through the boundary of the
spacecraft (particularly if the curvature is high) as well as the nature of the data interval used in the normal analysis (Figure 3).
Strong curvature arises when the thickness of the boundary surface is not negligible in comparison to the radius of curvature of
the surface. In this case normal determination becomes difficult, as a result of the need to identify a finite data interval (which
maps to a distance along the motion) through the boundary in order to perform a boundary normal analysis. Unless this distance
is small on the scale of the curvature, the field structure will not wholly represent the boundary orientation local to the crossing,
thus affecting the implied normal direction (as indicated in Figure 3). Boundary normal estimates will produce some average
normal which will be sensitive to the interval chosen.

B  field line

discontinuity surface

spacecraft trajectory

t2 t1

field normal

Figure 3:  Diagrammatic illustration of the effect of thick, curved boundaries on normal determination.
Shown is a circular discontinuity (thick curve), with two spacecraft trajectories (t1 and t2) and normal
vectors (short thick arrows) to the field lines (thin curves with arrowheads indicating field direction) along
each trajectory. Taken from Dunlop and Woodward [1998].

The individual normals are therefore dependent on the spacecraft trajectory, with the dependence being related to the a
priori unknown form of the surface. Any result of surface fitting cannot therefore be fully de-coupled from the determination of
normals. This raises the question of whether or not a full curvature analysis can be done quantitatively unless curvature is not
significant on the scale of the boundary layer.  Nevertheless, normals determined at two spacecraft, which deviate by a direction
well in excess of that implied by the uncertainties, do indicate curved field geometry.  For real events, however, it is not known,
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a priori, what weighting should be given to the errors in the individual normals, in order to then apply some optimisation of the
surface fit.   One can either attempt to refine the uncertainties using the implied curvature (iterative process) and proceed with
the discrete analysis, or feed the data into the combined methodology, knowing that real curvature exists. We explore the
applicability of the former route below.

2.2. Data analysis

In order to quantitatively illustrate the variation of the normal along sampling trajectories through curved boundaries, we
make use of a simple 2-D model, performing several fly-throughs or sampling trajectories and analyse the data thus recorded in
various ways. The 2-D model we use is shown in the upper panel of Figure 4, together with four sampling trajectories labelled
tx=0,1,2,8. In the lower panel, typical magnetic field data signatures for the samplings are indicated.

We highlight the effects of data interval length, symmetry about the centre of the boundary, data resolution and spacecraft
trajectory on the calculation of boundary normals using MVA (hereafter referred to as MVA normals). Since we have defined a
simple model, theoretical normals are readily calculated in order to assess the accuracy of the MVA normals. Similar analyses
have also been carried out with other curved 2-D models, obtaining qualitatively similar results.

Figure 4 illustrates the relative positions of 4 sampling trajectories across a 2-D circular discontinuity surface with a radius
of curvature of 10 units (part a), as well as a typical data signature (part b).  The first trajectory tx=0 traverses along the y-axis,
while the others, tx=1,2,8, traverse parallel to the y-axis along the appropriate x-value. We shall compare and contrast the above-
described effects on the MVA normals using these 4 trajectories. Firstly, consider the 4 trajectories in relation to the point
symmetry of this particular model. Trajectory tx=0 passes along a radial direction, while the other trajectories are increasingly
inclined to this characteristic direction.  Three characteristic runs were performed: one, where the data interval used is nested
about the crossing, successively increasing its size; one, where the interval is shifted relative to the crossing time, successively
changing the ratio of data intervals before and after the crossing, and another, where the effects of data resolution were
explored.

Figure 5, which is a plot of the angular deviation of the MVA normals from the theoretical ones versus the relative length
of the data interval over which the MVA normal is calculated, illustrates the effect of nesting.  Note that we do not calculate the
sense, clockwise or anti-clockwise, of the angular deviations. It is seen that the effect is more marked the greater the inclination
of the trajectory is to the characteristic direction, is greater for longer data intervals, and can be of the order of several degrees.
As the interval approaches a thin sheath around the centre of the discontinuity, or if tx=0 is chosen, the effect is minimal. This is
because for longer and more inclined trajectories the spacecraft samples magnetic fields of very different directions over the
analysis interval, and hence of different normal directions. However, there is a slight anomaly from zero deviation for all
trajectories, except tx=0, at the smallest data interval, as well as a minimum deviation which is not at the shortest interval. This is
explained below when we consider the asymmetry of the data interval about the discontinuity centre.

y

x

surface of
discontinuity

(0,R)

(0,0)

tx=0 tx=2
tx=1

tx=8

(a)
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(b)
Figure 4: Schematic drawing of sampling trajectories through a circular discontinuity model and the
associated data (time and magnetic field values in arbitrary units). The magnetic field model is defined as
follows:

zb ˆ×∇= ϕ   ; 
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where 2σ is the boundary thickness, B0l is a constant with units of length times magnetic field and R is the
radius of curvature of the discontinuity surface. The field line topology is indicated in Figure 3. In this
model the strength of the field decreases to zero on approaching the boundary from one side, before
flipping direction and increasing its strength on the other side.

Figure 5: Sensitivity of MVA analysis to the model shown in Figure 5 in terms of interval nesting.



6

Figure 6: Sensitivity of MVA analysis to the model shown in Figure 5 in terms of interval asymmetry.

In order to study the effect of data interval asymmetry, we sample along all the trajectories, tx=0,1,2,8, with some resolution
(e.g. 1000 points for the whole data interval). Then taking a fixed length of data (e.g. 640 points) shorter than the whole interval
sampled and containing the centre of the discontinuity somewhere inside, we determine the asymmetry of the chosen sub-
interval and perform MVA on it. This is repeated for several asymmetries and for each trajectory. We define an asymmetry
index of the selected data interval to be the ratio of the number of data points recorded before the centre of the discontinuity is
encountered to that measured after encounter, with all these points within in the chosen interval length (e.g. 640 points). Thus
symmetry indices can only be positive. Unit symmetry index implies that there are an equal number of points on either side of
the discontinuity centre: i.e. a perfectly symmetric interval.

Figure 6 shows the dependence of the deviation of the MVA normal with data interval symmetry index. Again, the effect is
greater the higher the inclination of the trajectory. For highly inclined trajectories, there is more than an order of magnitude
change in the deviations of the MVA normals as the asymmetry of the data interval is varied. Furthermore, the minimum
deviations occur for non-unitary symmetry indices (i.e. asymmetric data intervals) and this minimum varies according to the
inclination of the trajectory. The minimum occurs at higher symmetry indices (i.e. more asymmetric data intervals) for lower
trajectory inclinations. Since the curvature of the field lines is tighter after the discontinuity centre is encountered compared to
the situation prior to encounter, the corresponding field normal directions are (monotonically) changing faster after rather than
before encounter. Since MVA finds some average normal over the sampled data interval, you would not expect to see zero
deviation for a perfectly symmetric interval, and moreover would expect minimal/zero deviation to occur for symmetry indices
greater than unity.

The effects of data resolution on the calculation of discontinuity normals is illustrated in Figure 7, using one analysis. It
shows that the deviation is of the order of a few degrees.  Intuitively we expect to find that MVA normals are of higher
accuracy the greater the data resolution, as in Figure 7. However, this is not always the case and the situation is not as clear-cut
as the effects described above. We leave this to a more detailed later study. The main point we wish to make here is that data
resolution does have an affect on MVA normal determination and is of the order of a few degrees.
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Figure 7: Sensitivity of MVA analysis to the model shown in Figure 5 in terms of data resolution.

It isn’t surprising, of course, that MVA provides normal estimates in curved geometry which deviate from the geometric
normals indicated by the models.  We explore the effect here to investigate the quantitative biasing on the normals in the sense
of their use within the discrete methodology above; i.e. as a single spacecraft analysis for the surface normal n, feeding into the
equation of motion.  This systematic error depends on the model used, of course, but the trends show that the significance of
this error with respect to the overall deviations of the normals between spacecraft can be optimised by choice of trajectory,
given the data sampling achieved.  The sampling depends upon the combination of the minimum nesting interval applied and
the data resolution with respect to the characteristic spatial scale of the structure.  In practice, the sampling achieved depends
upon the thin boundary properties of an event.  The trajectory selected then sets the spacecraft separation scale with respect to
the characteristic scale of the model.

Clearly, different events will be sampled in different ways in situ so that for some the systematic error will be
comparatively large and for others comparatively small.  In the latter case, the discrete methodology may be used for such
selected events to estimate both lowest order curvature and acceleration terms.  As indicated by the flow in Figure 2, the
rejection of qualitatively unsuitable events may be done if the normal analysis shows unstable results (with respect to nesting or
shifted intervals) in the presence of significant deviations between the spacecraft normals.

3. Analysis of a real event

Figure 8 shows a real event measured by the combined AMPTE IRM (Figure 8(a)) and UKS (Figure 8(b)) spacecraft during
a solar wind Barium release (see papers in Nature, 320, 700-726, 1986), plotted in GSE co-ordinates.  Both spacecraft were
thought to have sampled an intense plasma cloud boundary at about the time (within a few seconds) indicated by the solid
vertical lines on the |B| plots in the upper panels.  Because of cloud expansion following the release, this boundary should be
strongly curved between the two spacecraft and this appears to be confirmed by boundary normals obtained from each data set.
The sense of the curvature implied by the normals, which were obtained using a standard run, is described in Dunlop et al.
[1996] and is consistent with an expanding cloud where the effective tilt between the normal directions is ~30-40 (deg).
Clearly, this event would be unsuitable for the discrete analysis in the manner discussed above in section 2.2.
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(a)                                                                                                     (b)
Figure 8:  Example of a curved discontinuity from the AMPTE-UKS/IRM solar wind Barium release, as discussed in the text.

We therefore expect that MVA will return a biased normal estimate, which will be sensitive to the actual sampling path of
the spacecraft, as discussed above.  To investigate the sensitivity of the MVA normals, a similar set of runs has been performed,
successively adjusting the data intervals used to determine them.  For this real event, covered only by two spacecraft, we clearly
only have two fixed trajectories, and have fixed data resolution.  We do not have the equivalent of Figure 7, therefore, but can
analyse in the spirit of Figures 5 and 6.  Effectively, the IRM spacecraft corresponds to the model sampling trajectory, tx=0,
being in the centre of the cloud.  The UKS spacecraft corresponds to an intermediate trajectory, inclined at ~30-40 (deg) to the
boundary, traversing the outer cloud region before exiting.  The data signature, however, is complicated by properties other
than the simple model described above.  In particular, the magnetic signature changes character over the extent of the cloud,
and between the two spacecraft (since they traverse different regions).  Also, upstream conditions (times following the exit
time) are obviously not static and contain clear wave power at characteristic frequencies.  Thus, we cannot test the quantitative
comparison between the trajectories (spacecraft), but Figure 9 does show the sensitivity to changes in the MVA interval
extremely well.

The two vertical panels in Figure 9(a) show the equivalent trends to those in Figure 5 for the two spacecraft separately,
where the analysis interval has been increased in steps, from 20 seconds up to one and a half minutes, centred on 12:34:20 UT.
Both panels show initially, the steady increase in deviation of the boundary normal, here defined as the angle of successive
estimates with respect to the inner interval.  At some point the trend breaks down, since other properties are being sampled well
within or upstream of the cloud and its structure is likely to be still changing in time. The panels in Figure 9(b) are perhaps
more significant, since they show the equivalent trends to those in Figure 6, where an analysis interval of 2 minutes (for UKS),
and 1 minute (for IRM), has been shifted in steps of 10 seconds about 12:34:20 UT.  The interval asymmetry has been defined
as the ratio of inner to outer portions of the time interval, as for Figure 6. Clearly, both spacecraft, but particularly UKS, show
deviations (defined with respect to the symmetric interval) which have closely similar character to those in Figure 6.
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(a)                                                                                                                       (b)
Figure 9: Sensitivity of MVA analysis to the event shown in Figure 9, (a) in terms of nesting and (b) in terms of asymmetry.

4. Discussion and conclusion

In this paper we have presented a summary of the DA technique, based on magnetometer data.  This seeks to characterise
the topological structure and motion of thin, non-dispersive structures present in space magneto-plasmas.   It assumes in situ
detection by a small array (up to four) of closely separated spacecraft.  The methodology underlying the technique here, namely
the discrete, sequential approach, first determines topological parameters, defined with respect to boundary normals,
independently before these are fed into the motional equations.  The planar form of the DA, which is based on the discrete
analysis framework, relies on the independent determination of boundary normals to give a direct demonstration of planarity,
and this then sets the context for the subsequent motional analysis.  We point out that in the case of non-planar structures,
topological and motional properties compete for: (i) their representation in the data, and (ii) the nature of the analysis that can
be performed.  Techniques such as those presented by Chao and Lepping [1974] and Russell et al. [1983] rely on an
assumption of planarity, rather than its demonstration. Mottez and Chanteur [1994] assume constant velocity and relax the
planarity assumption, relying on accurate single spacecraft-determined normal directions, in their analysis.  Thus, these
techniques are only mutually consistent with their assumptions; but these assumptions may not be consistent with the data,
leading to the determination of an anomalous motion, on the one hand, or an anomalous curvature on the other.

The non-planar form of the DA therefore represents the more intricate analysis problem, with assumptions on topology
affecting the motional determination and vice versa. The discrete methodology orders the analysis sequentially, but under the
requirement that boundary normals can be accurately obtained (from individual, time series analysis).  We can ask, however,
how the individual normal directions are adjusted to take account of a surface fitting procedure: the above implies that equal
weight is given to each.  Uncertainties arising from normal determinations in particular, can therefore be a major contributor to
the procedural dilemma for establishing all macroscopic parameters, since it isn’t obvious that normal directions, so
determined, are unbiased in curved geometry.  Errors are likely to be systematic, especially in the context of boundaries that are
not thin.  A combined approach has been outlined by Dunlop and Woodward [1998], which attempts to deal with this dilemma,
in which all surface and motional parameters are determined simultaneously: some weighted adjustment of the surface away
from the strict orientations of the boundary normals is allowed in order to optimise for all parameters.  Nevertheless, a data
regime is applicable for the DA technique, as conceived, in which boundary structure can be described as approximately thin.
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In view of the importance of this issue, we have presented an analysis of the variation of normals (determined using
minimum variance analysis) to a curved 2-D model boundary from actual model normals under various scenarios of sampling.
The model topologically orders the field far from its centre and is hence ‘thick’.  We found that the greatest deviations arose for
asymmetry of the analysis data interval about the centre of the event, with higher deviations occurring for trajectories highly
inclined to the characteristic directions of the model.  Smaller deviations were observed for the size of the data interval and data
resolution, and again the greater the inclination of the sampling trajectory to the characteristic directions of the model the
greater the deviations were in both cases.  Analysis of barium release data from the AMPTE-IRM/UKS spacecraft provided a
real event demonstration of the trends found with the model event, indicating significant deviations of the normals from the
average normal of up to 90 deg., and confirming the model analysis. Thus, we conclude that normal determination in curved
geometries is open to error, and furthermore cannot be completely de-coupled from the determination of the surface topology.
One could attempt to refine the uncertainties using the implied curvature (iterative process) and proceed with the discrete
analysis methodology.  Conversely the combined methodology may be adopted, using confidence factors implied by analysis
similar to that described here.  Furthermore, a possible event selection test, to identify ‘thin’ boundaries by combining the
individual time series analyses, has been conjectured by Dunlop and Woodward [1998].

In any multi-spacecraft analysis, it is generally important to understand in what way comparative information across
spacecraft is best built into any analysis of the combined data. Although for the DA, there is at first sight an apparently clear
separation of the handling of multi-point and time series information, in general, different investigations appear to demand
different methods of data co-ordination. The use of other instrument data, of course, can potentially add information on
structure, such as independent determination of boundary motion in the case of electric field measurements, or via
DeHoffmann-Teller analysis using plasma data.  This must be carefully assessed, however, since with data restrictions on
resolution and quality of these other data sets, a different analysis methodology may required and such additional measurements
are most easily added as independent information on the event.  The same is true of analysis using more than four spacecraft
(the minimum for direct 3-D spatial information), where there will be at least a play off between use of the redundant
information to improve spatial accuracy or establish temporal evolution.
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ABSTRACT

The accuracy of estimations of fields gradients by CLUS-
TER will be influenced by the aspect of the tetrahe-
dron formed by the four spacecraft. This key problem
for the mission has been investigated by means of nu-
merical simulations and theoretical results have been de-
rived within the framework of the barycentric formal-
ism. The present study provides a link between theo-
retical and simulation approaches under simplifying as-
sumptions about the covariance matrices of the position
vectors of spacecraft and the covariance matrices of the
measured field components.

1. INTRODUCTION

The CLUSTER II mission with its four identical sets
of scientific instruments will for the first time allow
the unambiguous estimation of fields gradients through
the simultaneous measurement of physical fields in four
distinct points. Since the beginning of the CLUSTER
project different methods have been designed for esti-
mating fields gradients: the early used methods of fi-
nite differences, poorly adapted to irregular tetrahedra,
were soon replaced by integral theorems (for example
Ampere’s and Gauss theorems) to estimate∇ × B and
∇ · B (Dunlop et al. 1990; Robert & Roux 1990). Later
Chanteur & Mottez (1993) introduced the method of
barycentric coordinates and gave an estimator of the gra-
dient of a vector field. A detailed presentation of this ap-
proach and its applications is given by Chanteur (1998).
Harvey (1998) introduced a method of least-squares with
the possibility to enforce the solenoidal constraint in the
case of the magnetic field. Least-squares and barycen-
tric estimations of magnetic gradients along simulated
realistic CLUSTER orbits inside a Tsyganenko magne-
tospheric model have been presented in Chanteur & Har-
vey (1998). All these approaches, except for the con-
strained least-squares, rely upon a linear interpolation of
fields through the cluster of spacecraft, nevertheless the

method of barycentric coordinates is the only one that
provides simple analytical formulas and allows a theo-
retical investigation of errors affecting the estimations of
fields gradients for any configuration of the cluster.

Vogt & Paschmann (1998) have examined the accuracy
of the derivatives of plasma moments making use of fi-
nite differences when the four spacecraft form an orthog-
onal frame and barycentric coordinates in the general
case. A general discussion of the different types of er-
rors affecting the estimations of fields gradients is given
by Chanteur (1998). Truncature errors originating from
the linear interpolation of the field inbetween spacecraft
essentially depend upon the field configuration sampled
by the cluster: they are discussed in Chanteur (1998) for
a thick and plane current sheet, and in Chanteur & Harvey
(1998) for a dipolar field. Physical errors originate in the
uncertainty affecting the field measurements meanwhile
geometrical errors are due the uncertainty on spaceraft
positions in space. Numerical simulations (Robert et al.
1998) demonstrated that the accuracy of current density
estimations made from clusters located inside simple cur-
rent tubes (i.e. for whichJ is monodirectional) is a func-
tion of the elongation and planarity of the cluster. The
aim of the present contribution is to demonstrate that sim-
ulation results can be explained on the basis of theoreti-
cal formula given by Chanteur (1998). The main results
concerning errors and gradients estimations are briefly re-
viewed in the next section. Section 3 is devoted to a sim-
plification of the theoretical formulas which leads to the
explicit dependency of physical and geometrical errors
upon size, elongation and planarity of the cluster. Sec-
tion 4 presents an application to a force-free current tube
with twisted field lines.

2. ESTIMATIONS OF GRADIENTS AND THEIR
ERRORS

For the sake of completeness let us begin with a short
account of some of the results demonstrated in sections
14.2 and 14.3 of Chanteur (1998) that will be herafter
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used. The key objects in the barycentric approach are
the reciprocal vectors of the tetrahedron formed by the
four spacecraft. Figure 1 shows the cluster of spacecraft
and emphasizes the geometrical meaning of the recipro-
cal vectors. The reciprocal vectork4 is given by:

k4 =
r12 × r13

r14.(r12 × r13)
(1)

S 3

S 2

S 1

K4

S4

µ4

Figure 1. Tetrahedron formed by four spacecraft. The re-
ciprocal vectork4, defined by formula 1, points towards
vertexS4 and is the gradient of the barycentric coordi-
nateµ4 which is constant on any plane parallel to the
faceS1S2S3.

The linear estimator of the gradient of a vector fieldA is
the following tensor built from the reciprocal vectors and
the field vectors measured by the four spacecraft:

G =

4∑
α=1

kα A t
α (2)

The covariance of the(i, j) and (m, n) components of
G writes, accordingly to formula (14.30) in Chanteur
(1998):

〈δGij δGmn〉 = (3)
4∑
α=1

4∑
β=1

(
〈δAαi δAβm〉 kαjkβn + 〈δkαj δkβn〉AαiAβm

)

The general expression for the covariance of components
i andj of the reciprocal vectorskα andkβ is:

〈δkαi δkβj 〉 =

4∑
γ=1

4∑
ν=1

k t
α 〈δrγ δr tν 〉 kβ kγ ikνj (4)

When the position vectors of the four spacecraft are un-
correlated and when covariance matrices of the four po-
sition vectors are identical we can write by introducing
Kronecker symbolsδγ,ν :

〈δrγ δr tν 〉 = δγ,ν 〈δr δr t 〉 (5)

which leads to a simplified form of equation 4:

〈δkαi δkβj 〉 = k t
α 〈δr δr t 〉 kβ Kij (6)

where theKij ’s are the components of the reciprocal ten-
sor defined by:

K =

4∑
ν=1

kνk
t
ν (7)

3. DEPENDENCY OF PHYSICAL AND
GEOMETRICAL ERRORS UPON ELONGATION

AND PLANARITY

3.1. Simplified formulas for covariances

In default of information about the covariance tensor of
position vectors we assume that:

〈δr δr t 〉 = (1r)2 I (8)

where I is the unit tensor and1r is the uncertainty on
spacecraft positions and will be chosen equal to 1% of
the size of the tetrahedron for the numerical applications.
Terms corresponding to geometrical errors then factorize
and equation 3 can be written:

〈δGij δGmn〉 = (9)
4∑
α=1

4∑
β=1

〈δAαi δAβm〉 kαjkβn + (1r)2 ∇Ai ·∇AmKjn

where equation 2 has been used to notice that for negligi-
ble truncation errors:

∇Ai =

4∑
α=1

kα Aαi

For the sake of simplicity we reduce the physical errors
in the same way we did for the geometrical errors,i.e. we
assume that:

〈δAαi δAβm〉 = (1A)2 δα,βδi,m (10)

where1A is the uncertainty of the field measurement.
This latter hypothesis on the covariance matrix of the
measured vectors should be questioned for a given phys-
ical field by taking into account the details of the exper-
iment designed for this measure. Our simple hypothesis
leads to the following final expression for the covariances
of the components ofG, the barycentric estimator of ten-
sor∇A:
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〈δGij δGmn〉 = (11)(
(1A)2 δi,m + (1r)2 ∇Ai · ∇Am

)
Kjn

It is worth noticing that, under the simplifying assump-
tions we have made, the physical and geometrical con-
tributions to the covariances of the gradient depend upon
the geometry of the cluster only through the components
of the reciprocal tensor. A theoretical explanation of the
simulation results of Robert et al. (1998) will be derived
from this simple result.

3.2. Averaging over equiprobable eigenbases

A tensorK with eigenvalues(λ1, λ2, λ3) and orthonor-
mal eigenvectors(e1, e2, e3) can be represented by the
matrix:

K = M Diag(λ1, λ2, λ3) M
t (12)

whereM is the 3x3 matrix of which the k-th column is
equal toek and Diag(λ1, λ2, λ3) is the diagonal matrix
with elements(λ1, λ2, λ3). Specifying the orientation of
the eigenbasis in space by its Euler angles(ψ, θ, φ) al-
lows to compute the average ofK for given probability
distributions of the Euler angles: details will be published
elsewhere. When all orientations of the eigenbasis are
equiprobable the expectationK of K over the orienta-
tions is given by:

K =
1

3
Trace(K) Diag(1, 1, 1) (13)

For given sizea, elongatione and planarityp, the eigen-
values of the reciprocal tensorK are equal to:

a−2 , a−2(1 − e)−2 , a−2(1 − e)−2(1 − p)−2

and the average of equation 11 over equiprobable orien-
tations gives:

〈δGij δGmn〉 = (14)(
(1A)2 δi,m + (1r)2 ∇Ai · ∇Am

) g(e, p)
a2

δj,n

Figure 2 shows the contour levels of the function

g(e, p) =
a2

3 Trace(K)which reproduces the behaviour of
1J(e, p)/J illustrated by Figures 16.7, 16.11 and 16.12
of Robert et al. (1998). This similarity will be explicited
in the next section.

A factor equal to the trace of the reciprocal tensor also
appears in the angular averaged error affecting the di-
rectional derivative of a scalar quantity related to plasma
measurements; see equation 17.35 or 17.70 of Vogt &
Paschmann (1998).

Figure 2. Isovalues ofg(e, p) =
a2

3 Trace(K) versus
elongation e and planarity p of the tetrahedron.

4. RESULTS FOR CURRENT TUBES

4.1. Model of a force-free current tube

A force-free magnetic field with a structure functionα(r)
is a solution of the following equations:

∇ × B = α(r) B and ∇ · B = 0

In cylindrical coordinates(r, φ, z) axisymmetric and ax-
ially invariant solutions have a zero radial component
meanwhile the angular and axial componentsBφ andBz
are solutions of the coupled equations with the axial con-
ditionsBφ(0) = 0 andBz(0) = B0:

dBφ

dr
= −

Bφ

r
+ α(r)Bz and

dBz

dr
= −α(r)Bφ

Figure 3. Chosen structure function which determines the
force-free field used in this study:r1 = 3. andr2 = 7.

If for r < r1, α(r) = α0 (constant) then forr < r1
the solution is(Bφ, Bz) = B0 (J1(α0r), J0(α0r)), where
J0 and J1 are Bessel functions of order zero and one.
If for r > r2, α(r) = 0 then for r > r2 the solu-
tion is determined by the equationsBz(r) = Bz(r2) and
r Bφ(r) = r2Bφ(r2). A numerical integration is usually
required to determine the solution for a given structure
functionα(r). Figure 4 presents the radial profiles of the



4

magnetic components for the structure function specified
by Fig. 3. The field lines of the present model have both
curvature and twist in contrast with previously used mod-
els of current tubes.

Figure 4. Angular and axial components of the force-
free magnetic field determined by the structure function
illustrated by Fig. 3.

4.2. Covariances of the components ofJ

Making use of equation 12 we construct a statiscal en-
semble of reciprocal tensors having specified (a,e,p) and
equiprobable orientations (16000 in this study) to de-
termine the probability distribution function of the axial
component of the current density estimated by a cluster
located on the edge of the force-free current tube pre-
sented in Section 4.1: the result is displayed on Figure 5.
The maximal value of1Jz/ |Jz| (see definition below)
is equal to 0.15 and the most probable value is equal
to 0.08 for (a, e, p) = (1.,0.8, 0.5). A detailed study
of these probability distributions will be published later.
The angular averaged covariance of the estimate ofJz is
expressed as follows:

〈δJz δJz〉 = (15)(
2(1B)2 + (1r)2[(∇Bx)

2
+ (∇By)

2
]

) g(e, p)

a2

Thus it appears that the variations of1Jz/ |Jz| =√
〈δJz δJz〉/Jz

2 with elongatione and planarityp have
their origin in the functiong(e, p) introduced in Sec-
tion 3.2 (see Figure 2).

5. CONCLUSIONS

By making simplifying assumptions we have demon-
strated that the theoretical investigation of the accuracy
of fields gradients estimations by a cluster of four space-
craft (Chanteur 1998) can explain the simulation results
of Robert et al. (1998). The assumptions explicited by
equations 5, 8 and 10 lead to the simple form 14 for the
average of equation 3 over equiprobable orientations of

Figure 5. Simulated probability distribution function
of the reduced variance ofJz for elongated tetrahedra,
(a, e, p) = (1.0, 0.8, 0.5), located on the edge,r = 5.0,
of the force-free current tube described in Section 4.1.

the tetrahedron. This theoretical result explains the varia-
tions of the accuracy of current estimations with the elon-
gation and planarity of the cluster formerly demonstrated
by numerical simulations (Robert et al. 1998). This the-
oretical approach also allows to evaluate the probability
distribution functions of the covariances of the estima-
tions of fields gradients.
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Abstract
The Cluster II mission offers the prospect of studying,
for the first time, small scale magnetospheric and solar
wind turbulence in three dimensions and with a wide-
ranging set of instrumentation. We discuss possible
Cluster II applications to this topic, concentrating on the
correlation function as a generic measure of turbulence
structure. We stress what is possible, and not possible,
with four spacecraft data and discuss the effects of
varying spacecraft separation lengths and orientations.
Finally, we consider limitations of the Cluster II
spacecraft instrumentation which may impact on
turbulence measurements.

Introduction
A major aim of the Cluster II mission is to study small
scale structures and dynamics in the near-Earth
environment. Some of the key target areas for the
mission (e.g. Escoubet et al., 1997) are the cusp,
bowshock, magnetopause, plasmasheet and solar wind.
All these regions are highly structured and often
turbulent. As such, the study of turbulence in these
environments is of considerable interest. Plasma
turbulence, on both magnetohydrodynamic (MHD) and
kinetic scales, is important for energetic particle
propagation; shock dynamics; energy and momentum
transfer; and of course is a fundamental topic of interest
in its own right. The Cluster II formation offers the
prospect of significant advances in the understanding of
several of these topics.

In this paper, we describe some methods of analysing
Cluster II data to study turbulence. A considerable
literature already exists on turbulence; multi-point
measurements; and Cluster II, so this work will not
provide details of any of these subjects. Many key
concepts regarding analysis of data from multiple
spacecraft are covered by Paschmann and Daly (1998)
and papers therein and we refer the reader to these
papers for more detail on these topics than is presented
here.

The state of the art instruments onboard the four Cluster
II spacecraft are likely to provide significant advances
in our understanding of plasma processes in the
magnetosphere and solar wind, even with single
spacecraft data. However, in this paper we concentrate
on techniques that can be used by combining data from
the four spacecraft formation. We discuss magnetic field
and plasma moment data in particular, since these
measurements are most often used in the analysis of
MHD scale turbulence in the heliosphere and they can
be used to illustrate generic multi-point analysis
concepts, although it is likely that other data products
from a range of instruments will be useful in the study
of these processes. In addition, many of the concepts
presented here are applicable to the combination of data
from multiple spacecraft in contexts other than
turbulence analysis.

Turbulence science topics
Extensive introductions to heliospheric turbulence,
particularly in the MHD regime, have been presented by
Tu and Marsch (1995), Goldstein and Roberts (1995)
and Matthaeus et al. (1995). Frisch (1995) is a good
introduction to turbulence in general, although it does
not discuss MHD turbulence. Marsch (1995) and
Goldstein (1995) reviewed the state of MHD turbulence
research from the perspective of Cluster and we refer
the reader to these works for a more detailed
introduction to the subject.

It is well established that the solar wind is pervaded by
waves and turbulence on MHD scales. Changes in the
shape of the power spectrum with solar distance, first
shown by Bavassano et al. (1982), demonstrate that
there is active energy transfer between scales and that
the fluctuations are participating in an ongoing turbulent
cascade, at least on relatively small scales. However,
many aspects of this cascade are poorly understood. In
particular, the three dimensional structure of MHD
turbulence is not well known. Single spacecraft
measurements cannot be used to determine this structure
in anything other than a statistical sense. 
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Turbulent structure is important for a number of
reasons. Firstly, it is produced by, and influences,
energy transfer and the turbulent cascade.
Understanding of neutral fluid turbulence has increased
with the discovery of the presence of discrete structures
(vortex sheets, “mushrooms,” etc.) within the turbulence
and the fact that much of the turbulent energy is located
around them. These structures were discovered when
measurements were taken at multiple points within
turbulent flows. In MHD turbulence, discontinuities
may play a similar role but single spacecraft
measurements cannot provide sufficient information
about the medium in three dimensions.

A second motivation for studying turbulent structure is
the role it plays in energetic particle transport. The
complex magnetic field structure within MHD
turbulence greatly affects the motion of energetic
particles such as cosmic rays (see, e.g. Potgieter, 1998).
Recent work (e.g. Bieber et al., 1996) has shown that
anisotropy in the turbulence, a manifestation of
structures within the fluid, can greatly alter cosmic ray
diffusion coefficients and hence particle transport
throughout the heliosphere. The scale invariance of
MHD means that qualitatively similar structures are
likely to exist in magnetofluid turbulence throughout the
Universe, with consequences for energetic particle
transport in many environments and on many scales.

The Cluster II formation, by sampling in four locations
simultaneously, will provide additional information on
the structure of the turbulence than is possible with one
spacecraft. Some of the techniques developed for
analysing multiple spacecraft data for other Cluster II
applications, most obviously the “wave telescope” (e.g.
Pinçon and Motschmann, 1998) and “discontinuity
analyser” (e.g. Dunlop and Woodward, 1998), may have
useful applications to turbulence measurements but we
do not discuss these further here. In the next section, we
describe some of the simple methods of analysing single
spacecraft data using the two point correlation function
and later show how to extend this to multiple spacecraft.

The correlation function

In this paper, we concentrate on methods for calculating
the two point correlation function of a temporally
invariant three dimensional vector or scalar field − for
example, the magnetic field; bulk plasma velocity or
density; or energetic particle flux. The correlation
function is perhaps the simplest method for combining
data from multiple sampling points and it is inevitable
that considerably more sophisticated techniques (cross-
wavelets, bispectra and structure functions, for example)
will be employed in the analysis of Cluster II data.
However, the correlation function illustrates the
concepts of combining multiple spacecraft data, which
are still relevant to more advanced methods.

The two point correlation tensor, Rij, of a vector field
f(x) is defined as

Rij(r) = <fi(x+r)fj(x)>

where <> denote a spatial average over x. For a scalar
field, one can only define a correlation function, R,

R(r) = <f(x+r)f(x)>.

In this paper, we are concerned with the coverage of
vector separation r, and as a result we need not
distinguish between the correlation tensor and
correlation function. We use “correlation function”
throughout the paper on the understanding that,
depending on the measured parameter of interest
(density, velocity or field magnitude, for example) Rij(r)
may be appropriate.

As discussed in the previous section, the three
dimensional structure of plasma turbulence is of interest
for a variety of reasons: the correlation function is one
way of measuring and describing this structure. As we
discuss later, the Cluster II formation offers the prospect
of a significant advance in the measurement of the three
dimensional correlation function of plasma turbulence.

Taylor’s hypothesis
A fundamental problem when analysing spacecraft data
is that of separating spatial and temporal variations at
the spacecraft − this is, of course, one of the topics
which Cluster II is designed to address. In a fast-flowing
medium such as the solar wind, however, it is possible
to show that a time series recorded at a spacecraft can
be considered as a spatial sample through the medium,
using the so-called “Taylor’s hypothesis,” first discussed
in the context of turbulence in wind tunnels by Taylor
(1938).

A spatial variation in a fluid over a scale l can be
described by a wavenumber k=2p/l. In the fluid frame,
this variation changes on a characteristic time scale
tl=l/Vwave where Vwave is the speed of the wave mode,
typically the Alfvén mode in the solar wind. A
spacecraft typically travels much slower (a few km/s)
than the solar wind (several hundred km/s relative to the
Sun or Earth) and can be assumed to be stationary, with
a fast-moving wind passing over it. The spacecraft
measures a variation on a plasma spatial scale l in the
flow direction on a time tsc=l/Vflow where Vflow is the
relative flow speed of the fluid. If VflowçVwave then the
ratio of the sampling time to the variation timescale,
which is given by tsc/tl=Vwave/Vflow, is much less than 1,
so variations on a scale l pass over the spacecraft much
faster than they vary temporally and therefore the time
series recorded by the spacecraft is effectively a spatial
“snapshot.” In this case, one can convert a spacecraft
recorded time t to a spatial position in the plasma x as
x=t·Vflow where Vflow is approximately the solar wind
velocity, which is nearly anti-sunward. In the solar wind
near 1 AU, the Alfvén speed is a few tens of km/s, much
less than the solar wind speed, so Taylor’s hypothesis is
valid and one can therefore treat a time series as a
spatial snapshot. This greatly simplifies the analysis of
spacecraft data.
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While Taylor’s hypothesis is almost always valid in the
solar wind at 1 AU, it is often not valid in the
magnetosphere, where the magnetic field is often
stronger (so wave speeds are higher) and flows are
slower. However, some regions, such as parts of the
magnetosheath, are usually sufficiently quickly flowing
to make the approximation valid. Regions such as the
magnetotail occasionally support rapid plasma flows
(for example, so-called “bursty bulk flows”) and it may
prove possible to use Taylor’s hypothesis at these times.
Later in this paper we discuss the validity of Taylor’s
hypothesis for multiple spacecraft observations and
show that the situation is rather more complex than the
single spacecraft case.

Measuring the correlation function with one spacecraft
Using a single spacecraft in a sufficiently fast flow, one
can measure the spatial correlation function in one
direction, that of the flow. This is sufficient to measure
the scaling properties of the fluctuations, but is
obviously insufficient to measure their three
dimensional structure. Various methods have been used
to help overcome this limitation while analysing
heliospheric turbulence, but these all involve
assumptions about the structure of the fluctuations. The
ability to measure the correlation function in a number
of directions simultaneously, which Cluster II will
provide, will obviously help to improve our
understanding of anisotropy in heliospheric and
magnetospheric turbulence.

Limitations of the correlation function
It has become increasingly clear in solar wind
turbulence studies that the turbulence is not
homogeneous − that is, that turbulent energy is
distributed unevenly throughout the medium. This is
related to the presence of structures in the fluid, as
discussed earlier. A key assumption of the calculation of
a correlation function is that the fluctuations are
spatially homogeneous, but this is often not the case in
MHD turbulence and care must be used to select
intervals without large scale structures. However, the
methods of combining data from multiple spacecraft
discussed in this paper can be applied to more complex
techniques, such as higher order correlation functions or
structure functions (see, for example, Marsch and Tu,
1997 for a recent review of higher order observations),
which can be used to quantify spatial inhomogeneity.

Cluster II measurements of the correlation function
The use of multiple measuring points to determine
properties of three dimensional vector and scalar fields
is clearly a general one. In this section we review some
of the most important concepts and emphasise
applications to Cluster II.

Earth-orbiting and interplanetary spacecraft already
provide multi-point measurements in the sense that the
movement of either the spacecraft or the underlying
medium effectively turn measured time series into
spatial samples using Taylor’s hypothesis, discussed
earlier. However, the obvious limitation of a one

dimensional sample is that variations in only one
direction can be studied.

Size and shape of the formation
The four Cluster II spacecraft are expected to operate at
separations ranging from a few hundred to 18000 km,
but typically around 1000 to 2000 km apart. Four points
form a tetrahedron, but the shape and size of the
tetrahedron will change along the Cluster II orbit and as
a result of trajectory manoeuvres. The effects of changes
in the shape of the formation have been extensively
considered by a variety of authors: see, for example,
Robert et al. (1998).

In general, for reasonably regularly shaped tetrahedra,
the distances between all the spacecraft are comparable,
to within a factor of 2. The formation as a whole is
therefore sensitive to variations on these scales.
Variations on much larger scales are inaccessible, unless
carried across the formation by a flow or propagating
across the formation. Even then, only variations in the
flow or propagation direction can be measured, as for a
single spacecraft. 

Similarly, variations on scales much smaller than the
formation size cannot be accurately measured, and such
variations can appear to some analysis tools (for
example, discontinuity normal measurements) as noise.

This strong scale selection effect limits the range of
phenomena which Cluster II can measure. For example,
the separation scale will often be comparable to the
proton gyroscale, so the medium on these scales cannot
be well described as a magnetofluid. Of course, the
transition from magnetohydrodynamic (MHD) to
kinetic behaviour, which occurs near the proton
gyroscale, is an important one and one that is important
to turbulent processes, but a consequence of this
separation scale is that some assumptions of solar wind
turbulence analysis, which is often undertaken at MHD
scales, may not be valid.

Constructing a correlation function in three dimensions
As we have seen, with a single spacecraft one can
construct a correlation function in only one direction,
aligned with the flow. With more than one spacecraft it
is possible to sample other directions. As a fast moving
plasma flows over the spacecraft formation, each
spacecraft will sample a line through the medium,
producing a linear spatial sample. With four spacecraft,
a long time series is effectively a sampled “tube”
through the flow (Figure 1).

By comparing data points from different spacecraft, it is
possible to calculate differences in the measured
parameter (for example, the magnetic field vector) in
directions other than the flow vector. Figure 2 shows
two formation configurations projected onto the plane
perpendicular to the flow direction: we consider
variations perpendicular to this plane in the next section
but for now assume that all the spacecraft lie in the
flow-perpendicular plane. The lines joining the
spacecraft are the vectors between them, along which
variations in parameters can be measured. These vectors
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are shown in the right hand panels of Figure 2. Their
lengths are separations between the spacecraft.

One would like as comprehensive coverage in angle as
possible to best measure the correlation function. It is
clear that the top configuration in Figure 2 has less
regular angle coverage than the bottom formation. This
is despite the fact that they are projections of almost the
same configuration, simply at different orientations. The
lower configuration, while it has better angular
coverage, has large variations in the lengths of the
vectors between the spacecraft. Therefore different
scales are measured in different directions. The upper
configuration is close to a square, so although all the
separation vectors are of similar lengths, two pairs of
vectors point in approximately the same direction,
producing the uneven angle coverage.

Figure 2 shows that there are important consequences
for angle and scale coverage of not only the size and
shape of the formation, but also the orientation. There is
no “ideal” shape: better angle coverage results in worse
scale consistency and vice versa. As discussed in the
next section, scale variations may be removed by
estimating power scalings, so it may be better to
maximise angle coverage by choosing a formation
projection similar to the lower example in Figure 2 and
compensating for scale changes.

Variations perpendicular to the flow
We now consider the effect of comparing data points
taken at different times. In the previous section, we
assumed that the formation was planar perpendicular to
the flow. Of course, this will not be the case in practice.
However, since using Taylor’s hypothesis one can
convert time series into spatial samples, this is not a
restriction in general. With four spacecraft, we have four
linear samples through the flow. Any two data points on
the same or different spacecraft can be compared. Each
pair of points is joined by a vector separation in the
plasma frame. 

Figure 3 illustrates comparisons between two
spacecraft. The top panel shows the motion of two
spacecraft relative to the plasma: their separation is in
the plane of the Figure. Dashed lines show comparisons
between one data point from one spacecraft and several
samples from the other. It is clear that there is a
dependence of the angle of the separation vector on its
length, as shown in the bottom panel. The separation
length is the scale on which spatial variations are
sampled, so the unfortunate result of this angle/scale
dependence is that one cannot measure any angle at
more than one scale, or any scale at more than (at most)
two angles.

While the angle/scale dependence is a significant
problem, it is likely that it can be largely overcome.
Figure 3 shows that around 60° of the separation/flow
angle can be sampled with around a factor of 2 change
in separation distance. With a single spacecraft one can
measure the scale dependence of the correlation
function in the flow direction. In general, this is a power
law function of scale, at least in the MHD regime for
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Figure 2. Two possible spacecraft formations projected
perpendicular to the flow direction (left); corresponding
comparison angles and minimum separations perpendicular to
the flow (right).

Figure 3. Top panel: schematic of angle/separation relation
when comparing data from two spacecraft. Bottom panel:
Angle/separation dependence for a flow-perpendicular
separation of 2000km.
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inertial range turbulence − although this is not the case
near the proton cyclotron scale. Given the scale
dependence of the correlation function in one direction,
and assuming that this is the same in every direction
(not necessarily the case), one can “normalise” each
separation vector to the same separation length and
thereby measure the angle variation in the correlation
function.

The comparison vectors between spacecraft shown in
Figure 3 all lie in a plane which joins the two spacecraft
motion vectors through the plasma. Each of these planes
forms one of the lines shown in the right panels of
Figure 2. Therefore, the spacecraft separations define 6
planes over which comparisons can be made and the
minimum separation distance in the direction along that
plane perpendicular to the flow. This fully defines the
set of possible angles over which correlation function
estimates can be made.

The most convenient coordinate system in which to
consider the set of sampled angles is one defined by two
angles q and f and the separation distance r. q is the
flow/separation angle (as shown in Figure 3) and f is
the “clock angle” perpendicular to the flow (as shown in
Figure 2).

The symmetry of the correlation function means that
R(r)=R(-r), simply because two sampled points can be
compared in either direction. This symmetry of the
correlation function means that each pair of data points
contributes an estimate of the function in two opposing
directions. This is the reason that there are 12, not 6,
vectors in the right hand panels of Figure 2. However,
because the two opposing vectors are in reality
calculated from the same data, they are effectively
identical. This effect is similar to that in a Fourier
transform and in practice, one can display or calculate
only half the correlation function with no loss of
information.

Typical angle coverage
In practice, to convert many individual estimates of the
correlation function at many separate angles into an
approximation of the function over all angles can be
most easily achieved by quantising the angles q and f
into a set of “bins” and averaging all the correlation
function estimates that lie within each bin. This
procedure implicitly assumes that the correlation
function varies smoothly on scales of the bin size, which
may not be the case for realistic bin widths of around
10°. Bin size is a compromise between statistical
uncertainties (sufficient data points per bin) and angular
resolution. However, with only 4 spacecraft many angle
bins will have no correlation function estimates within
them. Each two spacecraft − there are 6 pair
comparisons − results in samples within one plane,
which corresponds to one f value. Comparing different
points in the two spacecraft time series varies q, but not
f. 

Figure 4 shows the angle coverage for a simulated
spacecraft formation, for 50 seconds of ½ s sampled
data in a flow of 300 km/s. The Cluster II formation for

this example was randomly generated, with typical
inter-spacecraft distances around 2000 km. The number
of pairs of data points corresponding to a given angle is
shown on a grey scale. Black areas of the figure have no
coverage, while white areas have most. The angles have
been quantised into 18 bins in q and 36 in f. Each pair
of spacecraft contributes a vertical line in the figure: this
is one plane of comparisons, with varying q values.
There are 12 vertical strips because of the symmetry of
the correlation process. The lowest number of points in
any populated bin is 10 in this example; the highest is
3770.

The angle coverage in Figure 4 is sparse and there are
large regions with no data points. However, the
coverage is probably sufficient to produce a sufficiently
accurate estimate of the total correlation function for
several applications. One could, for example assume
that the function varies as a sinusoidal function of the
angles.

The angle coverage achieved is a strong function of the
Cluster II formation shape and orientation, as discussed
above. Randomly generated formations generally result
in rather poor angle coverage: Figure 4 shows a more
regular example than average. However, it is likely that
the formation will be rather regular in practice, due to
active management of the spacings for sampling targets
of choice in the magnetosphere. 

Data set length
Comparing data points from two spacecraft taken at
very different times will result in a large separation
between their sample locations in the plasma in the flow
direction. In this case, the separation vector will be
nearly in the flow direction. This is essentially the single
spacecraft case, since the flow-perpendicular separation
is much smaller than the flow-parallel spacing.

93

θ

φ
0°

90°

180°

0° 90° 180° 270° 360°

Figure 4. Typical angle coverage using two spacecraft, 300
km/s solar wind and 50s of 2 samples/s magnetic field data,
with a typical flow-perpendicular separation of 2000km. Black
regions have no coverage; white regions have most coverage.



In general, points separated by a distance in the plasma
frame that is much greater than the typical inter-
spacecraft distance perpendicular to the flow will be
nearly flow-aligned. This is not a useful case in the
sense that such comparisons can already be made with a
single spacecraft and they do not increase angle
coverage. One can reasonably restrict data sets to spatial
scales of a few times the formation scale, therefore. For
typical Cluster II separation distances of a few thousand
km, one needs only about 105 km of data in the flow
direction. In the solar wind, with a typical flow speed of
around 300 km/s, this corresponds to around 30s of
data, a very small sample compared to typical interval
lengths of single spacecraft data used for turbulence
analysis. This short interval length, over which one can
build up good angle coverage, means that it should
prove possible to calculate “snapshot” correlation
functions in different regions, for example immediately
upstream and downstream of the bow shock, or at
several points in the magnetosheath to measure
turbulent development. The ability to estimate, albeit
statistically, the three dimensional structure of the
plasma on such short time scales is likely to greatly help
the analysis of several solar wind and magnetospheric
phenomena.

An implicit assumption of the methods described here is
that the fluctuations are homogeneous over the length of
the data interval. The short duration of the necessary
data set means that this is often likely to be the case,
even in highly structured environments.

Avoiding oversampling
The comparison of multiple data points as discussed
above leads to oversampling of the data: individual
points are used repeatedly. Oversampling should be
avoided, but this can only be achieved by using any
given data point at most once. It is not clear at this time
how best this can be achieved, although a simple
random method may be sufficient. Using this technique,
random data points would be selected from the total
available data from all spacecraft, and a correlation
estimate and separation calculated, then placed in the
correct (q, f) bin. The two points used would then be
discarded and another two selected, this procedure being
repeated until no more pairs of data points were
available.

More complex methods are certainly possible. It may be
that selecting pairs on the basis of gaps in the angle
coverage will prove more useful. More advanced
techniques are likely to be developed after studying data
intervals, rather than before launch.

Taylor’s hypothesis and Cluster II
We have previously discussed Taylor’s hypothesis in the
context of a single spacecraft. In this case, we simply
require Vflow>>Vwave. For multiple spacecraft, the
principle is the same but the condition is more complex
to calculate and rather more restrictive. Indeed, we show
in this section that for realistic formation configurations
and plasma conditions, Taylor’s hypothesis will not be
satisfied for some angle ranges. 

For multiple spacecraft as for just one, we still require
that the time between samples being taken be much less
than the period of a wave with a wavelength of the
separation between the two samples in the plasma
frame.

Consider the case of two spacecraft, separated by a
distance x in the plasma flow direction and y
perpendicular to this. If we compare data samples taken
at the same moment by both spacecraft, they are a
distance r=(x2+y2)½ apart in the fluid. Since they are
taken at the same time, tSC=0, while tl=r/Vwave. The
ratio of these times, tSC/tl, is zero, and so Taylor’s
hypothesis of, of course, well satisfied.

If, however, we take a data point from the upstream
spacecraft at a time dt=x/Vflow before that in the
downstream spacecraft, the separation in the flow
direction between these two points in the plasma frame
is zero, so the separation distance r=y. In this case,
tSC=dt and tl=r/Vwave, so tSC/tl=(x/r)·(Vwave/Vflow), or,
tSC/tl=(x/y)·(Vwave/Vflow). Compare this to the single
spacecraft condition, which is simply given by the ratio
tSC/tl=(Vwave/Vflow). In both cases, we require this ratio
to be much less than 1 for Taylor’s hypothesis to be
satisfied. The additional factor x/y can be much greater
than 1, invalidating Taylor’s hypothesis.

The two cases above are extreme examples. In general,
when comparing two data points taken at different times
on two spacecraft, the sampling points in the plasma
frame will be separated by a flow-parallel distance x and
a flow-perpendicular distance y and hence a total
distance r=(x2+y2)½. The flow-parallel distance will not
be the flow-parallel spacecraft separation in general.

We refer to the ratio x/r, the ratio of flow-parallel and
total plasma frame separations, as “Taylor’s ratio” in
this paper. For Taylor’s hypothesis to be valid, we
require this ratio to be much less than the ratio Vwave/
Vflow, the single spacecraft condition for Taylor’s
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hypothesis. For a given spacecraft separation, one can
change the angle between the plasma frame separation
and the flow, q, and hence this ratio, by selecting data
point pairs with different time delays tSC.

Figure 5 shows values of Taylor’s ratio for a number of
ratios of the flow parallel to flow perpendicular
spacecraft separation distances (equivalently, the flow-
spacecraft separation angle), for values of the plasma
separation/flow angle, q. Variations in q correspond to
changing the time lag between the compared data
points. For each separation angle, there is one value of q
where the ratio is zero. This occurs when q is the same
as the spacecraft separation angle: one can measure
variations along this angle with no time lag between
them.

It is clear from Figure 5 that, for formations that are
anything other than exactly planar and perpendicular to
the flow vector, there will be a range of angles where
Taylor’s hypothesis is less well satisfied than the single
spacecraft case, although it will be better satisfied for
some other angles. For flow parallel to perpendicular
spacecraft separation ratios above 2, Taylor’s ratio can
greatly exceed 1 for some angles. In the solar wind, the
ratio of flow to wave speeds is typically 5 to 10. In
many regions of the magnetosphere it is well below 1,
but in some regions, such as the magnetosheath, it is
above 1 but less than 5. In these situations, care must be
taken to ensure that Taylor’s hypothesis is satisfied for
each angle considered and it may be necessary not to
consider some ranges of angles in some situations. In
contrast, there are some angles (around the spacecraft
separation angle) where Taylor’s hypothesis will be
satisfied for two spacecraft when it is not for one,
making at least some spatial sampling of the correlation
function possible in slow-flowing regions such as the
cusp.

Field-aligned anisotropy
We have discussed measurement of the correlation
function in terms of a flow-aligned coordinate system.
However, it is well known that in general, on MHD
scales turbulent magnetic field fluctuations tend to be
perpendicular to the local background magnetic field
direction (e.g. Horbury et al., 1995). For the specific
application of studying MHD turbulence, therefore, it
may prove useful to consider variations in a coordinate
system that is aligned with the background magnetic
field. If the background field is constant over the
interval of interest, this is a simple coordinate
transformation. If the background field varies, however,
it is possible to use a wavelet method to construct a
dynamic coordinate system that tracks changes in the
local background magnetic field. This is useful because
small scale turbulent fluctuations “ride” on larger scale
variations in the magnetic field. Changes in the
background field can therefore allow the Cluster II
formation to measure fluctuations in different
orientations relative to the field, without changing the
spacecraft positions. Effectively, this “blurs” the
coverage shown in Figure 4 to cover a wider range of
angles. Oughton et al. (1997) showed that the form of

the two point correlation function of MHD turbulence is
restricted and it may prove possible to fit Cluster II
observations to this form to produce an estimate of the
full correlation function in a form that is usable for other
applications, for example cosmic ray diffusion.

We do not describe the technique in detail here, but
merely note that such methods are likely to prove useful
in the analysis of Cluster II data.

Additional spacecraft
There are six vectors linking four spacecraft, while for
five spacecraft there are 10 such vectors. For good angle
coverage, it is preferable to have as many comparison
vectors as possible. As a result, one would like to use
data from additional Earth-orbiting spacecraft to
increase the number of comparison vectors. However,
such spacecraft are likely to pass considerably further
from the formation than the inter-spacecraft distance
within the cluster. If this separation is largely
perpendicular to the local flow direction, then the
minimum separation distance of the spacecraft to any of
the Cluster II spacecraft will be much larger than the
inter-Cluster distances. Since the separation vectors
from all the Cluster II spacecraft to the additional craft
will be in approximately the same direction, such an
arrangement will not provide significant additional
information: in effect, this scenario treats the Cluster II
formation as one spacecraft.

If the separation is largely in the flow direction, then
one can use time-delayed comparisons: effectively,
waiting for plasma passing over the single spacecraft to
propagate towards the Cluster II formation, or vice
versa. When the flow-perpendicular separation is
comparable to the tetrahedron scale, the additional
spacecraft can act like a member of the Cluster II
formation and provide extra information. However, if
the spacecraft is far upstream, Taylor’s hypothesis will
be invalid because the time for the plasma to flow from
the formation to the additional craft will be larger than
the time for the fluctuations to change significantly,
making the interpretation of the resulting correlation
function considerably harder.

A possible use for additional spacecraft data can occur if
the position of the formation is such that magnetic field
lines that pass through the formation also pass over, or
close to, the extra craft. In this case, shown in Figure 6,
the four separation vectors between the Cluster II
formation and the additional craft are all in
approximately the same direction, and using data taken
earlier or later at the formation one can find vectors that
are approximately parallel or anti-parallel to the mean
magnetic field direction. Then, the four separation
vectors from the formation can be used to study
variations in, for example, the correlation function at
angles close to the mean field direction. The mean field
direction is often poorly sampled in single or multiple
spacecraft correlations. However, this is the case
because angles within, for example 10° of a given
direction cover a small solid angle, making them

95



unlikely to be sampled: separation vectors rarely point
in the desired direction. Of course, this effect will also
affect the scenario described above and it is not obvious
if usable intervals of data with spacecraft encounters
and a correctly pointed mean magnetic field will occur
during the lifetime of the Cluster II mission. However,
the fact that only a minute of data is needed, and that the
additional spacecraft is likely to move slowly over a
large angular range relative to the Cluster II formation,
make the scenario possible.

Limitations of Cluster II
While it is clear that the Cluster II mission will greatly
improve our understanding of a wide variety of
microscale processes throughout the magnetosphere and
the solar wind, it is important to stress that many
questions will remain unanswered.

For a complete understanding of magnetospheric
processes, one would ideally sample the entire
magnetosphere and immediately upstream solar wind at
a sufficiently fine scale, with high time resolution and
high precision. For some applications, a smaller volume
is sufficient, but it is clear that the reality of the
available data will be much worse: the medium will be
grossly undersampled. The way forward is obviously to
made assumptions of some sort, which will vary with
the problem of interest. However, it is important to
stress that any analysis of spacecraft data involves
assumptions of some kind and Cluster II will be no
exception.

As we have seen, four spacecraft provide only 6 planes
in which to make comparisons in a supersonic flow. It is
not clear whether one can extrapolate usefully from

these 6 planes to the entire unit sphere, for example
when estimating the correlation function. A field-
aligned analysis method, as described in this paper, can
help, but once again this introduces an assumption (that
the field direction is an axis of symmetry of the
fluctuations) that may not be justified.

An obvious problem that may be difficult to overcome
is that of inter-spacecraft calibration. Taking the
magnetic field as an example, on typical Cluster II
spacecraft separations of a few thousand km, variations
in the magnetic field can be around 100pT, but
sometimes even less. To reliably compare measurements
between instruments therefore requires an accuracy of
around 10 pT in each instrument. This is near the limit
of what can be achieved in practice, although these
problems can be alleviated with techniques such as
background removal. For bulk plasma measurements,
the precision may be even more demanding relative to
what is usually achieved. As a result we expect that
inter-spacecraft offsets will be a significant issue in
Cluster II data analysis. In addition, combining Cluster
II data with additional spacecraft, with different
instrumentation, will be particularly challenging.

An issue related to inter-spacecraft calibration is that of
instrument precision: for example, the Cluster II
magnetometer resolution is 8pT (Balogh et al., 1995),
about 10% of typical variations on the scales of interest.
Typically, bulk plasma instruments can measure
velocities to with a few percent, and if one is measuring
variations on small scales, where the fluctuations are
well correlated so that spatial changes are small, these
changes will be close to the instrument precision and
any variations seen will be either quantised or strongly
affected by noise. While this is a problem with even
single spacecraft, the combination of such noisy signals
will make the problem more acute. Again, such
problems will have to be carefully considered when
analysing Cluster II data, although with careful data
analysis it is likely that they can be largely overcome.

A further instrumental limitation is that of time
resolution. To construct a correlation function using data
points from several spacecraft, at least when Taylor’s
hypothesis can be used, the time between samples needs
to be comparable to the time taken for the plasma to
travel across the formation. For example, with a
separation of 3000km and a flow speed of 300 km/s,
this travel time is 10s. The data sampling time must be a
small fraction of this time to achieve good angle
resolution when comparing data between spacecraft.
Plasma moment data produced at spin time resolution,
approximately 4s, may not be sufficient for this
application, and although it may be possible to produce
plasma data at a higher time resolution this is unlikely to
be a routine procedure. Elsässer variables, which require
combined velocity, density and magnetic field data, can
only be produced at the time resolution of the plasma
data and are therefore unlikely to be produced at
resolutions above 4s. Consequently, multi-spacecraft
Elsässer variable comparisons are unlikely to be
achieved with Cluster II data without a significant
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fluctuations in 4 directions close to the mean field.



analysis effort. The importance of Elsässer variables in
the study of plasma turbulence means that this effort is
likely to be made.

An additional restriction of plasma moment data is that,
in contrast to magnetic field data, they are produced
over an extended time as detectors scan over look
directions and energies. It is therefore impossible to give
a precise time stamp to each plasma moment. When
these moments are generated over times that are
significant fractions of the time for plasma to flow over
the formation, it is not possible to spatially localise each
measurement with sufficient precision to make accurate
comparisons between spacecraft. With four spacecraft,
each spinning at slightly different rates and hence with
different spin phases at any given time, the comparison
of high time resolution plasma moments from one
spacecraft to another will be extremely difficult. It may
prove possible to recover consistent plasma differences
between the spacecraft, but this is likely to be a slow
and complex process which will be achieved only with
considerable effort and using instrument expertise
which will only be gained during in-orbit operations.

Summary
The Cluster II mission offers the prospect of greatly
increasing our understanding of small scale plasma
processes. With four spacecraft, analysis of the three
dimensional structure of both structured and turbulent
plasmas can be performed rigorously for the first time.
However, considerably challenges remain. Instrumental
effects are likely to be important at such small scales
and considerable care will be needed to ensure that
reliable inter-spacecraft comparisons can be made at
such small scales. 
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