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Abstract

This aide mémoire summarizes the joint effort of the SOI/MDI
and VIRGO team for discovering g modes. The data sets and their
reduction are described. The different technique used for detecting g
modes are described. A list of g- and p-mode frequencies are given for
2 different models.

1 Introduction

Obviously the goal of the workshop was to detect the g modes. But as
mentionned by D.O.Gough: It is superficially unfortunate that we discovered
no g modes. On the brighter side, on which I always prefer to be, it shows that
we have before us a greater challenge which will yield [ | greater satisfaction
when we overcome it.[...]. We are all now much more prepared to continue
the search.’

From now on this will be the motto of the g-mode group.

2 Data utilized

2.1 SOI/MDI velocity

The conversion from level 0 to level 1 data is explained in MDI/SOI Data
Flow (Ver 0.54, 14 Feb 95). This is repeated here as a basis for the up-to-
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date conversion (Phil that is for you!). Level 1 processing takes the level
0 product and

e performs calibration corrections,

e removes instrumental effects (Michelson temperature. .. ),
e corrects for the flat field,

e applies look-up table corrections

e and converts the DN to calibrated engineering data.

If different flat field, calibration or DN convertion corrections are
used, please Phil specify!
The level 1.4 are derived from level 1 by:

e making data evenly spaced,

e sub-sampling the data,

e grouping the input data series,

e gathering information from ancillary databases,
e allowing multiple variables.

MDI dataset is the level-1.4 LOI velocity proxy (180 pixels) from 1 May
1996 to 30 April 1997. Data with bad quality flag are put to 0. They are
corrected from the sattelite velocity and the offset due to tuning of the MDI.
Then they are detrended using a third order polynomial this separately for
each piece of signal in-between two changes of offset. An (I, m) spherical
harmonic mask with B = 0 is applied to the data the resulting timeseries is
high-pass filtered using a box-car smooth with a 1-day width. Data are then
Fourier transformed.



2.2 SOI/MDI intensity

The level-1.4 LOI intensity proxy (180 pixels) was converted to a 12-pixel LOI
proxy taking into account the number of CCD pixels in each sub pixel. Each
pixel is then detrended using a 2-day triangle smoother. The relative varia-
tions are then computed and spikes larger than 5-7 sigma are removed. The
12 pixels are combined using the routines developped for the VIRGO/LOI.
Time-independent spherical harmonics filters are applied to the 12 pixels to
derive the signals for [ = 0 to 6. The resulting spectra are heavily polluted
by harmonics of 96 minutes and of 52 yHz. We found that the most efficient
way to remove these spurious peaks was to subtract temporally the mean
over the 12 pixels. This is of course at the expense of reducing the sensitivity
of the SOI/MDI intensity signal to very low degree modes for which [ 4+ m is
even. The time series used starts on 23 May 1996 and ends on 16 September
1997.

2.3 VIRGO/SPM

The SPM data are based on the level 1 time series from 26 March 1996
(MD116) until 16 September 1997 (MD655). A running mean detrending of
triangular shape and base width of two days was applied before computing
the Fourier transform.

2.4 VIRGO/PMO6

The PMOG6 data are based on the level 1 time series from 26 March 1996
(MD116) until 16 September 1997 (MD655). A running mean detrending of
triangular shape and base width of two days was applied before computing
the Fourier transform.

2.5 VIRGO/LOI

The LOI data are the level 1 data as reduced per VIR-SSD-GSE/L-001, (Ver
1.7, May 1996) from the level 0 data. It is available from the VIRGO home
page. The LOI data are reduced in the same way as the SOI/MDI data
except that there is no need to remove the 12-pixel average. The time series
starts on 27 March 1996 and ends on 16 September 1997.
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Figure 1: The central peak is an [ = 2, n = 8. The 2 peaks on either side
are [ =1,n=28,9.

3 Detection techniques

3.1 Collapsogramme

This is a very simple technique. It is based on the fact if the g modes exist
they should be splitted by rotation. To enhance the presence of the modes
that could be hidden in the noise, we decided to add the 2[+1 power spectra
(available from resolved instruments) after having shifted in frequency each
of them by mf£2, where m is the aziumuthal order and €2 is the rotational
splitting. The technique can of course be used for different €.

Any technique for detecting g modes should allow us to detect similarly
low frequency p modes with very long lifetime. The technique used here has
been applied succesfully to the SOI/MDI velocity data (Fig 1 to 6).

3.2 Bo-you-name-it technique
BA
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Figure 2: The central peak is an [ =2, n = 8.
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Figure 3: The peak close to 1300 pHz is an [ = 3, n = 7, and at 1450 pHz
an [ = 3, n = 8. The peak close to 1210 pHz is an [ = 4, n = 6, and close to
1350 pHz isan [l =4, n =T.
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Figure 4: The peak close to 1210 pHz is an [ = 4, n = 6, and close to 1350
pHz isan =4, n="71.
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Figure 5: The peak close to 1250 yHz is an [ = 5, n = 6, and at 1400 pHz
anl=5n="T.
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Figure 6: The peak close to 1300 pHz is an [ = 6, n = 6, and at 1450 pHz
anl=6,n="T.

3.3 Noise reduction techniques

We attempted to reduce instrumental noise by combining the Fourier spectra
of the three SPM channels and the PMO6. We hoped that the summed
spectra would have less noise because of the random phases which would
cancel each other. The result was negative in the sense that the noise of
the different channels and instruments did not cancel but turned out to be
coherent. We therefore believe that the noise in the SPM and PMOG6 spectra
is mainly of solar origin.

Another attempt to reduce noise (instrumental or solar) was the following:
We divided the time series into halfway overlapping parts of 100-200 days
length. We calculated the power spectra of these parts and avereraged them.
Then two different methods to detect doublets were applied. The first was
simply autocorrelation of the g modes range of the averaged spectrum.

The second method was very similar to the autocorrelation but without
summing over the product of the original and the shifted spectra. The result
is a sort of ”frequency dependent” autocorrelation coefficient. The advantage
of this method is that it returns high autocorrelation coefficients even if there



are only very few (or even one single) doublets. The results of both of these
methods were negative.

4 Multivariate analysis

4.1 Parameters of Multivariate Spectral Regression Anal-
ysis

The multivariate regression analysis is trying to explain the dependent com-
ponents, a g-dimensional vector Y (¢), by filtered independent components,
a p-dimensional vector X(¢). Thus the following equation has to be solved,
similar to the linear regression analysis

Y (t) = L(X(t)) + (1) (1)

where L is a multivariate linear filter with unknown (¢ x p)-dimensional trans-
fer function B(A) and n(¢) an unobservable g-dimensional process uncorre-
lated with X(¢). The extent of the deviation of Y (¢) from a linear function of
X (t) is measured by the unknown spectral density matrix £7(\). This matrix
and the transfer function B(\), which indicates how the linear dependence
is parcelled out to the various input and output series, are the principle
parameters of interest. They are determined by minimizing

E(X;(t) - Y;(t)*. (2)

From this the transfer function of L and the spectral density function of n(t)
can be calculated according to

B()) = ()f (M) (3)
and
£100) = £ () = P OEX )Y (), (4)

where £ ()\) and %Y (\) are the power and cross spectra respectively as
(g X q), (p xp), (g xp),or (pxq) matrices for V)V , X, X | Y, X or X,V
combinations

XY (N)d\ = B(ZX (d\)ZY (d))Y) (5)



where Z%X(d)\) being the complex Fourier amplitude of the g-dimensional
vector process X (t). The noise spectrum can be rewritten as

£1(0) = £ ()7 (T— £ () T2 Q)FSY () TS )Y (1)) £ (V)3

(6
which defines the coherence naturally as the fraction of f¥*¥ (\) or f¥¥ ()
for the case of p = 1. The coherence of Y (¢) with X (%), p()), a (¢ X ¢) matrix
(100 times the sum of the Eigenvalues of p?(\) corresponds to the percentage
of power explained by X(¢) in Y (¢)) can be calculated from the (p x ¢) matrix
complex coherence

~— —

Y(A) = XX ) TEEY (Y (1) 73 (7)
where A~% denotes the square root of the inverse of the Matrix A, by
Prx (V) =70 7(N) = £ () TN QOES ) TR )E Y (V) L (8)

When the Y(t) series is only 1-dimensional (the case we are normally
dealing with), e.g. ¢ = 1, expression (8) yields a scalar coherence of Y(t)
with X(t)

pP(A) = £5F QOESE ()T () /T (V). (9)

or the p-dimensional partial coherence vector of X(t) with Y'(¢)
pP(A) = £55 ()T QOERE () /T (V). (10)

In order to get reliable estimates for the parameters they have to be smoothed;
only the boxcar smoothing over 2m + 1 elements is taken into account in the
following.* So all cross and power spectra become

z +m

i=—m

with fz();) the complex amplitude at frequency \;; for simplicity however
we will no lomger use the overbar, but assume that all power- and cross-
specta used for the calculation of the multispectral parameters are smoothed
accordingly.

For the case of ¢ = 1 an IDL routine has been written which calculates
the transfer function with Eq. (3) and the total (Eq. 9) and partial (Eq. 8)
coherence.
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Figure 7: The top three panels show the effect of our noise reduction method
on the three SPM channels red, green and blue. The original power spectra
are plotted in gray, the residuals after noise reduction are plotted black. The
bottom panel shows the geometric mean of the three residuals (third root of
the product).
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4.2 Estimation of the Uncertainties

For the estimation of the uncertainties we restrict ourselves to the case of
only one timeseries Y, .that is p = 1. For the uncertainty of the transfer
function it follows

‘Ej()‘) - Bj()\)‘Z <22m+ 1) Forpomii-n(B) 1 = 0%) - fyv - fx)x,  (12)

with f)}jlxj being the diagonal elements of the inverse matrix fy % and F, ,,,(3)
the F-distribution with n, m degrees of freedoom at a 1003 percent confidence
level. This can also be separated into gain and phase uncertainties; with

uj = (2(27” + 1)rForp@m+1-r)(6) (1 — p°) - fry - f)?jlxj)a (13)
the gain has a range of
[Aj| = uy < A < |Aj] 4 uy (14)
and the phase of

arg A; —arcsin —— < arg A; < arg A; + arcsin —— (15)

|A| |A|'

It can be shown that tanh ' p is normally distributed, thus the coherence
has the following uncertainty

tanh (tanh_1 p+ (2m+ 1)_% u (%)) < p < tanh (tanh_1 p—(2m + 1)_% u (%))
(16)

with u(a/2) the upper a/2 cutoff for the normal distribution, thus giv-

ing the 100(1 — a) percent confidence level of tanh™ p. The inverse hy-

perbolic tangent can be calculated by (from the definition of tanh(z) =

(" —e™)/(e" +e7))

_ 1 1+p
hlp=-In|-"" 1
tanh " p 2n<1_p> (17)
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4.3 Results of Multivariate Regression Analysis of the
SPM

Noise in SPM channels are very well correlated if by chance g-modes have a
different correlation it is possible to enhanced their signature using a multi-
variate analysis.

In our example we set the time series Y (t) = red(t) and X () = (green(t), blue(t))
in Eq.1 and calculate the resulting transfer functions By,cen, and By, of the
corresponding fourier spectra red()\), green(\) and blue()). Then the linear
combination Byreen X green(A) + Bypye * blue()) is an estimation of red(\).
The difference betweenBy,cen, X green(A) + Byye % blue()) and red(A) is then
our noise reduced spectrum of the red channel. We repeated this procedure
with cyclic exchanged channels. The result of the product of the three noise
reduced cannels is shown in Fig. 7 together with the original and the reduced
spectra for each channel.

This method allows to reduce the noise level by a factor about 100 both
in g-mode and p-mode frequency range. Unfortunately for p-modes at least
the correlation for modes is close to that of noise avoiding any improvement
in the signal/noise ratio. Nevertheless it could be possible with this method
to enhance the [=2 modes against (=0 or vice versa using the fact that limb
darkening applies a different weight to these modes. It is therefore possible
to produce a spectrum without (=0 and without [=2 modes. This is very
useful for fitting modes especially at high frequency where the [=0 and [=2
overlap.

5 Appendix A: Kolmogorov-Smirnov test

5.1 What is Kolmogorov-Smirnov test?

The Kolmogorov-Smirnov (K-S) test is widely used to test the significance of
differences between distributions of random variables. The essence of the test
is in the so-called Kolmogorov-Smirnov statistics D, which is defined, for a
given set of ‘observation’ x1, xs,..., 2y, as the maximum difference between
the two cumulative distribution functions (cdf):

D = max [F(z;) — S(x;)] ,
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where, in the case that is relevant to us, F'(z;) is the ‘observed’ cdf evaluated
at a data point x; and S(z;) is the ‘theoretical’ or ‘reference’ cdf (against
which F(x) is tested) evaluated at the same z;. If the observations have
been sorted in ascending order, then

F(z;) = i/N .

Then one calculates the probability of observing D equal to, or greater than,
the observed value when the true cdf is S(z) i.e., the likelihood of S(z) being
the true cdf given the observation. For large sample size IV, this probability is
approximately () KS(\/N D), where the function Qxg is given by the formula

QKS()\) =9 i(_l)je—mzjz
7=1

(see, e.g., Nonparametric Statistical Methods, Hollander & Wolfe 1973, Wi-
ley & Sons), which clearly is very slowly converging for small A, and in
fact diverges for A\ = 0. However, with decreasing A, Qxs(\) approaches
unity much quicker than the formula becomes a nuisance. For any precision
that is of practical use, one needs to use the formula only in the range, say,
0.1 < A < 6, below which and above which we can set Qxgs(\) to be unity
and zero respectively. Indeed, this is what is done in the IDL routine TS has
provided.

5.2 The possible relevance of the K-S test to the g-
mode search

Generally speaking, the K-S test can be used to test if there is anything in the
stochastic signal that deviates from what we expect statistically. In principle,
it can be used to test whether, say, power spectrum in certain frequency range
can be explained by known sources of (solar and instrumental) noise. If it
is not, then there is something not understood, which may or may not be
g modes. However it should be noted that, even if we somehow know that
g-mode signal is there, actually to find peaks that are of g-mode origin is
entirely a different story.

One of the strategy adopted for the g-mode search was to look at cross
spectra between LOI and MDI,

FcrOSS(V) = FLOI(V)FBZDI(V) .
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If the two Fourier spectra are statistically totally dependent, then this quan-
tity is of no interest. The K-S test can also be used to test their independence.

5.3 What was done before 3 Nov

DOG and TS wrote down an IDL routine to compute the cdf of product
of two independent standard gaussians. First, the probability distribution
function (pdf) was calculated, which was found (by DOG) to be related to
a modified Bessel function but still had to be evaluated numerically. The
pdf was then numerically integrated to obtain cdf. Since the K-S test of
the datasets would require evaluation of cdf at a huge number of points, it
was decided that the result be tabulated so that the cdf can be evaluated by
interpolation (inside IDL). TS also wrote down IDL routines for K-S test for
general case, so that various datasets can be tested against various cdfs.

5.4 What was done during 3—-7 Nov

ThA and TS looked at the LOI-MDI cross spectra for various sets of (I, m).
The first thing ThA noticed was that for [ = 1, m = 0, the statistics of the
cross spectrum in p-mode range (but away from peaks) were not consistent
with that of products of two independent gaussians. How to interpret this
we do not know — had ThA checked if individual spectra were consistent
with gaussian statistics?

The results of the K-S test at g-mode range tended to be one of two
extremes, the statistics of cross spectra at various range having been either
highly consistent (likelihood very high) or totally inconsistent (likelihood very
low) with the hypothesis of independent gaussians. One difficulty was in the
subtraction of the background; with varying background noise, irrespective
of the presence of g modes, for sufficiently wide range of frequencies the K-S
test is bound to reject the hypothesis of independent gaussians if one does
not do some detrending, or one does not do detrending properly. So, when
one gets very low likelihood for independent gaussians, one does not know
if this is because holy grails are lurking or because detrending has not been
done properly.

Artificial data were also tested with disappointing results (or so we thought
at the time). The data were created by adding peaks to artificially generated
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background noise, and then the K-S test was applied to see if it would ‘de-
tect” the presence of peaks. It did so only when the S/N ratio is higher than
unity, or when the number density of peaks are high. This was partly due to
the fact that g-mode peaks did not occupy too many frequency bins, because
it was (probably correctly) assumed that the g-mode peaks were very sharp.
The case where g-mode peaks occupy more than one bin was not tested, but
provided that the peak heights are maintained (that is to say the total power
in peaks are increased), it would certainly make the ‘detection’ easier.

The cross spectrum between whole disk measurements (one of them might
be a proxy), where the number density of g-mode peaks would be high, was
not tested. Perhaps one should try this. Also, the low frequency p-mode
range was not tested with this method.

One aspect that was sometimes ignored, in a way, was the fact that the
cross spectrum is a complex quantity. The IDL routine ThA had setup
(accommodating TS’s K-S routines) carried out tests for the products of
real /imaginary part of one spectrum and real/imaginary part of the other
(there are four combinations), which should be combined to yield the statis-
tics for cross spectrum but sometimes we did not bother.

To summarize, the picture is not exceedingly rosy but there is a feeling
that this was just the beginning and we did not do things quite properly.
One has to bear in mind that a test is a test and nothing more, but we may
eventually benefit from trying a bit harder along this line.

6 Appendix B: Mode frequencies
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Table 1: Mode frequency for Nice model (S13-1-4406). [ = 0,1
[ mode type-n Frequency (in pgHz) Splitting (in nHz)

0 pl 257.61
0 p2 403.93
0 p3 535.38
0 pd 680.17
0 p5 825.09
0 p6 972.59
0 p7 1118.05
0 p8 1263.44
0 P9 1407.59
0 pl10 1548.44
0 pll 1686.77
0 pl12 1822.23
0 pl3 1957.49
1 g5 107.67 212.
1 g 125.96 210.
1 g3 151.26 210.
1 g2 189.00 213.
1 gl 259.75 242.
1 pl 284.21 396.
1 p2 448.31 433.
1 p3 596.84 429.
1 pd 746.56 427.
1 p5 893.63 427.
1 p6 1039.45 428.
1 p7 1185.59 428.
1 p8 1329.69 429.
1 P9 1473.00 430.
1 pl10 1612.83 430.
1 pll 1749.48 431.
1 pl2 1885.26 431.

16



Table 2: Mode frequency for Nice model (S13-1-4406). [ = 2

[ mode type-n Frequency (in pxHz) Splitting (in nHz)
2 g10 100.97 365.
2 g9 110.12 365.
2 g8 120.85 365.
2 g7 133.68 363.
2 g6 149.29 360.
2 g5 168.36 354.
2 g4 191.70 346.
2 g3 219.75 345.
2 g2 253.54 373.
2 gl 293.89 409.
2 f 352.14 366.
2 pl 382.44 348.
2 p2 514.29 391.
2 p3 664.34 411.
2 p4 811.71 420.
2 pd 959.85 425.
2 p6 1105.12 427.
2 p7 1250.67 430.
2 p8 1394.67 431.
2 P9 1535.91 432.
2 pl0 1674.66 433.
2 pll 1810.32 434.
2 pl2 1945.89 434.
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Table 3: Mode frequency for Nice model (S13-1-4406). [ = 3

[ mode type-n Frequency (in pHz Splitting (in nHz)
3 gld 102.42 400.
3 gl3 109.07 401.
3 gl2 116.57 401.
3 gll 125.06 401.
3 gl0 134.89 401.
3 g9 146.32 401.
3 g8 159.55 401.
3 o7 175.08 400.
3 g6 193.49 396.
3 g5 214.69 385.
3 g4 236.20 373.
3 g3 258.90 399.
3 g2 293.06 416.
3 gl 336.68 422.
3 f 392.17 406.
3 pl 415.66 384.
3 p2 564.60 403.
3 p3 718.47 416.
3 p4 866.94 423.
3 po 1015.00 427.
3 p6 1161.72 429.
3 p7 1306.79 432.
3 p8 1451.09 433.
3 P9 1591.56 434.
3 p10 1729.20 436.
3 pll 1865.30 436.
3 pl2 2001.16 436.
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Table 4: Mode frequency for Nice model (S13-1-4406). [ = 4

[ mode type-n Frequency (in pHz) Splitting (in nHz)
4 gl18 102.74 414.
4 gl7 107.89 414.
4 gl6 113.54 414.
4 15 119.77 414,
4 gl4 126.73 414,
4 gl3 134.54 415.
4 gl2 143.27 415.
4 gll 153.08 415.
4 g10 164.29 416.
4 g9 177.25 416.
4 g8 192.06 416.
4 g7 209.13 415.
4 g6 228.85 410.
4 g5 248.51 385.
4 g4 262.89 308.
4 g3 288.16 422.
4 g2 324.09 424.
4 gl 364.64 429.
4 f 410.83 420.
4 pl 441.54 397.
4 p2 603.20 414.
4 p3 761.13 423.
4 p4 913.21 427.
4 po 1062.11 431.
4 p6 1210.60 432.
4 p7 1356.37 434.
4 p8 1500.41 436.
4 P9 1641.00 436.
4 pl0 1778.10 437.
4 pll 1914.83 438.
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Table 5: Mode frequency for Nice model (S13-1-4406). [ =5

[ mode type-n Frequency (in pHz) Splitting (in nHz)
5 g22 102.77 420.
5 g21 106.95 420.
5 g20 111.46 420.
5) g19 116.36 421.
5 18 121.70 421,
5 17 127.54 491,
5) gl6 133.92 421.
5) glh 140.92 421.
5 14 148.68 421,
5 ¢13 157.34 499,
5) gl2 166.95 422.
5 gll 177.66 422.
5) g10 189.77 423.
5) g9 203.63 423.
5) g8 219.29 423.
5) g7 237.08 422.
5) g6 257.18 417.
5) g5 271.06 380.
5) g4 285.13 422.
5 ¢3 312.71 497.
5) g2 346.63 428.
5) gl 381.86 431.
5 f 420.57 425.
5) pl 467.75 407.
5) p2 637.84 421.
5) p3 798.92 428.
5) p4 954.33 430.
5) pd 1104.88 433.
5) p6 1254.57 435.
5) p7 1401.64 436.
5) p8 1545.32 437.
5) P9 1685.97 438.
5) pl0 1823.40 438.
5 pll 1960.61 439.
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Table 6: Mode frequency for Nice model (S13-1-4406). [ = 6

[ mode type-n Frequency (in pHz) Splitting (in nHz)
6 g25 106.23 424.
6 g24 109.99 424.
6 g23 114.00 424.
6 g22 118.31 424.
6 g21 122.96 424.
6 20 127.95 424,
6 g19 133.35 425.
6 gl18 139.21 425.
6 17 145.60 495,
6 16 152.55 495.
6 15 160.13 495.
6 gl4 168.48 425.
6 gl3 177.73 426.
6 gl2 187.93 426.
6 gll 199.20 426.
6 g10 211.82 426.
6 g9 226.13 426.
6 g8 242.11 427.
6 g7 260.04 427.
6 g6 280.09 421.
6 g5 288.25 387.
6 g4 305.29 428.
6 g3 331.93 429.
6 g2 362.97 430.
6 gl 393.00 432.
6 f 426.74 427.
6 pl 493.12 415.
6 p2 670.05 425.
6 p3 834.21 431.
6 p4 992.27 433.
6 po 1145.00 435.
6 p6 1295.54 437.
6 p7 1443.77 437.
6 p8 1587.46 438.
6 P9 1727.86 439.
6 p10 186845 439.




Table 7: Mode frequency for GONG model computed at Nice. [ = 0,1

[ mode type-n Frequency (in pHz) Splitting (in nHz)
0 pl 958.01

0 p2 404.48

0 p3 535.94

0 p4 680.57

0 po 825.36

0 pb6 972.74

0 p7 1118.15

0 p8 1263.51

0 P9 1407.62

0 p10 1548.51

0 pll 1686.80

0 pl2 1822.21

0 pl3 1957.45

1 g5 109.27 214.
1 g4 127.89 212.
1 g3 153.39 211.
1 g2 191.88 214.
1 gl 262.98 253.
1 pl 285.11 385.
1 p2 448.47 433.
1 p3 096.94 429.
1 p4 746.66 427.
1 po 893.71 427.
1 pb6 1039.56 428.
1 p7 1185.62 428.
1 p8 1329.69 429.
1 P9 1472.97 430.
1 pl0 1612.72 430.
1 pll 1749.38 431.
1 pl2 1885.09 431.
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Table 8: Mode frequency for GONG model computed at Nice. [ = 2

[ mode type-n Frequency (in pHz) Splitting (in nHz)
2 g10 102.60 365.
2 g9 111.85 365.
2 g8 122.75 364.
2 g7 135.74 363.
2 g6 151.48 350.
2 g5 170.70 353.
2 g4 194.36 345.
2 g3 222.32 346.
2 g2 256.51 376.
2 gl 296.53 408.
2 f 355.78 361.
2 pl 384.16 352.
2 p2 514.47 391.
2 p3 664.40 411.
2 p4 811.76 420.
2 pd 959.87 425.
2 p6 1105.17 427.
2 p7 1250.72 430.
2 p8 1394.70 431.
2 P9 1535.98 432.
2 pl0 1674.67 433.
2 pll 1810.27 434.
2 pl2 1945.81 434.
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Table 9: Mode frequency for GONG model computed at Nice. [ = 3

[ mode type-n Frequency (in pHz) Splitting (in nHz)
3 gl4 104.13 400.
3 ¢13 110.85 401.
3 gl2 118.46 401.
3 gll 127.12 401.
3 gl0 137.05 401.
3 g9 148.58 401.
3 g8 162.01 401.
3 g7 177.72 399.
3 gb 196.24 395.
3 g5 217.34 384.
3 g4 238.68 374.
3 g3 261.65 402.
3 g2 296.84 416.
3 gl 340.11 422.
3 f 396.98 403.
3 pl 416.35 386.
3 p2 564.71 403.
3 p3 718.51 416.
3 p4 866.95 423.
3 D5 1015.01 497.
3 pb6 1161.69 429.
3 p7 1306.79 432.
3 p8 1451.05 433.
3 D9 1591.54 434.
3 pl0 1729.20 436.
3 pll 1865.24 436.
3 pl2 2001.08 436.
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Table 10: Mode frequency for GONG model computed at Nice. [ =4

[ mode type-n Frequency (in pxHz) Splitting in nHz
4 gl18 104.46 414.
4 gl7 109.68 414,
4 gl6 115.42 414.
4 glh 121.77 414.
4 gl4 128.82 415.
4 gl3 136.70 415.
4 gl2 145.56 415.
4 gll 155.55 415.
4 g10 166.90 416.
4 g9 179.93 416.
4 g8 194.94 416.
4 g7 212.22 414,
4 g6 931.93 408.
4 g5 250.62 382.
4 g4 265.42 404.
4 g3 291.73 422.
4 g2 328.39 424.
4 gl 368.25 429.
4 f 416.24 420.
4 pl 441.66 397.
4 p2 603.23 414.
4 p3 761.14 423.
4 pd 913.17 497.
4 pd 1062.09 431.
4 p6 1210.52 432.
4 p7 1356.29 434.
4 p8 1500.34 436.
4 P9 1640.89 436.
4 pl0 1778.01 437.
4 pll 1914.71 438.
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Table 11: Mode frequency for GONG model computed at Nice. [ =5

[ mode type-n Frequency (in pHz) Splitting (in nHz)
5) g22 104.51 420.
5 g2l 108.74 420.
5 20 113.33 420.
5 g19 118.30 421.
5 gl8 123.71 421.
5 gl7 129.63 421.
5 gl6 136.11 421.
5 e15 143.23 491,
5 gl4 151.10 421.
5 g13 159.83 422,
5 gl2 169.57 422.
5 o1l 180.47 4922,
5 ¢10 192.73 493.
5 g9 206.65 423.
5 g8 222.51 423.
5 g7 240.52 422.
5 o6 260.41 413.
5 g5 272.20 383.
5 o4 988.63 424,
5 g3 316.66 427.
5 g2 351.14 428.
5 gl 385.46 431.
5 f 426.19 424.
5 pl 467.80 407.
5 p2 637.83 421.
Y p3 798.90 428.
5 p4 954.25 430.
5 D5 1104.81 433.
5 pb6 1254.49 435.
5 p7 1401.51 436.
5 p8 1545.23 437.
5 P9 1685.84 438.
5 pl0 1823.21 438.
) pll 1960.44 439.
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Table 12: Mode frequency for GONG model computed at Nice. [ = 6

[ mode type-n Frequency (in pHz) Splitting (in nHz)
6 g25 108.02 424.
6 g24 111.83 424.
6 23 115.91 424,
6 g22 120.28 424.
6 g21 124.99 424.
6 220 130.06 424,
6 gl9 135.55 425.
6 e17 147.96 425.
6 gl6 155.00 425.
6 gld 162.71 425.
6 gl4 171.17 425.
6 gl3 180.50 425.
6 gl2 190.83 426.
6 210 215.06 426.
6 g9 229.41 426.
6 g8 245.58 427.
6 g7 263.74 427.
6 g6 283.28 427.
6 g5 289.19 413.
6 g4 309.16 395.
6 g3 336.04 428.
6 g2 367.57 429.
6 gl 396.56 430.
6 f 432.52 432.
6 pl 493.15 427.
6 p2 670.02 415.
6 p3 834.18 425.
6 p4 992.18 431.
6 D5 1144.88 433.
6 pb6 1295.42 435.
6 p7 1443.61 437.
6 p8 1587.31 437.
6 P9 1727.71 438.
6 pl0 1865.91 439.
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