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Parametric uncertainty sources



Uncertainty propagation as a tool

Model predictions to be compared with observational data
−→ model predictions as“virtual measurements” : value + incert.

Model assessment : significative discrepancies can be identified
(model improvement) ;

Sensitivity analysis : major prediction uncertainties can be analyzed
to improve input parameters (new lab. experiments...).
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Predicted ion mass spectrum with all uncertainty sources vs. Cassini’s INMS
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Local Uncertainty Propagation

1 List all sources of uncertainty

2 Characterize uncertainty sources and
estimate standard uncertainties

1 Type A : statistical analysis of a sample
2 Type B : all the rest

ux from designed pdf

3 Combine standard uncertainties

ŷ = F (x̂1, x̂2, ...)

u2
y =

∑
i

(
∂y

∂xi

)2

x̂i

u2
xi

+
∑
i 6=j

(
∂y

∂xi

)
x̂i

(
∂y

∂xj

)
x̂j

cov(xi , xj)

Guide to the expression of Uncertainty in Measurement (BIPM et al., 1995)
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Global Uncertainty Propagation

1 List all sources of uncertainty

2 Represent uncertainty sources by pdf g{xi}({ξi})

3 Perform uncertainty propagation

gy (η) =

∫
d {ξi} δ(η − f ({ξi})) g{xi}({ξi})

4 Estimate uncertainties of model outputs from gy (η)

Evaluation of measurement data - Supplement 1 to the GUM (BIPM et al., 2006)
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Limitations of local and global UP

Local approach, pb. with :

asymmetrical pdfs
(ex. lognormal) ;
∃ improved versions of
standard formula

nonlinear models
(large uncertainties) ;

nonlinear correlations
(ex : prescribed sum).

Most of the above apply to
chemical networks of interest
here...
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∃ improved versions of
standard formula

nonlinear models
(large uncertainties) ;

nonlinear correlations
(ex : prescribed sum).

Most of the above apply to
chemical networks of interest
here...

Global approach

more complex (pdf design)

grid-based methods
(polynomial chaos,
Galerkin...)

curse of dimensionality
pb. with positivity
constraints

sampling based methods

pb. if model y = F (x)
computer intensive
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Global UP : Titan photochemistry

Bimodality of outputs PDF : out of reach of local UP

Global UP provides extensive exploration of parameter space

Hébrard. et al., JPPC (2006), PSS (2007)



PDF design

type of PDF depends on the nature of the parameters

discrete vs. continuous
interval of definition
]−∞, +∞[, [0, +∞[, [a, b]...

PDF of outputs depends on PFDs of inputs,
tempered by“Central Limit Theorems”

the joint PDF of all uncertain parameters can be factorized in
groups of independent parameters

g{xi} ({ξi}) =
∏
k

g{xj}j∈k

(
{ξj}j∈k

)
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Parametric uncertainties of reaction rates

Analysis of measured rate constants

Example. Arrhenius ln k = lnA− ϑ/T

Data analysis provides {lnA, ϑ} ∼ Norm
`˘

lnA, ϑ
¯

, Σ
´

Σ : variance/covariance matrix

sample of k from {lnA, ϑ} and stat. analysis
or
u2

ln k = u2
ln A + u2

ϑ/T 2 − 2/T ∗ Cov (lnA, ϑ)

Note : Cov (lnA, ϑ) generally large (>0.9), very important for UP !



Arrhenius UP example : N(2D) +C2H4

lnA Ea/R (K) Correl

Bayesian -22.222 ± 0.66 504 ± 170 0.996
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lnA Ea/R (K) Correl

Sato et al. (1999) -22.193 ± 0.13 503 ± 50 n/a
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Arrhenius UP example : N(2D) +C2H4

Uncertainty factors



Choice of pdf for evaluated rates

Distributions implementing positivity constraint

Preferred value k0
i , estimated uncertainty factor F 0

i

ki ∼ Lognormal(k0
i ,F 0

i )

P(k0
i /(2F 0

i ) < ki < k0
i ∗ 2F 0

i ) ' 0.95

k0
i is median of pdf, not mean (Stewart and Thompson, 1994)

modelers truncate to 2 ∗ F 0
i or 3 ∗ F 0

i to avoid “exotic” rates

Preferred interval

ki ∼ Loguniform(kmin
i , kmax

i )

no preferred value within an interval (dispersed experimental data)

kmin
i = k0

i /(2F 0
i ), kmax

i = k0
i ∗ (2F 0

i )
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Lognormal vs. Loguniform

Output pdf depends on the place of the species in the network
Might have an impact on sensitivity analysis

Carrasco. et al., PSS (2007)



Parametric uncertainties of branching ratios

Multi-pathway reactions

ki,j = ki ∗ bi,j ;
∑

j

bi,j = 1

Reaction rates and branching ratios are mostly measured by
different experiments/techniques

larger uncertainties for branching ratios (more difficult to measure
than rates).

In such cases, it is better to keep an explicit separation of
uncertainty sources

more pertinent sensitivity analysis (key parameters) ;
easier to manage the sum rule wrt. uncertainties ;
T-dependence of ki different from bi,j

safer update of databases when new branching ratios or rate
available.
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PDFs for branching ratios

Distributions implementing the sum rule

Preferred values and precision

{bi,j} ∼ Diri ({αi,j}) ∝
∏

j

b
αi,j−1
i,j

No preference
{bi,j} ∼ Diri (1, 1, ..., 1)

ex : low-T extrapolation for ion-molecule reactions

Preferred intervals

{bi,j} ∼ Diun
({

bmin
i,j , bmax

i,j

})
Carrasco et al., PSS (2007)



Example : N+
2 + CH4

CH+
3 CH+

2 N2H
+

0.89 0.08 0.03
10% 100% 100%

Standard elicitation

1 ≤ 10 % ≤ 0.5
0.5< 30 % ≤ 0.1
0.1< 100 % ≤ 0

Carrasco et al., PSS (2007)



Example : N+
2 + CH4

CH+
3 CH+

2 N2H
+

0.89 0.08 0.03
2% 10% 10%

Improved elicitation
according to Nicolas (PhD

Thesis, 2002)

Carrasco et al., PSS (2007)



Example : N+
2 + CH4

CH+
3 CH+

2 N2H
+

1/3 1/3 1/3
100% 100% 100%

Full uncertainty

Carrasco et al., PSS (2007)



Branching ratios and the sum rule

I1 + M1 −→ P1 ; k1, b11

I1 + M1 −→ P2 ; k1, b12

I1 + M2 −→ P3 ; k2

I2 + M2 −→ P3 ; k3

[Mi ] � [Ii ]

Fk � Fb



Branching ratios and the sum rule

Uncorrelated partial rates : b11 = 0.33± 0.12, b12 = 0.67± 0.12



Branching ratios and the sum rule

Correlated partial rates : {b11, b12} ∼ Diri (15, 30)



Branching ratios and the sum rule

Uncorrelated partial rates : b11 ∼ b12 ∼ Unif (0, 1)



Branching ratios and the sum rule

Correlated partial rates : {b11, b12} ∼ Diri (1, 1)



Shopping for rate uncertainty

What have existing databases to offer to MCUP-aware modelers ?

udfa06

ki (T ) = αi (T/300)βi exp (−γi/T )

The accuracy is described by a letter - A, B, C, D, E - where the
errors are < 25%, < 50%, within a factor of 2, within an order of
magnitude, and highly uncertain, respectively.

No T-dependence of uncertainty

No pdf proposed
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osu 01 2007

ki (T ) = αi (T/300)βi exp (−γi/T )

Fi = 1.25,1.5, 2.0 or 10.0

No T-dependence of uncertainty
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Shopping for rate uncertainty

What have existing databases to offer to MCUP-aware modelers ?

Anicich (ion-molecule, JPL 2003)

Global rate ki ± fi (fi in percent)

Branching ratios {bij}j=1,N

No uncertainty on branching ratios

No T-dependence on properties and uncertainties

No pdf proposed



Shopping for rate uncertainty

What have existing databases to offer to MCUP-aware modelers ?

IUPAC - NASA/JPL

ki (T ) = k0
i exp (−Ei/T )

Fi (T ) = F 0
i exp

`
gi

˛̨
1
T
− 1

T0

˛̨´
; T 0 = 298K

Fi is an expanded uncertainty, CI ' 95%

“The assignment of the uncertainties is a subjective assessment of
the evaluators. They are not determined by a rigorous statistical
analysis of the database.”

No pdf proposed



Shopping for rate uncertainty

What have existing databases to offer to MCUP-aware modelers ?

Hébrard et al. (JPPC, 2006 ; PSS, 2007)

ki (T ) = αi (T/300)βi exp (−γi/T )

Fi (T ) = Fi (300K) exp
`
gi

˛̨
1
T
− 1

300

˛̨´
Fi is a standard uncertainty, CI ' 67%

“Both uncertainty factors, Fi (300K) and gi , do not necessarily result
from a rigorous statistical analysis of the available data.”

No pdf proposed, but

log ki = log ki (T ) + ε log Fi (T ); ε ∼ Norm(0, 1),
in Hébrard et al. (PSS, 2007)



Conclusions

Global UP is necessary for chemical networks

Monte Carlo UP is now recognized as a standard tool in metrology

Utility of MCUP depends on adapted PDFs, with

a correct description of inputs uncertainty

amplitude (not too small, not too large...)
distribution shape (to a minor degree, but we need more experiences
in SA to conclude)

a structure reflecting experimental uncertainty sources

necessary step to exp.-oriented sensitivity analysis

Existing databases have not be designed with MCUP in mind

they can be updated and improved along these proposed lines...
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