

Ion - neutral reactions

Dieter Gerlich

Introduction

Instruments for ion chemistry

Typical applications

Selected systems: old or up to date? Negative ions Spectroscopy

Carbon reactions

Formation of $C_3H_n^+$

Deuteration of H₃⁺

Non statistical behavior

Reactions with H atoms

Beam-trap combination

Outlook

Tucson, sub-K cooling, nano-particles

Ion chemistry: instruments

Environment Astrochemistry

Reaction dynamics Structure & function Elemental analysis

Ion and neutral beams Mass spectrometry SIFT*, DRIFT Traps (ICR, Paul) Multi-electrode rf traps

INHOMOGENEOUS RF FIELDS: A VERSATILE TOOL FOR THE STUDY OF PROCESSES WITH SLOW IONS**

*Canterbury SIFT (also known as 'the Southern Hemisphere SIFT") S. Petrie- D. K. Bohme, *Mass Spectrometric Approaches to Interstellar Chemistry*, Top Curr Chem (2003) 225: 37–75 **D. Gerlich, Adv. in Chem. Phys. 82 (1992) 1

Buffer gas cooling in an rf trap

Merged beams

22PT + TSR Heidelberg

LTQ Orbitrap

Linear Ion Trap MS

- MS, MS/MS and MSⁿ Analysis
- AGC Control
- Secondary Electron Multiplier Detector

Two Detectors Two Data Signals **One Instrument**

Coulomb clusters, sympathetic cooling

Ultracold ⁹Be⁺ ions

 $H_3^+ + O_2$

"Ultracold laser-cooled and sympathetically cooled ions in traps open up the possibility for highprecision measurements on welllocalized systems"

Useful for astrophysics and -chemistry?

B. Roth *et al. Ion-neutral chemical reactions between ultracold localized ions and neutral molecules with single-particle resolution Phys. Rev.* **A 73** (2006) 42712-1

Focusing H atoms: E_H < 1meV

Ion - neutral reactions

Dieter Gerlich

Introduction Instruments for ion chemistry

Typical applications

Selected systems: old or up to date? Negative ions Spectroscopy

Carbon reactions Formation of $C_3H_n^+$

Deuteration of H₃⁺

Non statistical behavior

Reactions with H atoms Beam-trap combination

Outlook

Tucson, sub-K cooling, nano-particles

Test reaction Ar⁺ + N₂

$C_2H_2^+ + H_2$

D. Gerlich, *in: "Molecules and Grains in Space" I. Nenner (ed.) AIP Press, New York* (1994) 489

Formation of Methanol in space?

N^+ + p/n-H₂: temperature dependence

D. Gerlich "Experimental Investigation of Ion-Molecule Reactions Relevant to Interstellar Chemistry" J. Chem. Soc. Farraday Trans., 89 (13), 2199-2208, (1993)

$N(^{3}P_{J})^{+} + H_{2}$ relaxation vs. reaction

Photodetachment: OH⁻

Electronic spectra: the Basel 22PT

A. Dhzonson, J.P. Maier *Electronic absorption spectra of cold organic cations: 2,4-Hexadiyne. Int. J. Mass. Spec.* **255** (2006)139

Microsolvation of cold, protonated tryptophan

O. Boyarkin, S. Mercier, A. Kamariotis, and T. Rizzo J. Am. Chem. Soc.; **128** (2006) 2816

Ion - neutral reactions Dieter Gerlich

Introduction

Instruments for ion chemistry

Typical applications

Selected systems: old or up to date? Negative ions Spectroscopy

Carbon reactions Formation of $C_3H_n^+$

Deuteration of H₃⁺ Non statistical behavior

Reactions with H atoms Beam-trap combination

Outlook

Tucson, sub-K cooling, nano-particles

I. Savic, I. Cermak, D. Gerlich, Int. J. Mass Spectrom., 240 (2005) 139

 $C_{3}^{+} + H_{2}$

Savic, D. Gerlich, Phys. Chem. Chem. Phys. 7, 1026-1035 (2005)

$C_{3}H_{n}^{+} + H_{2}$, HD and D_{2} @ 15 K

 Table 1
 Measured reaction rate coefficients^a for the indicated reactions

Reactio	n			$k/\text{cm}^3 \text{ s}^{-1} \text{ or } \alpha/\text{cm}^3 \text{ s}^{-1}$
C_{3}^{+}	$+ n-H_2$	$\rightarrow C_3 H^+$	+ H	1.7(-9)
		01 200 - 200 - 200		4.7(-10)
				4.6(-10)
		$\rightarrow C_3 H_2^+$	$+ h\nu$	5.7(-12)
				8.5(-11)
		$\rightarrow C_3 H^+$	+H	2.0(-9)
	$+ p - H_2$			2.0(-9)
				1.8(-10)
				2.5(-10)
				3.0(-10)
	+ HD	$\rightarrow C_3D^+$	+ H	9.3(-10)
		$\rightarrow C_3 H^+$	+ D	7.6(-10)
		$\rightarrow C_3 HD^+$	$+ h\nu$	5.9(-11)
	$+ n - D_2$	$\rightarrow C_3 D^+$	+ D	1.3(-9)
				1.3(-10)
				1.8(-10)
				1.5(-10)
C_3H^+	$+ n - H_2$	$\rightarrow C_3 H_2^+$	+H	1.5(-10)
				1.4(-11)
				1.1(-10)
				1.5(-11)
				5.0(-11)
	$+ p - H_2$			4.0(-11)
	$+ n - H_2$	$\rightarrow C_3 H_3^+$	$+ h\nu$	2.3(-11)
				6.0(-11)
				2.0(-10)
	$+ p - H_2$			2.2(-10)
				3.4(-12)
	+ HD	$\rightarrow C_3 D^+$	$+ H_{2}$	5.6(-11)
		$\rightarrow C_3HD^+$	+ H	4.6(-10)
		$\rightarrow C_3 H_2^+$	+ D	3.0(-12)
		$\rightarrow C_3H_2D^+$	$+ h\nu$	3.2(-11)
	$+ D_2$	$\rightarrow C_3 D^+$	+ HD	3.0(-13)
		$\rightarrow C_3 HD^+$	+ D	1.0(-11)
		$\rightarrow C_3 D_2^+$	+ H	2.7(-11)
		$\rightarrow C_3 H D_2^+$	$+ h\nu$	4.0(-12)
C_3D^+	+ HD	$\rightarrow C_3 HD^+$	+ D	1.0(-10)
		$\rightarrow C_3 D_2^+$	+ H	8.3(-11)
		$\rightarrow C_3 H D_2^+$	$+ h\nu$	8.0(-12)
	$+ D_2$	$\rightarrow C_3 D_2^+$	$+ \mathbf{D}$	1.7(-10)
		$\rightarrow C_3 D_3^+$	$+ h\nu$	1.3(-10)

I. Savic, D. Gerlich, Phys. Chem. Chem. Phys. 7, 1026-1035 (2005)

C₃H⁺ + H₂: competing channels

I. Savic, D. Gerlich, Phys. Chem. Chem. Phys. 7, 1026-1035 (2005)

Ion - neutral reactions Dieter Gerlich

Introduction

Instruments for ion chemistry

Typical applications

Selected systems: old or up to date? Negative ions Spectroscopy

Carbon reactions Formation of $C_3H_n^+$

Deuteration of H₃⁺

Non statistical behavior

Reactions with H atoms Beam-trap combination

Outlook

Tucson, sub-K cooling, nano-particles

Complete depletion in prestellar cores

Reaction
$H + H \rightarrow H_2(p)$
$H + H \rightarrow H_2(o)$
$H + D \rightarrow HD$
$H + crp \rightarrow H^+ + e^-$
$He + crp \rightarrow He^+ + e^-$
$H_2(p) + crp \rightarrow H^+ + H + e^-$
$H_2(o) + crp \rightarrow H^+ + H + e^-$
$H_2(p) + crp \rightarrow H + H$
$H_2(o) + crp \rightarrow H + H$
$H_2(p) + crp \rightarrow H_2^+(p) + e^-$
$H_2(o) + crp \rightarrow H_2^+(o) + e^-$
$\mathbf{H}^+ + \mathbf{H}_2(\mathbf{o}) \rightarrow \mathbf{H}^+ + \mathbf{H}_2(\mathbf{p})$
$\mathbf{H_3^+(p) + H_2(o) \rightarrow H_3^+(o) + H_2(p)}$
$\mathbf{H}_{3}^{+}(\mathbf{o}) + \mathbf{H}_{2}(\mathbf{o}) \rightarrow \mathbf{H}_{3}^{+}(\mathbf{p}) + \mathbf{H}_{2}(\mathbf{p})$
$\mathrm{H^{+}} + \mathrm{H_{2}(p)} \rightarrow \mathrm{H^{+}} + \mathrm{H_{2}(o)}$
$H_3^+(p) + H_2(p) \rightarrow H_3^+(o) + H_2(o)$
$H_3^+(o) + H_2(p) \rightarrow H_3^+(p) + H_2(o)$
$H_2^+(o) + H_2(o) \rightarrow H_3^+(p) + H$
$H_2^+(o) + H_2(o) \rightarrow H_3^+(o) + H$
$H_2^+(p) + H_2(o) \rightarrow H_3^+(p) + H$
$H_2^+(p) + H_2(o) \to H_3^+(o) + H$
$H_2^+(o) + H_2(p) \to H_3^+(p) + H$
$H_2^+(o) + H_2(p) \rightarrow H_3^+(o) + H$
$\mathrm{H_2^+}(\mathrm{p}) + \mathrm{H_2}(\mathrm{p}) \to \mathrm{H_3^+}(\mathrm{p}) + \mathrm{H}$
$\mathrm{He^{+}} + \mathrm{H_{2}(p)} \rightarrow \mathrm{H^{+}} + \mathrm{H} + \mathrm{He}$
$\mathrm{He^{+}} + \mathrm{H_{2}(o)} \rightarrow \mathrm{H^{+}} + \mathrm{H} + \mathrm{He}$
$H^+ + e^- \rightarrow H + photon$
$H_2^+(p) + e^- \rightarrow H + H$
$H_2^+(o) + e^- \rightarrow H + H$
$He^+ + e^- \rightarrow He + photon$
$\mathbf{H}_{3}^{+}(\mathbf{p}) + \mathbf{e}^{-} \rightarrow \mathbf{H} + \mathbf{H} + \mathbf{H}$
$\mathbf{H}_{3}^{+}(\mathbf{o}) + \mathbf{e}^{-} \rightarrow \mathbf{H} + \mathbf{H} + \mathbf{H}$
$\mathbf{H}_{3}^{+}(\mathbf{p}) + \mathbf{e}^{-} \rightarrow \mathbf{H}_{2}(\mathbf{p}) + \mathbf{H}$
$\mathbf{H}_{3}^{+}(\mathbf{p}) + \mathbf{e}^{-} \rightarrow \mathbf{H}_{2}(\mathbf{o}) + \mathbf{H}$
$\mathbf{H}_{3}^{+}(\mathbf{o}) + \mathbf{e}^{-} \rightarrow \mathbf{H}_{2}(\mathbf{o}) + \mathbf{H}$

Reaction
$HD^+ + H_2(p) \rightarrow H_2D^+(p) + H$
$HD^+ + H_2(p) \rightarrow H_2D^+(o) + H$
$HD^+ + H_2(o) \rightarrow H_2D^+(p) + H$
$HD^+ + H_2(o) \rightarrow H_2D^+(o) + H$
$HD^+ + H_2(p) \rightarrow H_3^+(p) + D$
$HD^+ + H_2(o) \rightarrow H_3^+(o) + D$
$HD^+ + H_2(o) \rightarrow H_3^+(p) + D$
$H_2^+(p) + HD \rightarrow H_2D^+(p) + H$
$H_2^+(p) + HD \rightarrow H_2D^+(o) + H$
$H_2^+(o) + HD \rightarrow H_2D^+(p) + H$
$H_2^+(o) + HD \rightarrow H_2D^+(o) + H$
$H_2^+(p) + HD \rightarrow H_3^+(p) + D$
$H_2^+(o) + HD \rightarrow H_3^+(p) + D$
$H_2^+(o) + HD \rightarrow H_3^+(o) + D$
$H_3^+(p) + D \rightarrow H_2D^+(p) + H$
$H_3^+(p) + D \rightarrow H_2D^+(o) + H$
$H_3^+(o) + D \rightarrow H_2D^+(o) + H$
$H_2D^+(p) + H \rightarrow H_3^+(p) + D$
$\mathrm{H}_{2}\mathrm{D}^{+}(\mathrm{o}) + \mathrm{H} \rightarrow \mathrm{H}_{3}^{+}(\mathrm{o}) + \mathrm{D}$
$H_2D^+(o) + H \rightarrow H_3^+(p) + D$
$\mathbf{H}_{3}^{+}(\mathbf{p}) + \mathbf{H}\mathbf{D} \rightarrow \mathbf{H}_{2}\mathbf{D}^{+}(\mathbf{p}) + \mathbf{H}_{2}(\mathbf{p})$
$\mathbf{H}_{3}^{+}(\mathbf{p}) + \mathbf{H}\mathbf{D} \rightarrow \mathbf{H}_{2}\mathbf{D}^{+}(\mathbf{p}) + \mathbf{H}_{2}(\mathbf{o})$
$\mathbf{H_3}^+(\mathbf{p}) + \mathbf{HD} \rightarrow \mathbf{H_2D}^+(\mathbf{o}) + \mathbf{H_2(p)}$
$\mathbf{H}_{3}^{+}(\mathbf{p}) + \mathbf{H}\mathbf{D} \rightarrow \mathbf{H}_{2}\mathbf{D}^{+}(\mathbf{o}) + \mathbf{H}_{2}(\mathbf{o})$
$\mathbf{H}_{3}^{+}(\mathbf{o}) + \mathbf{H}\mathbf{D} \rightarrow \mathbf{H}_{2}\mathbf{D}^{+}(\mathbf{p}) + \mathbf{H}_{2}(\mathbf{o})$
$\mathbf{H}_{3}^{+}(\mathbf{o}) + \mathbf{H}\mathbf{D} \rightarrow \mathbf{H}_{2}\mathbf{D}^{+}(\mathbf{o}) + \mathbf{H}_{2}(\mathbf{o})$
$\mathbf{H}_2\mathbf{D}^+(\mathbf{p}) + \mathbf{H}_2(\mathbf{o}) \rightarrow \mathbf{H}_2\mathbf{D}^+(\mathbf{o}) + \mathbf{H}_2(\mathbf{p})$
$\mathbf{H}_2\mathbf{D}^+(\mathbf{o}) + \mathbf{H}_2(\mathbf{p}) \rightarrow \mathbf{H}_2\mathbf{D}^+(\mathbf{p}) + \mathbf{H}_2(\mathbf{o})$
$\mathbf{H}_2\mathbf{D}^+(\mathbf{o}) + \mathbf{H}_2(\mathbf{o}) \rightarrow \mathbf{H}_2\mathbf{D}^+(\mathbf{p}) + \mathbf{H}_2(\mathbf{p})$
$H_2D^+(p) + H_2(p) \rightarrow H_2D^+(o) + H_2(o)$
$H_2D^+(p) + H_2(p) \rightarrow H_3^+(p) + HD$
$H_2D^+(p) + H_2(o) \rightarrow H_3^+(p) + HD$
$H_2D^+(p) + H_2(o) \rightarrow H_3^+(o) + HD$
$H_2D^+(o) + H_2(p) \rightarrow H_3^+(p) + HD$
$\mathbf{H}_{2}\mathbf{D}^{+}(\mathbf{o})$ + $\mathbf{H}_{2}(\mathbf{o}) \rightarrow \mathbf{H}_{3}^{+}(\mathbf{p})$ + $\mathbf{H}\mathbf{D}$
$\mathbf{H}_{2}\mathbf{D}^{+}(\mathbf{o}) + \mathbf{H}_{2}(\mathbf{o}) \rightarrow \mathbf{H}_{3}^{+}(\mathbf{o}) + \mathbf{H}\mathbf{D}$

Reaction
$D_3^+ + H_2(o) \rightarrow H_2D^+(o) + D_2$
$D_3^+ + H_2(p) \rightarrow HD_2^+ + HD$
$D_3^+ + H_2(o) \rightarrow HD_2^+ + HD$
$D_3^+ + e^- \rightarrow D + D + D$
$D_3^+ + e^- \rightarrow D_2 + D$
$D_2^+ + D_2 \rightarrow D_3^+ + D$
$D_3^+ + HD \rightarrow HD_2^+ + D_2$
g^0 + secpho \rightarrow g^+ + e^-
g^- + secpho $\rightarrow g^0$ + e^-
$g^0 + e^- \rightarrow g^- + photon$
$\mathbf{g}^- + \mathbf{H}^+ ightarrow \mathbf{g}^0 + \mathbf{H}$
$\mathbf{g}^- + \mathbf{H}_3^+(\mathbf{p}) \rightarrow \mathbf{g}^0 + \mathbf{H}_2(\mathbf{p}) + \mathbf{H}$
$\mathbf{g}^- + \mathbf{H}_3^+(\mathbf{p}) \rightarrow \mathbf{g}^0 + \mathbf{H}_2(\mathbf{o}) + \mathbf{H}$
$\mathbf{g}^- + \mathbf{H}_3^+(\mathbf{o}) \rightarrow \mathbf{g}^0 + \mathbf{H}_2(\mathbf{o}) + \mathbf{H}$
$\mathbf{g}^- + \mathbf{H}_3^+(\mathbf{p}) \rightarrow \mathbf{g}^0 + \mathbf{3H}$
$\mathbf{g}^- + \mathbf{H}_3^+(\mathbf{o}) \rightarrow \mathbf{g}^0 + \mathbf{3H}$

more than 250 reactions

ionization neutralization ortho para transitions deuteration excitation

C. M. Walmsley, D. R. Flower, G. Pineau des Forets Astron. & Astroph., 418, 1035-1043, (2004)

H_3^+ + HD: equilibrium of of H_3^+ , H_2D^+ , HD_2^+ , and D_3^+

HD = 9.3×10^{11} cm⁻³ n-H₂= 1.4×10^{13} cm⁻³

HD = $5.7 \times 10^{13} \text{ cm}^{-3}$ n-H₂ = $1.9 \times 10^{14} \text{ cm}^{-3}$ $k_3 = 5 \times 10^{-29} \text{ cm}^6 \text{s}^{-1}$

$H_3^+ + HD \leftrightarrow H_2D^+ + H_2$ thermodynamic equilibrium?

 $\Delta G = \Delta H - T \Delta S$

G Gibbs free energy *H* enthalpy *S* entropy

 $K(T) = \exp(-\Delta G/RT)$ equilibrium coefficient $K(T) = (\mu'/\mu)^{3/2} \times$

$$\times \frac{q(\mathrm{H}_{2}\mathrm{D}^{+})q(\mathrm{H}_{2})}{q(\mathrm{H}_{3}^{+})q(\mathrm{HD})}$$

 $\times \exp\left(\Delta E_0/kT\right)$

$$q(T) \sum_{i} g_i \exp(-\varepsilon_i/kT)$$

partition function

 $\Delta E_0 = 231,8 \text{ K}$

ε_i relative to the lowest state

Deuteration $H_3^+ + HD \leftrightarrow H_2D^+ + H_2$: equilibrium constant *K*?

K~ exp(231.8 K / T)

<i>T</i> (K)	Adams and Smith	Herbst	Ramanlal		
80	4.5 (±1.3)	5.9	6.82		
200	2.4 (±0.7)	2.6	1.52		
295	2.0 (±0.6)	2.1 ^a	1.07 ^a		
^a The theoretical value is actually at 300 K.					

	T = 10 K	
Ramanlal & Tennyson	2.6(+12)	
<u>Gerlich et al. (2002)</u>	n-H ₂ : <i>K</i> = 7.4 p-H ₂ : <i>K</i> = 390	
T _{22PT} 10 K, (2005) T _{p-H2 Gen} 12.5K	>500	

Ramanlal & Tennyson wrote in 2004: trap experiment disagrees with calculations by 12 orders of magnitude

role of $o-H_2$ (N=1) state specific $k_i(T)$ method overtone LIR ${\rm H_3}^+ + {\rm D}_2$

D. Gerlich *et al.* (2006) *Dynamical constraints and nuclear spin caused restrictions in HmDn+ collision systems and deuterated variants Phil. Trans. R. Soc. Lond. A* **364:** 3007

Nuclear spin: propensity rules

D. Gerlich et al. Phil. Trans. R. Soc. Lond. A 364 (2006) 3007

Ion - neutral reactions Dieter Gerlich

Introduction

Instruments for ion chemistry

Typical applications

Selected systems: old or up to date? Negative ions Spectroscopy

Carbon reactions Formation of $C_3H_n^+$

Deuteration of H₃⁺ Non statistical behavior

Reactions with H atoms

Beam-trap combination

Outlook

Tucson, sub-K cooling, nano-particles

$CH_4^+ + H_2 \leftrightarrow CH_5^+ + H$

blue T>300K: Federer et al, Molecular Astrophysics (1985)

red: G. Borodi, A. Luca, D. Gerlich, in preparation

Focusing H atoms

G. Borodi, A. Luca, C. Mogo, D. Gerlich Collisions of cold trapped CH_5^+ ions with slow hydrogen atoms, (2008)

$CH^+ + H \rightarrow C^+ + H_2 + 0.398 \text{ eV}$

Stoecklin and Halwick, PCCP 2005 Halvick et.al. PCCP 2007

Ion - neutral reactions Dieter Gerlich

Introduction

Instruments for ion chemistry

Typical applications

Selected systems: old or up to date? Negative ions Spectroscopy

Carbon reactions Formation of $C_3H_n^+$

Deuteration of H₃⁺

Non statistical behavior

Reactions with H atoms Beam-trap combination

Outlook

Tucson, sub-K cooling, nano-particles

FG Laboratory Astrophysics 2000 - 2006

DFG research unit 388

Structure, dynamics and properties of molecules and grains in space

Sprecher: Prof. Dieter Gerlich, TU Chemnitz

From 2000 to 2006 the Deutsche Forschungsgemeinschaft has supported the Forschergruppe **FGLA**.

Final report (Jan. 2007) see: http://www.tu-chemnitz.de/FGLA

Laboratory Astrophysics

TU Chemnitz

DFG-Forschergruppe 388, Report 2003 - 2006 Dieter Gerlich and Thomas Henning

TECHNISCHE UNIVERSITÄT
CHEMNITZFAKULTÄT FÜR
NATURWISSENSCHAFTENGasentladungs- und lonenphysik
DFG FG Laboratory Astrophysics2PT + H-beamA. Luca, G. Borodi, C. Mogo

I. Savic, S. Decker, I. Cermak

J. Glosik, R. Plasil, F. Windisch

- AB-22PT + H-beam
- Black body radiation
- RET + C_n-beam
- 4K-22PT
- 22PT-spectroscopy
- Cold TrpH⁺, TyrH⁺
- Beam-Trap astrochemistry

T. Rizzo, O. Boyarkin M. Smith

J. Maier, Basel

S. Decker

THE UNIVERSITY OF ARIZONA

22PT-TSR H3^(J,K) + eD. Zajfmann, A. Wolf, H. Krekel, TSR HD**TV-22PTS. Schlemmer**, O. Asvany (Köln)

New Temperature Variable Ion Trap for Chemical Research

G Tikhonov, M. Smith, D. Gerlich (NSF CRIF ID)

ITS LEIF: Ion Technology and Spectroscopy at Low Energy Ion beam Facilities

TU Chemnitz:

- production of brilliant beams of cold molecular ions, including biomolecules
- extending the unique sensitivity and versatility of rf multipole ion traps for in situ experiments (spectroscopy, photostability, chemical reactions, astrochemistry).
- characterizing the instrument as ion source
- Injecting externally created ions (e.g. from an ESI source)
- synthesizing ions in situ
- test object H3+ and deuterated variants
- new method for getting ultracold ions (sub-K domain, presently 5 K are reached)

closing the gap between "ultra cold molecules" (= laser cooled diatoms) and cold chemistry: s-wave reactions, state specific cross sections, role of nuclear spin, non rotating large molecules

Sub-K cooling of stored ions

Heating stored C_{60}^+ with a cw CO_2 laser

Image of 100 000 ions

 $100 \times 150 \ \mu m$ (magnification ×6) exposure 5 s trapping time several min T ~ 2300 ± 300 no decay Laser power 20 W Focus 50 μm He buffer gas 1 ×10⁻⁴ mbar

Summary / perspectives of NPMS

- single particle (time average)
- non-destructive, absolute mass and charge determination
- long time trapping, isolation under UHV conditions
- high resolution of secular frequencies ($\Delta v/v < 10^{-6}$)
- experimental characterization of the trap, new trap design accuracy, precision, linearity, anharmonicity of potential
- small particles (1-5 nm)
- optical detection (spectroscopy, light pressure,...)
- chemistry, agglomerates, magnetic properties
- temperature range: 5 K 3000 K

Black body radiation of carbonaceous material

