Molecular Hydrogen Formation in the laboratory -Simple or complex?

Liv Hornekær Dept. Physics and Astronomy University of Aarhus Denmark

Efficient H₂ formation under a wide range of interstellar conditions

Dense clouds

Diffuse clouds

PDRs

~3 x 10⁻¹⁷cm³s⁻¹ Jura 1975, Gry 2002

3 x 10⁻¹⁷ - 2 x 10⁻¹⁶ cm³s⁻¹ Habart 2004

Post-shock gasses

Efficient formation of H_2 on dust grains from T_{gas} = 10 – 1000 K, T_{grain} = 10 – 100 K

But not by the same reaction mechanism !

*grain surfaces are not the same

*Different surface reactions are active at different temperatures

What are the parameters ?

Grain surfaces:

Chemical composition Morphology: Roughness Porosity (Grain size)

Surface binding sites: Physisorption - basal plane (- defects) Chemisorption - basal plane Step edges

Physisorption

Chemisorption

Vacancy

Dense cloud conditions:

Ice covered surfaces at 10 K Experiments: Vidali (Manico 2001, Roser 2002, 2003) Hornekær (Hornekaer 2003, 2005) Lemaire/Dulieu (Dulieu 2005, Amiaud 2006, 2007)

Types of experiments:

Temperature Programmed Desorption

Grain Morphology

Roughness: Not one E_b, but a distribution of binding energies

Porosity:

ASW figure from Kimmel et al, JCP 114 p.5295 (2001)

What do we know from experiments about H₂ formation under dense cloud conditions?

In the lab: H₂ formation is efficient (~0.2-0.5) for 7-18 K (Hornekaer 2003, Vidali 2005)

Mechanism: Langmuir-Hinshelwood or Hot atom

Controversy: Low temperature mobility

Model extrapolations to the ISM

Controversial -But probably unimportant Given by the H atom desorption barrier. Uncertain due to simplified analysis models.

Status on surface reactions under dense cloud conditions:

High efficiency in relevant temperature range

But: Surface parameters:

Surface parameters: All done on H_2O ASW ice H_2O deposited as molecules No calculation of efficiency range taking surface morphology correctly into account. Grain size.

Further complications: Poisoning (Catalysis) Isotope effects (Dulieu)

Diffuse cloud conditions

Bare grain at 15-20 K, gas temperature: 30-100 K Experiments: TPD by Vidali et al. Polycrystalline and amorphous silicates Amorphous carbon

Extrapolation to interstellar H₂ formation efficiency

Silicates

A problem for interstellar H₂ formation under diffuse cloud conditions ?

In the analysis of these data the roughness of the surface was not sufficiently accounted for.

If we disregard this and accept derived parameters: Then there is a problem.

But:

Surface roughness can save the day by bringing the High efficiency interval up to 20-50 K depending on the degree of roughness.

Cuppen 2005

Extrapolation to interstellar H₂ formation efficiency

Silicates

Status on H₂ formation under diffuse cloud conditions: Surface parameters are critical:

> Surface roughness determines efficient temperature window Again, low temperature cut-off probably not important due to Eley-Rideal

Surface roughness has to be correctly accounted for both in data analysis and models.

Grain surfaces => reaction rates Reaction rates => grain surfaces

PDR / Shocked-gasses

Bare grains at 10-300 K, gas temperature: 100-1000 k

Few experiments: Zecho (Zecho 2002) Hornekaer (Hornekaer 2006, Baouche 2006)

On graphite and amorphized graphitic surfaces

Many experimental methods: TPD, STM, EELS, QMS, LITD-TOF

TPD of D₂ formation on graphite

 $\frac{\mathrm{d}\Theta}{\mathrm{d}t} = -k_0 \,\mathrm{e}^{-E_{\mathrm{B}}/k_{\mathrm{B}}T}\,\Theta^{\mathrm{n}}$

n=1 => First order desorption

Zecho et al, J. Chem. Phys. 117, 8486 (200

LITD TOF

Laser Induced Thermal Desorption (LITD)

> Alexandrite Laser

4 mJ 100 ns pulse

Time of Flight Measurement

Kinetic energy of D₂ formed on graphite

Baouche 2006

STM on graphite

‡ 2.46 Å

Hydrogen on graphite –Monomers

Diffusion

Barrier to diffusion for an isolated H atom: 1.14 eV

Barrier to desorption for an isolated H atom: 0.9 eV

Recombination pathways

Extrapolation to PDR and postshock gas conditions

 $T_{gas} \sim 600-1000K$

=> population of the chemisorbed states on graphite

Barrier to recombination: 1.4 eV => thermal desorption: 1000 years at 300K Thermal spikes? Localized heating? or high coverage of H₂ => Eley Rideal

MC surface reaction model based on these experiments in the making – Herma Cuppen.

Status on H₂ formation under PDR and Post-shock conditions:

One system studied which offers H_2 formation routes at elevated temperatures.

Efficiency – we await Hermas model.

Needed: studies of other surfaces (silicates, amorphous Carbon) at high T.

Grain size

Grain size

Large grains: Physisorbed H not desorbed due to thermal fluctuations.

However, if we look at chemisorbed H this is not so critical – might even activate recombination

Small grains (or even PAHs) might contribute to or even dominate H_2 formation under some conditions.

Conclusions

Uncertainty not only in rates - but also in reaction mechanisms

Dense clouds: Langmuir Hinshelwood (or hot atom) **Eley-Rideal**? Rates: Better analysis models, chemical composition Diffuse clouds: Langmuir Hinshelwood (or hot atom) **Eley-Rideal**? Rates: surface parameters critical PDR/Post-Shock gas: More studies needed - other surfaces Pre-pairing on graphite **Eley-Rideal** Role of small grains and PAHs Rates: Detailed surface models required

Fate of durface reactions in astrophysical models / reaction networks ?

Grain surfaces => reaction rates

Reaction rates => grain surfaces