Use and non-use of laboratory results on interstellar ices

Harold Linnartz

Raymond and Beverly Sackler Laboratory for Astrophysics Leiden Observatory

http://www.laboratory-astrophysics.eu

Use and non-use of laboratory results on interstellar ices

Contents

Astronomical setting Desorption studies Hydrogenation studies

http://www.laboratory-astrophysics.eu

Astronomical setting

Öberg et al., A&A 462 (2007) 1187-1198 Bisschop et al., A&A 470 (2007) 749-759 Bouwman et al., A&A 476 (2007) 995-1003

Relevant processes

Thermal processing

Si / C

~ 0.1 – 1 µm

Atomic / e bombardment

Н

Hard UV (100-200 nm) irradiation

T-dependence
Ice composition
Ice morphology
Layer thickness
Flux dependence

Molecules discovered in space – d.d. januari 2008

									· ·
2 3			4	5	6	7	8-9	10-13	
H ₂	PN	C ₃	OCS	c-C₃H	C ₅	C₅H	C₅H	CH ₃ C ₃ N	CH₃C₅N
AIF	SO	C₂H	NaCN	I-C ₃ H	C ₄ H	I-H ₂ C ₄	CH ₂ CHCN	HCOOCH ₃	(CH ₃) ₂ CO
AICI	SO⁺	C ₂ O	SO ₂	C ₃ N	C ₄ Si	C_2H_4	CH ₃ C ₂ H	CH ₃ COOH	(CH ₂ OH) ₂
C ₂	SiN	C ₂ S	c-SiC ₂	C ₃ O	I-C ₃ H ₂	CH ₃ CN	HC₅N	C ₇ H	CH ₃ CH ₂ CHO
СН	SiO	CH ₂	CO ₂	C₃S	c-C ₃ H ₂	CH ₃ NC	HCOCH ₃	H ₂ C ₆	
CH+	SiS	HCN	NH ₂	C_2H_2	CH ₂ CN ⁺	CH ₃ OH	NH ₂ CH ₃	CH ₂ OHCHO	HC ₉ N
CN	CS	НСО	H ₃ +	HCCN	CH ₄	CH₃SH	c-C ₂ H ₄ O		CH ₃ C ₆ H
CO	HF	HCO ⁺	SiCN	HCNH ⁺	HC ₃ N	HC₃NH⁺	CH ₂ CHOH	CH₃CH₄	
CO +	SH	HCS ⁺	SiNC	HNCO	HC ₂ NC	HC ₂ CHO	C ₆ H-	CH ₃ CH ₂ CN	(CH ₃ OC ₂ H ₅)
СР	CF ⁺	HOC+	AINC	HNCS	НСООН	NH ₂ CHO		CH ₃ OCH ₃	(C ₆ H ₆)
SiC	FeO	H ₂ O		HOCO ⁺	H ₂ CHN	C ₅ N		CH ₃ CH ₂ OH	
HCI	SiH	H ₂ S		H ₂ CO	H ₂ C ₂ O	I-HC ₄ N		HC ₇ N	HC ₁₁ N
KCI	O ₂	HNC		H ₂ CN	H ₂ NCN	C-H ₂ C ₃ O		C ₈ H	
NH		HNO		H ₂ CS	HNC ₃	H ₂ CCNH	1 2 · · ·	CH ₃ CONH ₂	
NO		MgCN		H ₃ O ⁺	SiH ₄		a series of the	C ₈ H⁻	
NS		MgNC		NH ₃	H ₂ COH ⁺				
NaCl	1	N ₂ H ⁺		C-SiC ₃	C ₄ H ⁻				
OH		N ₂ O		CH ₃		+ +		+	

Relevant matter

pure, mixed and layered - amorphous vs. crystalline

FTIR transmission spectroscopy of interstellar ices

Chain plate absorption strength on mixing ratio

Desorption Processes

-Thermally induced -Photon induced

> Fuchs et al., Far. Disc. 133 (2006) 331 Acharyya et al., A&A 466 (2007) 1005-1012 Öberg et al., ApJ 662 (2007) L23-26

Optical picture

CO in gas phase at 10 K → non-thermal desorption mechanism

Photo-desorption: 10^{-5} - 10^{-8} CO-molecules / UV photon \rightarrow generally neglected in astrochemical models

Submm spectrum CO

Thermal desorption of ice

Simulate inter/circumstellar radiation field using a MW H_2 discharge lamp (7 - 10.5 eV & 6.10¹³ photons s⁻¹ cm⁻²). QMS

H₂ VUV lamp

RAIRS

Simulate inter/circumstellar radiation field using a MW H_2 discharge lamp (7 - 10.5 eV & 6.10¹³ photons s⁻¹ cm⁻²). QMS

H₂ VUV lamp

RAIRS

RAIR Spectra

CO photodesorption rate scales with the flux of the MW H_2 discharge lamp, i.e. no local heating.

QMS

H₂ VUV lamp

The final value for the photo desorption rate is not sensitive to layer thickness, i.e. not substrate mediated.

QMS

H₂ VUV lamp

RAIRS

Experimental checks!

Not a thermal effect Immediate onset TPD signal upon irradiation.

<u>No photo-processing</u> After 8 hrs of irradiation < $0.2 \% CO_2$

Not a substrate effect

Bilayered experiments (C¹⁸O/C¹⁶O) with several top layer thicknesses show that process is restricted to top layers.

Independent of ice thickness until sub monolayer situation.

CO photodesorps, N_2 does not (< 2.10⁻⁴).

Fig. 2. Gas chromatogram showing a rich variety of amino acids and other compounds generated from a photo-processed ISM ice, containing H_2O , CH_3OH , NH_3 , CO and CO_2 . (Taken from G.M.M. Caro et al, Nature 416 (2002) 403.)

Gas chromatogram 'Yellow stuff', Nature 416 (2002) 403

Likely photodesorption mechanism

Frg. 1. Potential curves for the different electronic states of CO.

Consequences for the models

Photodesorption rate orders of magnitudes higher than assumed so far in astrochemical models \rightarrow explains gas phase CO at temperatures below accretion temperature.

With this excitation mechanism other ice species should photodesorb as well.

And in addition CO co-photodesorption may become possible.

 $R_{E-UV-PD} = I_{ISRF-VUV} e^{-\gamma A_V} Y_{PD} \approx 3 \times 10^5 e^{-\gamma A_V}$ $R_{CR-UV-PD} = I_{CR-VUV}Y_{PD} \approx 30$ $R_{CR-spot-heating} \propto I_{CR-VUV} \approx 70$

Dark cloud

Comparison photodesorption and spot heating for small and larger grains

<u>molecules cm⁻² s⁻¹</u>

Chemical reactions In interstellar ices

Fuchs et al., A&A (2007) **Submitted** Bisschop et al., A&A 470 (2007) 749-759 Bouwman et al., A&A 476 (2007) 995-1003

UHV setup - SURFRESIDE

Qualitative conclusions

Independent experiments performed for 12-20 K, 5.5-70 ML, H-flux between 10¹² - 10¹⁴ H-atoms cm⁻² s⁻¹.
 Optimum reaction rates between T = 13 - 15 K.
 Results put an end to Watanabe-Hiraoke discussion
 For ices thicker than 10 ML no relevant thickness dependence is observed.

$$CO \xrightarrow{k_0} HCO \xrightarrow{k_1}_{i=1} H_2CO \xrightarrow{k_2}_{i=2} CH_3O \xrightarrow{k_3}_{i=3} CH_3OH$$

$$CO \xrightarrow{k_0}_{i=0} H_2CO \xrightarrow{k_2}_{i=2} CH_3OH$$

$$\beta_i = 60 k_i N_H \quad \text{in [min^{-1}]}$$

$$\frac{N_{\text{H}_2CO}(t)}{N_{\text{CO}}(0)} = \alpha_2 \left(\frac{\beta_0}{\beta_2 - \beta_0}\right) \left(\exp\left[-\beta_0 t\right] - \exp\left[-\beta_2 t\right]\right)$$

$$\frac{N_{\text{CH}_3OH}(t)}{N_{\text{CO}}(0)} = \tilde{\alpha}_2 \left(\frac{\beta_0 \beta_2}{\beta_2 - \beta_0}\right) \left(\frac{1 - \exp\left[-\beta_0 t\right]}{\beta_0} - \frac{1 - \exp\left[-\beta_2 t\right]}{\beta_2}\right)$$
(12)

CO ice 5 ML, 15 K, ~ 8.10¹³ H-atoms cm⁻² s⁻¹ RAIRS data converted in time dependent column densities

Two time domains: 40 min and 180 min.

Short time domain: $\beta_0=0.1$ min⁻¹ $\beta_2=0.02$ min⁻¹

Problems to take into account

How about the surface: exact layer thickness / density and layer homogeneity ?

Transforming RAIRS spectra into surface parameters is not that trivial.

How well specified is the H-atom flux ? How about H-atom recombination and hydrogen poisoning ? How layer specific are reactions ?

How about the temperature of the H-atom beam ? Is this relevant below 300 K ?

Are laboratory data in this useful for astronomical conditions ? Saturation, multi-atom processes, heating? Very accurate controls necessary as well as simulations.

'Bouwstenen leven ontstaan in het heelal'

Uitgegeven: 30 oktober 2007 16:47 Laatst gewijzigd: 2 november 2007 09:26

AMSTERDAM - In het vacuüm van de ruimte kunnen ingewikkeldere moleculen ontstaan dan eerder door wetenschappers werd aangenomen. Onderzoekers aan de universiteit van Leiden wisten via een simulatie van het heelal alcoholmoleculen te produceren.

De reactiviteit van moleculen in de ruimte is extreem laag. Chemische processen op aarde verlopen sneller naarmate de druk en de temperatuur hoger wordt. De omstandigheden in de ruimte zijn precies omgekeerd.

CH₃OH

2H

Aminozuren

De vorming van organische verbindingen zoals alcohol zijn belangrijk voor het ontstaan van leven. Om die reden is het voor CH₃CH₂OH H CH₃CHO

СН₂СО Н НС ::0

HNCO H

NH₂CO

NH₂CHO

Starring Ewine van Dishoeck & astrochemistry group Guido Fuchs Herma Cuppen **Claire Romanzin** Suzanne Bisschop Karin Öberg Sergio Ioppolo Kinsuk Acharyya Zainab Awad Jordy Bouwman Nadine Wehres Harald Verbraak Wiebke Ludwig

