The Meudon PDR code

J. Le Bourlot F. Le Petit E. Roueff

\diamond Introduction

- ♦ Benchmark exercise
- ♦ Photoprocesses and UV radiative transfer
 - exact / approximate
 - diagnostic tool?
- ♦ Chemical processes
 - H₂ formation

♦ Conclusions

Laboratoire de l'Univers et de ses Théories

PDR models

Photon Dominated Regions :

- Diffuse and translucent clouds
- Edge of molecular clouds
- Damped Lyman α systems
- Circumstellar disks
- ...
- Dark clouds

Some historical facts

• 70's : first detection of H₂ with Copernicus toward bright stars : Black, Dalgarno, Glassgold, Hollenbach, Jura, Stationary models - H/H₂ transition-

 \bullet 80's : GHRS of HST UV spectra longwards 120 nm C+/ C

/ CO transition : van Dishoeck, Black, Sternberg, Viala,

Flower, Pineau des Forêts, Le Bourlot, Roueff ...

- 90's : ISO H_2 and atomic fine structure line seen in emission !
- 2000's : FUSE : fainter sources
- present and future : Spitzer, Herschel, ALMA, JWST, ... ?

PDR models

Geometry

- I or 2 side illumination
- Isotropic or perpendicular

Spherical

• r $\longrightarrow \infty$ to mimic a plane parallel case

Benchmark of PDR codes (Leiden)

(Röllig et al. - A&A 467, 187, 2007)

Aikawa	Lee, Herbst, Pineau des Forêts, Le Bourlot, Aikawa	Analytical formulae for H ₂ and CO photodissociation	
Lee96mod	Lee, Herbst, Pineau des Forêts, Roueff, Le Bourlot	Analytical formulae for H ₂ and CO photodissociation	
Kosma	Störzer, Köster, Zilinsky, Jeyakumar, Röllig	spherical geometry	
Bensch	Störzer, Köster, Zilinsky, Jeyakumar, Bensh	spherical geometry	
НТВКW	Hollenbach, Tielens, Burton, Kaufman, Wolfire	Simplified H ₂	
Leiden	Black, van Dishoeck, Jansen, Jonkheid	Detailed physics	
Cloudy	Ferland, van Hoof, Abel, Shaw	Detailed physics	
Meudon	Le Bourlot, Roueff, Le Petit	Detailed physics	
Sternberg	Sternberg, Dalgarno	Detailed physics	
Meijerink	Meijerink, Spaans	XDR	
Costar	Kamp, Bertoldi, van Zadelhoff	Circumstellar disks	
UCL	Viti, Thi, Bell	Time dependence	

Benchmark exercise

Simplification

Chemistry based on : H, He, C, O 31 species Chemistry : UMIST99

 H_2 formation rate fixed : R = 3×10⁻¹⁸ T^{1/2} cm³ s⁻¹ (2×10⁻¹⁷ at 50 K)

2 types of models

F1 n = 10 ³ cm ⁻³ , χ = 10	F2 n = 10^3 cm ⁻³ , $\chi = 10^5$	T fixed	Test of photo-processes	
F3 n = 10 ^{5.5} cm ⁻³ , χ = 10	F4 n = 10 ^{5.5} cm ⁻³ , χ = 10 ⁵	50 K		
V1 n = 10 ³ cm ⁻³ , χ = 10	V2 n = 10 ³ cm ⁻³ , χ = 10 ⁵		Test of thermal balance	
V3 n = 10 ^{5.5} cm ⁻³ , χ = 10	V4 n = 10 ³ cm ⁻³ , χ = 10 ⁵	I variable		

Benchmark exercise FI model $\chi = 10$ T = 50 K

Before comparaison

Characteristics

• Plane parallel & steady state

. . . .

- Detailed UV radiative transfer for photo-processes
 - with discrete gas absorption in H, H₂, HD, CO, ... (~35000 transitions)
 - continuous absorption from dust particles
- Chemistry
- Thermal balance
- Detailed balance of molecular populations in H_2 , CO, CS, H_2O , HCO⁺, H_3^+ , ...

http://aristote.obspm.fr/MIS

Various improvements since benchmark exercise

- exact radiative transfer (Goicoechea & Le Bourlot, AA 467, 1, 2007)
- infrared pumping of H₂O by dust radiation (Gonzalez-Garcia et al. submitted)

H₂ formation with moment equations (work in progress with O. Biham)

Inversion tool

- analyse lines
- derive physical conditions (T, n_H, ...)
- Hint at evolution paths
- Caveat : Reality is too sophisticated

Experiment in silico

- Test physical hypothese
- Assert importance of physical parameters
- Suggest new paradigms
- Caveat : Reality is too sophisticated

We must adapt our limited tols and computing power to our goals

Radiative transfer

Decoupling between UV and IR / radio

UV radiative transfer

- $^{\bullet}$ dependence on the excitation status (H_2, HD, CO)
- dependence on the grain properties
- absorption
- angular redistribution

• IR / radio radiative transfer :

Statistical equilibrium equations (collisional + radiative excitation and de-excitation)

- [C II] 158 µm and [Si II] 35 µm (Barinovs & van Hemert, 2005, ApJ 620, 537)
- [O I] 63, 145 µm (Abrahamson et al. 2007, ApJ 654, 1171)

- [C I] 370, 610 µm (Abrahamson 2007)
- CO [H₂ : Flower 2001, H revisited by Shepler et al, 2007)
- H₂O [H₂ : Green, Phillips, revisited by Dubernet, Grosjean et al.)
- H₂: collisions with H, revisited by Wrathmall and Flower, 2006; non-reactive only

One can not avoid the transfer equation

$$\mu \frac{\partial I_{\lambda}(\tau_{\lambda},\mu)}{\partial \tau_{\lambda}} = I_{\lambda}(\tau_{\lambda},\mu) - S_{\lambda}(\tau_{\lambda}) - \frac{\omega_{\lambda}(\tau_{\lambda})}{2} \int_{-1}^{+1} p_{\lambda}(\mu,\mu') I_{\lambda}(\tau_{\lambda},\mu') d\mu'$$

with

$$\omega_{\lambda}(\tau_{\lambda}) = \frac{\sigma_{\lambda}^{D}(\tau_{\lambda})}{\kappa_{\lambda}^{G}(\tau_{\lambda}) + \kappa_{\lambda}^{D}(\tau_{\lambda}) + \sigma_{\lambda}^{D}(\tau_{\lambda})}$$

$$\begin{split} I_{\lambda} &: \text{specific intensity} \\ S_{\lambda} &: \text{Source function} \\ \omega_{\lambda} &: \text{effective albedo} \\ p_{\lambda} &: \text{angular redistribution} \\ \text{function} \end{split}$$

Solution through spherical harmonics

- First proposed by Flannery et al., ApJ 236, 598, 1980
- Extended by Roberge, ApJ 275, 292, 1983 to include embedded sources
- Extended by Goicoechea & Le Bourlot (2007) with variable coefficients including discrete transitions

Photo-reactions probability calculations

 $k = \int \sigma(\lambda) I(\lambda) d\lambda$

 $\sigma(\lambda)$: photodissociation cross section cm^2 I($\lambda)$: mean intensity of the radiation in photons cm^{-2} s $^{-1}$ Å $^{-1}$

In presence of resonances :

$$k = \frac{\pi e^2}{mc^2} \lambda_u^2 f_u \eta_u I_u$$

8.85 x 10⁻²¹

Frequent approach : $k = k_0 \cdot \chi \cdot \exp(-\beta A_V)$

Example : $S + hv \rightarrow S^+ + e^ k = 5.9 \times 10^{-10} e^{-2.58 \text{ Av}}$

• All possible channels should be considered

• dependence on the grain properties and intensity of the radiation field (values different for "Mathis" and "Draine" radiation fields)

cf Ewine's talk

H₂ photodissociation probability

Dependence on

- incident radiation
- H₂ excitation
- molecular physics data
 - J dependent oscillator strengths and photodissociation probabilities (Abgrall & Roueff) data available at http://molat.obspm.fr
 - (de)excitation collision rates by H, He, H₂, electrons, H⁺, ... (new calculations by Wrathmall & Flower in J. Phys B 39, L249 (2006) for H₂ + H data available at http://massey.dur.ac.uk/saw/websi te_data

FGK versus "exact" UV transfer

♦ 2-side illumination model with χ = 1, n_H = 100 cm⁻³
♦ exact radiative transfer for H and H₂ absorption up to J = 4

Exact Transfer :

CO transitions:

Goiecoechea & Le Bourlot (AA 467, I, 2007)

6543210 123456 1 0.8 Abs Raies 0.6 0.4 0.2 0 1088 1089 1086 1087 1090 1091 1092 1093 λ

wavelength [A]

FGK (dotted lines) versus "exact" (full lines) UV transfer

Included cross-sections :

 $H_2: PD$ CO: PD

C:PI

Exact transfer allows to know the radiation field at each point;

Photodissociation probability

 $k = \int \sigma(\lambda) I(\lambda) d\lambda$

Sulfur example :

 full lines: with revised oscillator strengths of Eidelsberg et al. 2006, ApJ 647, 1543, for E-X, B-X and W-X transitions Modelled column densities

species	exact	FGK	
H	3.6(20)	5.0(20)	
H ₂	7.6(20)	6.9(20)	
C+	1.5(17)	1.5(17)	
C	1.3(15)	8.1(14)	
S	3.2(13)	2.7(13)	
СО	1.2(13)	6.5(12)	
СН	1.5(13)	1.2(13)	
CN	9.1(10)	4.0(10)	
OH	4.3(12)	3.8(12)	
H_3^+	1.4(13)	1.2(13)	

E. Bayet et al., in preparation

Example of diffuse clouds

2-side model : $\chi = 1$

2 cases : - FGK

- "exact" transfer up to J = 3

"exact " transfer required for diffuse regions

n _H (cm ⁻³)		N(H)	N(H ₂)	f	T _{moy}	T _{oi}
10	FGK	I.3E20	7.3EI5	1.1(-4)	695	-2080
	exact	I.3E20	6.2E16	9.5(-4)	655	321
30	FGK	I.2E20	4.2E18	6.5(-2)	221	151
	exact	I.IE20	9.8E18	0.15	192	142

Thermal balance

Several uncertainties

Heating :

- Photo-electric effect on grains
- H₂ : vibrational de-excitation, dissociation, formation
- Cosmic ray ionization; secondary UV photons
- Gas/grain interaction (if $T_{grain} > T_{gas}$)
- chemical heating

Cooling :

- [C II] 158 µm
- [O I] 63, 145 µm
- [C I] 370, 610 µm
- H₂, CO, H₂O, HCO⁺, CS, OH, ...

• Gas/grain interaction (if
$$T_{grain} < T_{gas}$$
)

Escape probabilities

Observation of circumstellar H_2 towards HD 76534

Chemistry

Typically 10 more reactions than involved species

All binary reactions relevant to dark cloud chemistry (cf Eric's and Tom's talk) + :

- Photo-reactions
- Formation reaction of H₂ on grains
- Reactions with atoms (H, N, O, C, S, ...) and ions (charge transfer included)
- \bullet Small endothermicities may be overcome at the edge of the PDRs ; role of reactions with vibrationally excited $\rm H_2$

Free chemical reaction rates data bases

UMIST : <u>http://www.udfa.net/</u>

E. Herbst : http://www.physics.ohio-state.edu/~eric/research.html

M. Larsson : Dissociative recombination reactions : <u>http://mol.physto.se/moldata</u>

Photoprocesses : Leiden : <u>http://www.strw.leidenuniv.nl/~ewine/photo</u>

SWRI : <u>http://amop.space.swri.edu/</u>

Meudon : <u>http://aristote.obspm.fr/MIS</u>

KIDA : future

Physical structure

$$\begin{array}{l} n_{\rm H} = 10^5 \ {\rm cm}^{-3} \\ A_{V_{\rm tot}} = 10 \approx {\rm d} = 0.061 \ {\rm pc} \\ \chi_{\rm \, left} = 10^5 \\ \chi_{\rm right} = 1 \end{array}$$

$$\begin{array}{l} \zeta = 5 \ 10^{-17} \ {\rm s}^{-1} \end{array}$$

Carbon and oxygen chemistry

Nitrogen and sulfur chemistry

Chemical uncertainties

Basic question for models of any region

- Example : $n_{H} = 2 \ 10^{3} \text{ cm}^{-3}$, T = 10 K et $\zeta = 5 \times 10^{-17} \text{ s}^{-1}$
- chemical network : 200 species \approx 2000 reactions

PDR models

 $t_{dest}(X) =$ Stationarity & time dependence $n_{\rm H} = 100 \text{ cm}^{-3}, \zeta = 5 \ 10^{-17} \text{ s}^{-1},$ 2 side illumination : $\chi = I$ 10⁹ 10⁸ free fall time 10⁷ destruction time (yr) 10⁶ Η₂ 10⁵ 10⁴ CO 10³ 10² 10⁻³ 10-5 10-4 10⁻² 10-1

 $(X) = \frac{n(X)}{\text{destruction rate in } \text{cm}^{-3} \text{ s}^{-1}}$

Compare chemical times to dynamical times

$$t_{
m free \ fall} = \sqrt{rac{3\pi}{32 G
ho(0)}} = rac{4.3 imes 10^7}{\sqrt{n_H(0)}} \ {
m yrs}$$

• at the edge, destruction by photons

• At higher Av, destruction by chemical processes, cosmic rays

H₂ Formation

"Observational" determination of H_2 formation rate in diffuse clouds

• Jura (1975) Copernicus $R = 3 \times 10^{-17} \text{ cm}^3 \text{ s}^{-1}$ • Gry et al. (2002) FUSE $R = 3.1 - 4.5 \times 10^{-17} \text{ cm}^3 \text{ s}^{-1}$

H_2 formation rate in the Meudon PDR code

- fixed formation rate
- calculated from grain properties
- calculated from rate equations, moment equations (in progress)

Grain size distribution : $dn(a) \propto a^{\alpha} da$ with $\alpha = -3.5$ Mathis et al. (1983)

$$\frac{dn(H_2)}{dt} = \frac{1}{2} s v_H n(H) \left\langle \sigma_g \cdot n_g \right\rangle$$

$$<\sigma_g\cdot n_g>=rac{3}{4}rac{1.4\,m_H\,G}{
ho_g}rac{1}{\sqrt{a_{min}\cdot a_{max}}}n_H$$

$$\left. \frac{dn(H_2)}{dt} \right|_{form.gr.} = s \cdot 1.4 \times 10^{-17} \sqrt{T_K} \ n_H \ n(H)$$

H₂ Formation

Different choices for s :

- $s = \sqrt{(10/T)}$: R independent de T
- _s = |

•
$$s = \sqrt{(4.59/T)}$$
 gives $R = 3 \times 10^{-17} \text{ cm}^3 \text{ s}^-$

• ...

Relative abundance

H₂ Formation

case of small grains

I the mean number of H atoms is about I, the rate equations formalism does not apply anymore.

Master equation approach: Biham et al. 2001, ApJ 553, 595

$$\begin{split} \frac{dP_{H}(N_{H})}{dt} &= F_{H} \Big[P_{H}(N_{H}-1) - P_{H}(N_{H}) \Big] \\ &+ W_{H} \Big[(N_{H}+1) P_{H}(N_{H}+1) - N_{H} P_{H}(N_{H}) \Big] \\ &+ A_{H} \Big[(N_{H}+2)(N_{H}+1) P_{H}(N_{H}+2) - N_{H}(N_{H}-1) P_{H}(N_{H}) \Big] \end{split}$$

with :

 F_H : flux of H atoms impinging on the surface W_H : desorption rate of H atoms: $W_H = \mathbf{v} \exp(-E_1/kT_g)$ A_H : scanning of the surface by H atoms: $A_H = a/S$, where S is the number of adsorption sites on the grain (S=4 π r² s) and a= $\mathbf{v} \exp(-E_0/kT_g)$

H₂ formation rate:

$$R_{H_2}^{grain} = A_H \left(\left\langle N_H^2 \right\rangle - \left\langle N_H \right\rangle \right)$$

$\mathbf{v}(\mathbf{s}^{-1})$	1012
s (cm ⁻²)	5 10 ¹³
E ₀ (K)	510.6
Е _I (К)	658

Katz et al. 1999, ApJ 522, 305

H₂ Formation

Biham et al. 2001

× master equation, $d = 0.01 \ \mu m$ \bigcirc master equation, $d = 0.1 \ \mu m$

- rate equation

 $\rm H_2$ formation efficient only in a narrow window of grain temperatures

$$T_0 < T_g < T_1$$

$$T_0 = rac{E_0}{k_B \, ln(
u S/F)}$$

$$T_1=rac{2E_1-E_0}{k_B\,\ln(
u S/F)}$$

Determination of Tg essential

Determination of grain temperatures

Observational information ?

 Thermal balance : approximate formula of Tielens & Hollenbach with simple assumptions on the grain absorption and emission coefficients (used in the Meudon PDR code)

detailed calculations (cf Cuppen, Herbst, ...)

Case of the MRN size distribution $dn_g \approx a^{-3.5}$ $a_{min} = 3 \ 10^{-7} \text{ cm}$ $a_{max} = 3 \ 10^{-5} \text{ cm}$

The temperatures at the edge have the right order of magnitude for H_2 formation.

Conclusions

Detailed UV radiative transfer Introduction of the impinging radiation field (from 912 Å to IR) Detailed microscopic physics Versatile chemistry; possibility of state to state chemistry Source and input data downloadable from http://aristote.obspm.fr/MIS Inclusion in the Virtual Observatory

Plane parallel geometry

Steady state

Extension to X radiation

Grain physics and chemistry should be improved (in particular H_2 formation) Computing time becomes excessive when "exact" transfer is performed (but essentially needed for diffuse environments)

$\mbox{Exemple}: \mbox{Detection of } N_2$

- HD 124314 (Knauth et al. 2004)
- 20 Aquilae (Knauth et al.)