Low Temperature Extrapolations; Methods of Estimation

Ian Smith

Universities of Cambridge and Birmingham, UK

Panel Meeting ISSI Bern 8th January 2008

ISSI Meeting: Questions to be addressed

- Assumption: emphasis mainly on chemistry in 'cold cores' of dense ISC's
- Errors in rate coefficients measured at low temperatures
- Estimates of rate coefficients at low temperatures from data at higher temperatures
- Estimates where there are no measurements of rate coefficients
- Products of reactions?

Categories of Reaction

Ion-Molecule Reactions

 (a) ions + non-polar molecules
 (b) ions + polar molecules

Neutral-Neutral Reactions

 (a) radicals + molecules
 (b) radicals + radicals

Radiative Association

{electron-molecule processes} X

Caveats and Acknowledgements

Kinetic experiments measure rate coefficients but rarely products or branching ratios – which are equally important in models

Reactants for reactions in ISM may not be in LTE – local thermodynamic equilibrium

This presentation leans heavily on articles by Canosa et al and by Gerlich in

Low Temperatures and Cold Molecules ed. IWMS to be published by World Scientific in 2008

Reactions of lons with Non-Polar Molecules

'Langevin model' assumes central potential (in cgs): $V(R_{AB}) = -\alpha q^2 / 2 R_{AB}^4$

- Leads to $k(T) = 2\pi q (\alpha/\mu)^{1/2}$
 - Model predictions borne out by experiment
- No apparent influence of quadrupole or non-spherical polarisability
- Possible effects of fine-structure (spin-orbit) states

Rate Coefficients / 10⁻⁹ cm³ molecule⁻¹ s⁻¹

Reactants	T = 8 K	T = 20 K	T = 30 K	Langevin
He⁺ + N₂	1.2	1.3	1.3	1.7
$\text{He}^+ + \text{O}_2$	1.0	0.85		1.6
He⁺ + CO	1.5	1.4		1.8
$N^+ + O_2$	0.55			0.95
$N^+ + CH_4$	0.82			1.4
N⁺ + CO	1.1			1.1
H_3^+ + CO			1.7	2.0
${\rm H_{3}^{+}} + {\rm N_{2}}$			1.3	1.9
$H_3^+ + CH_4$			1.9	2.4

Comparison of *T*-dependence: non-polar *versus* polar molecules

100 $\triangle, \triangle: \mathbb{N}^+ + \mathbb{O}_2$ k / 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ $O_{,}O_{:}He^{+} + N_{2}$ 0 0 0 10 $\square, \square: \mathbb{N}^+ + \mathbb{H}_2 \mathbb{O}$ Δ $\diamond \diamond$: N⁺ + NH₃ 10 100 T/K

Reactions of Ions with Polar Molecules

Potential now depends on orientation:

 $V(R_{AB}) = -\alpha q^2 / 2 R_{AB}^4$ $-q \mu_D \cos\theta / 2 R_{AB}^2$

Theory (Bowers, Troe, Clary, etc) based on 'capture' – suggests *k(T)* depends on rotational state of reactants Rate Coefficients (a Tn) / 10-9 cm3 molecule-1 s-1

Reactants	T = 27 K	T = 68 K	n
He⁺ + HCl	11.0	4.6	- 0.94
He ⁺ + SO ₂	8.2	6.5	- 0.25
He⁺ + H₂S	5.5	4.6	- 0.19
He⁺ + NH₃	4.5	3.0	- 0.44
He⁺ + H₂O	4.3	1.8	- 0.94
C ⁺ + HCI	3.8	1.9	- 0.75
C ⁺ + SO ₂	5.7	4.1	- 0.36
$C^* + H_2S$	4.8	3.0	- 0.51
C ⁺ + NH ₃	4.6	3.2	- 0.39
C⁺ + H₂O	12.0	5.2	- 0.91
N ⁺ + NH ₃	5.2	3.2	- 0.53
N ⁺ + H₂O	9.9	6.0	- 0.54

Ion-Molecule Reactions: Summary and Exceptions

Where for A⁺ + B: k(298 K) > 10⁻⁹ cm³ s⁻¹ if B is non-polar, assume k(T) = k(298 K) if B is polar, assume k(T) α T^{-0.5}

If $k(298 \text{ K}) < 10^{-10} \text{ cm}^3 \text{ s}^{-1}$, ?? e.g. $CH_4^+ + O_2^-$, examples in figure (Gerlich)

Categories of Reaction

Ion-Molecule Reactions
 (a) ions + non-polar molecules
 (b) ions + polar molecules

Neutral-Neutral Reactions

 (a) radicals + molecules
 (b) radicals + radicals

Radiative Association

{electron-molecule processes} X

Collisional and Radiative Association

Rate Coefficients and *T*-dependence for Collisional Association

Rate Coefficients (α Tⁿ) / 10⁻²⁷ cm⁶ molecule⁻² s⁻¹

Reaction	15 K	~20 K	~50 K	~70 K	~150 K	n
$N_2^+ + N_2 + N_2$			1.5	1		
$O_2^+ + O_2 + O_2$		>1	>0.3	0.2		
CH_3^+ + H ₂ + He		3.4		1.9		
CH_3^+ + CO + He		85		34		- 1.1
$CH_{3}^{+} + N_{2} + He$		12		1.5		- 1.7
$CH_3^+ + H_2O + He$		>70		>40		
C⁺ + H₂ + He		< 0.1				
Ar ⁺ + Ar + Ar		~0.005	~0.001			
H₃O ⁺ + H₂O + He		27	8.7		2.1	– 1.3
$H_3O^+ + H_2O + N_2$			17	10		
$NH_4^+ + NH_3 + He$	93	51	17		2.3	– 1.6
$NH_4^+ + NH_3 + Ar$			29			
$NH_4^+ + NH_3 + N_2$			124	50	8.7	- 2.4

Rate Coefficients and *T*-dependence for Collisional Association

Reaction	15 K	~20 K	~50 K	~70 K	~150 K	n
$N_2^+ + N_2 + N_2$			1.5	1		
$O_2^+ + O_2 + O_2$		>1	>0.3	0.2		
$CH_{3}^{+} + H_{2} + He$		3.4		1.9		
CH_3^+ + CO + He		85		34		- 1.1
$CH_{3}^{+} + N_{2} + He$		12		1.5		- 1.7
$CH_{3}^{+} + H_{2}O + He$		>70		>40		
C⁺ + H₂ + He		< 0.1				
Ar ⁺ + Ar + Ar		~0.005	~0.001			
$H_3O^+ + H_2O + He$		27	8.7		2.1	– 1.3
⊔ ິ			17	10		
₄ ⁺ + NH₃ + He	93	51	17		2.3	– 1.6
l₄ ⁺ + NH₃ + Ar			29			
$I_4^+ + NH_3 + N_2$			124	50	8.7	- 2.4

Rate Coefficients (α Tⁿ) / 10⁻³⁰ cm⁶ molecule⁻² s⁻¹

Reactants	298 K	Range of (<i>T</i> /K)	n	
CH + N ₂ + Ar	0.16	53 – 584	- 2.2	
CH + CO + Ar	4.1	53 — 584	- 2.1	
CH + H ₂ + Ar	5.2	13 – 744	- 1.6	
CN + NO + Ar	2.6	99 – 450	- 2.1	
OH + NO + Ar	0.45	23 – 298	-2.6	
OH + NO ₂ +				
OH + butenes +	data at high-p limit only			

Radiative Association and the ISM

 Important processes either (a) involve H₂ or (b) large species

e.g. C⁺ + H₂ and CH₂⁺ + H₂ - rate coefficients measured in ion traps

problems if excited electronic states might be involved: e.g. $C + C_n$

ca. 10 K (Gerlich)

Categories of Reaction

Ion-Molecule Reactions

 (a) ions + non-polar molecules
 (b) ions + polar molecules

Neutral-Neutral Reactions

 (a) radicals + molecules
 (b) radicals + radicals

Radiative Association

{electron-molecule processes} X

Neutral-Neutral Reactions: Summary of Experiments

- Canosa et al. list 93 reactions: 73 studied in continuous CRESU (Rennes, Birmingham, Bordeaux); 20 in pulsed CRESU (Arizona, Berkeley, Göttingen)
- Continuous CRESU reach as low as 13 K; pulsed CRESU to 53 K

Radicals: $B({}^{2}P_{J})^{,} C({}^{3}P_{J}), O({}^{3}P_{J}), AI({}^{2}P_{J})^{,} and Si({}^{3}P_{J})$ CN, OH, CH, NH, C₂(X), C₂(a), C₂H, C₄H

Molecules: alkenes/alkynes (52); saturated molecules (19); radicals (15); aromatics (2); others (5)

7-dependence of rate coefficients

 $CN + C_2H_2$

 'all' fast low temperature reactions have k(298 K) > 10⁻¹¹ cm³ molecule⁻¹ s⁻¹

the rate coefficients increase at lower temperatures – but form of *k*(*T*) *versus T* varies

For nearly all reactions k(10-20 K) are $1 - 4 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

 $CN + C_2H_6$

CN + NH₂

Neutral-Neutral Reactions: Capture Theories

- Capture theories have been applied by Troe, Clary, Stoecklin, Klippenstein and others
- In contrast to ion-molecule reactions, the longrange attraction is much weaker so that maxima in effective potentials are at smaller separations
- Georgievskii and Klippenstein examined 26 neutral-neutral reactions by long-range TST (including all terms in long-range potential)
- They found that for 18 reactions k_{calc} > 1.5 × k_{expt}

Two transition state model (Klippenstein)

Rate coefficient may be limited by 'inner' transition state – which may have higher or lower value of V(R_{AB}) but will have lower entropy

Quantitative application requires: (a) accurate long/ medium range potential (b) μJ application of TST

Two transition state model: CN + C₂H₆

Comparison between experimental and μ J-TST calculations for $CN + C_2H_6$

?? Can results be generalised **??**

