Neutral-Neutral Reactions

Ian Smith

Universities of Cambridge and Birmingham, UK

Panel Meeting ISSI Bern 9th January 2008

Reported Interstellar and Circumstellar Molecules

N=2	N=2	N=3	N=3	N=4	N = 5	N = 6	N = 7	N = 8	N = 9	N = 10
H ₂	AICI	H ₃ +	HCP	NH ₃	CH₄	CH₃OH	CH ₃ NH ₂	HCOOCH ₃	(CH ₃) ₂ O	(CH₃)CO
СН	PN	CH₂	ocs	H₃O⁺	SiH₄	CH₃SH	CH₃CCH	CH ₃ C ₂ CN	C₂H₅OH	CH ₃ C₄CN
СН⁺	SiN	NH ₂	MgCN	H₂CO	CH₂NH	C ₂ H ₄	CH₃CHO	C_6H_2	C₂H₅CN	CH₃CH₂CHO
NH	SiO	H ₂ O	MgNC	H₂CS	H ₂ C ₃	CH₃CN	c-CH ₂ OCH ₂	C ₇ H	CH₃C₄H	(CH ₂ OH) ₂
ОН	SiS	H₂S	NaCN	I-C₃H	/-C ₃ H ₂	CH₃NC	CH ₂ CHCN	HOCH ₂ CHO	C ₈ H	
HF	CO⁺	C₂H	SO ₂	c-C₃H	<i>с-</i> С ₃ Н ₂	H₂CCHO	HC₄CN	сн₃соон	HC ₆ CN	
C ₂	SO⁺	HCN	N ₂ O	нссн	H₂CCN	NH₂CHO	C ₆ H	H ₂ CCCHCN	CH ₃ CHCH ₂	
CN	РО	HNC	SiCN	HCNH⁺	H₂NCN	HC₃NH⁺	H ₂ CCHOH	H ₂ C ₆	CH ₃ CONH ₂	
СО	SH	нсо	CO ₂	H₂CN	CH₂CO	H ₂ C ₄	C ₆ H⁻	CH ₂ CHCHO	C ₆ H⁻	N = 11
CS	AIF	HCO⁺	c-SiC ₂	c-C₃H	нсоон	C₅H				HC ₈ CN
СР	FeO	HOC⁺	SiNC	HCCN	C₄H	C₅N				CH₃C ₆ H
NO	SiC	HN₂ ⁺	AINC	HNCO	HC ₂ CN	C₅O				
NS	CF⁺	HNO		HOCO⁺	HC ₂ NC	C₅S				N = 12
SO	? N ₂ ?	HCS⁺		HNCS	C₄Si					C ₆ H ₆
HCI		C ₃		C ₂ CN	C ₅					
NaCl		C ₂ O		C ₃ O	C₄N					N = 13
KCI		C ₂ S		C ₃ S	H₂COH⁺					HC ₁₀ CN
				SiC ₃	C₄H⁻					

Neutral-Neutral Reactions: Summary of Experiments

Canosa et al. list 93 reactions: 73 studied in continuous CRESU (Rennes, Birmingham, Bordeaux); 20 in pulsed CRESU (Arizona, Berkeley, Göttingen)

Continuous CRESU reach as low as 13 K, more generally ca. 25 K; pulsed CRESU to 53 K

Radicals: $B({}^{2}P_{J})^{,} C({}^{3}P_{J}), O({}^{3}P_{J}), Al({}^{2}P_{J})^{,} and Si({}^{3}P_{J})$ CN, OH, CH, NH, C₂(X), C₂(a), C₂H, C₄H

Molecules: alkenes/alkynes (52); saturated molecules (19); radicals (15); aromatics (2); others (5)

CRESU measurements of rate constants at low temperatures

- Signifies a pressure-dependent association reaction
- Metathesis reactions with k(298 K) > 1×10^{-10} cm³ molecule⁻¹ s⁻¹
 - Metathesis reactions with k(298 K) > 10 5 \times 10⁻¹¹ cm³ molecule⁻¹ s⁻¹
- Metathesis reactions with k(298 K) > 5 1 \times 10⁻¹¹ cm³ molecule⁻¹ s⁻¹

	CH ₄	C_2H_6	NH ₃	H ₂	D ₂	HBr	N ₂	CO	C_2H_2	C_2H_4	C₃H₅	сн₃ссн	CH2CCH2	butenes	O ₂	NO	NO ₂	O(³ P)
B(² P)									23	23					23			
Al(² P)															23			
C(³ P)									15	15		15	15		15	15		
Si(³ P)									15	15					15	15		
O(³ P)											23			27				
CH(² 11)	23	23	23	53	23		53	53	23	23				23	13	13		
ОН(² П)						23								23		23	53	38
CN(² Σ ⁺)		25	25						25	25		15	15		13			
$C_2 H(^2\Sigma)$									15	15	15	27	27		15			

also data for reactions of ${}^{1}C_{2}({}^{1}\Sigma_{q}{}^{+})$, ${}^{3}C_{2}({}^{3}\Pi_{u})$ and $C_{4}H$

CRESU measurements of rate constants at low temperatures

- radical + saturated molecule
 - radical + unsaturated molecule
 - radical + radical

	CH₄	C_2H_6	NH ₃	H ₂	D_2	HBr	N ₂	со	C ₂ H ₂	C ₂ H ₄	C ₃ H ₆	СН₃ССН	CH₂CCH₂	butenes	O ₂	NO	NO ₂	O(³ P)
B(² P)									23	23					23			
AI(² P)															23			
C(³ P)									15	15		15	15		15	15		
Si(³ P)									15	15					15	15		
O(³ P)											23			27				
СН(² П)	23	23	23	53	23		53	53	23	23				23	13	13		
ОН(² П)						23								23		23	53	38
CN(²Σ⁺)		25	25						25	25		15	15		13			
C ₂ H(² Σ)									15	15	15	27	27		15			

also data for reactions of ${}^{1}C_{2}({}^{1}\Sigma_{q}{}^{+})$, ${}^{3}C_{2}({}^{3}\Pi_{u})$ and $C_{4}H$

Reactions of Radicals with Alkenes/Alkynes

Reaction will be fast at low temperatures (10 – 20 K) if:

- $k(298 \text{ K}) > 5 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ and/or}$
- (I.E. E.A.) > *ca*. 8.75 eV

Reactions of alkenes/alkynes with O(³P) atoms should provide crucial test

Why low temperature kinetics of O + alkenes?

Extensive kinetics measurements at and above room temperature

Some reactions show positive T dependence (e.g. propene & 1-butene) – some negative T dependence (e.g. iso-butene & cis-2-butene)

Rate constants and activation energies correlate with I.E. of the alkene (*Cvetanovic et al.*)

?? Will some *k*(*T*)'s decrease to low temperatures, some increase**??**

Kinetic Data for Reactions of O(³P) with Alkenes

	(I.E. – E.A.)/eV	<u>k(298 K)</u> 10 ⁻¹¹ cm ³ s ⁻¹	<u><i>T</i>-dependence</u>
<i>trans-</i> 2-butene	7.64	2.2	– ve
<i>cis</i> -2-butene	7.65	1.8	– ve
<i>iso</i> -butene	7.76	1.7	– ve
1-butene	8.09	0.42	+ ve
propene	8.27	0.40	+ ve
ethene	9.05	0.073	+ ve

CRESU Experiments on Reactions of O(³P) with Alkenes (*Ludovic Bennier, Hassan Sabbah, Ian Sims & IWMS*)

 O(³P) atoms are generated by pulsed laser photolysis of NO₂ at 355 nm (tripled Nd:YAG laser)

a small-ish concentration of NO is included in the reaction mixture, and variation in the O(³P) atom concentration is followed by observing the intensity of the chemiluminescence from NO₂*

Rate constants for reaction of O(³P) with alkenes

1000

Theoretical calculations on O(³P) + alkene reactions (Yuri Georgievskii and Stephen Klippenstein)

Ab initio calculations characterise the long-range potentials

---- trans-butene ---- ethene

Generally two maxima – two transition states – 'outer' and 'inner'

Dynamics treated by μJ version of TST

For O(³P) + ethene, inner TS is dominant ('real' barrier)

For O(³P) + alkenes with low values of (I.E. – E.A.), outer TS is dominant, barrier is wellsubmerged

 For intermediate cases, influence of both barriers is important with their relative importance depending on temperature

Rate constants for reaction of O(³P) with alkenes

- *cis*-butene *trans*-butene

 - *iso-*butene
- **1-butene**
- propene
- Solid lines from expts of Fontijn
- Dashed lines from μ*J*-TST calculations
- O(³P) + ethene too slow to measure

Conclusions

Rate constants for reaction of O(³P) atoms with alkenes show a complex dependence on temperature

The semi-empirical arguments introduced in the Faraday Discussion paper of Smith et al. that reactants with (I.E. – E.A.) < ca. 8.75 eV will occur rapidly at low temperature hold up rather well

The values of k(T) and their dependence on T are wellmatched by a two transition state model using μJ version of TST

Radical-Radical Reactions

At least one PES should have no maximum and probably a 'deep' minimum

Several PES's probably correlate with reactants not all leading (without a barrier) to products

- k(T) may be lowered by degeneracies and neardegeneracies
- Can an inner transition state lower rate below that for capture?

	O ₂	NO	NO ₂	O(³ P)
B(² P)	23			
AI(² P)	23			
C(³ P)	15	15		
Si(³ P)	15	15		
O(³ P)				
CH(² ∏)	13	13		
ОН(² П)		23	53	38
CN(² Σ ⁺)	13			
C ₂ H(² Σ)	15			

Radical-Radical Reactions: CN + O2

experimental k(T)
show strong negative Tdependence - in
contrast to 'capture'
calculations

main features of experimental k(T) are reproduced by 2-TS model (Klippenstein)

Reactions of Radical with Saturated Molecules

 Data set from CRESU
 experiments is limited

	CH ₄	C ₂ H ₆	NH ₃	H ₂	D ₂	HBr
B(² P)						
AI(² P)						
C(³ P)						
Si(³ P)						
O(³ P)						
CH(²∏)	23	23	23	53	23	
OH(²∏)						23
CN(²Σ⁺)		25	25			
C ₂ H(² Σ)						

Reactions of Radicals with Saturated Molecules

Values of k(298 K) / 10⁻¹² cm³ molecule⁻¹ s⁻¹

	E.A./eV	H ₂	CH ₄	C_2H_6	C_3H_8	i-C ₄ H ₁₀	n-C ₄ H ₁₀
I.E./eV		15.43	12.51	11.52	10.95	10.57	10.53
C(³ P)		(17)	?	?	?	?	?
CH(²∏)	1.238	(160)	91	280	425	448	483
H(² S)	0.754	10-4	1.5(-7)	2.8(-5)	1.5(-4)	1.1(-3)	2.9(-4)
O(³ P)	1.461	9(-6)	1.7(-5)	1.4(-4)	9.4(-3)	0.11	2.6(-2)
OH(² ∏)	1.827	1.7(-3)	6.1(-3)	0.25	1.1	2.1	2.4
$CN(^2\Sigma^+)$	3.862	2.8(-2)	0.60	28	75	100	
$C_2 H(^2\Sigma)$	2.969	0.7	2.7	43	80	96	120

Reactions of Radical with Saturated Molecules

C(³P) and CH(²Π) react rapidly with saturated molecules – if exothermic reaction is available

Alkanes will not react with $H(^{2}S)$, $O(^{3}P)$ or $OH(^{2}\Pi)$ – probably the reactions of these radicals with saturated molecules can be ignored

Most alkanes will react rapidly with $CN(^{2}\Sigma^{+})$ and $C_{2}H(^{2}\Sigma)$

Reactivity of C(³P) atoms ?

Values of k(298 K) / 10⁻¹² cm³ molecule⁻¹ s⁻¹

	E.A./ eV	CH₄	C_2H_6	C ₃ H ₈	<i>і-</i> С ₄ Н ₁₀	<i>п</i> - С ₄ Н ₁₀
I.E./eV		12.51	11.52	10.95	10.57	10.53
C(³ P)						
СН(² П)	1.238	91	280	425	448	483
H(² S)	0.754	1.5(-7)	2.8(-5)	1.5(-4)	1.1(-3)	2.9(-4)
O(³ P)	1.461	1.7(-5)	1.4(-4)	9.4(-3)	0.11	2.6(-2)
ОН(2П)	1.827	6.1(-3)	0.25	1.1	2.1	2.4
CN(² Σ ⁺)	3.862	0.60	28	75	100	
$C_2 H(^2\Sigma)$	2.969	2.7	43	80	96	120

Some final thoughts !

Examination of available rate data suggests that for any neutral-neutral reaction with k(298 K) > 5 x 10⁻¹² cm³ molecule⁻¹ s⁻¹ there is no 'real' barrier on the MEP and k(10-20 K) is likely to be ca. 2 x 10⁻¹⁰ cm³ molecule⁻¹ s⁻¹ (factor of 2 uncertainty ?)

For radical-radical reactions k(10-20 K) may be lowered by 'electronic degeneracy factor'

Theoretical point for discussion: how does two-TS model with dependence on *E* and *J* mesh with dependence of *k*(*T*) on rotational states of reactants?