\qquad

Methodology

One control model: 'standard' parameters
Run one model at the extremes of each reaction rate coefficient's tabulated uncertainty

Compute the difference between the results so obtained as a percentage of the control value ($=p$), on a species by species basis.
e.g. if $p=0$, there was no effect on the species abundance by varying the reaction rate coefficient.

The bigger p is, the more significant the reaction is for \square that species

Summing p over all species, we can work out the 'most important reaction' * caveat caveat etc etc
(A)

(Q)
(Q)

Or. What single reaction rate coefficient can we measure that will improve the overall accuracy of the model the most?

$$
\mathrm{H}_{3}^{+}+\mathrm{O} \rightarrow \mathrm{OH}^{+}+\mathrm{H}_{2}
$$

measured by Fehsenfeld (1976)
$k=8 \times 10^{-10} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$
quoted error < ${ }^{\prime}$ 50\%'
(a)

(Q)

There is no single reaction for which $p>1.2$ for CO, or $p>16.5$ for SO. For water, $p_{\max }=48.0$ for dissociative recombination of $\mathrm{H}_{3} \mathrm{O}^{+}$.
(Q)
it's 19580, for $\mathrm{C}_{9} \mathrm{H}_{5}{ }^{+}$and the reaction $\mathrm{He}+\boldsymbol{\zeta} \rightarrow \mathrm{He}^{+}+\mathrm{e}^{-}$
'end chain' species

What about other times in the model, for example at 'early time'?

The results are similar.
The uncertainties are always less than at steady state.

The cri reactions for H_{2} and He switch places.
The top non cr reactions are still

$$
\begin{aligned}
& \mathrm{H}_{3}^{+}+\mathrm{O} \rightarrow \mathrm{OH}^{+}+\mathrm{H}_{2} \\
& \text { and } \\
& \mathrm{C}^{+}+\mathrm{H}_{2} \xrightarrow{\rightarrow} \mathrm{CH}_{2}^{+}+\mathrm{hv}
\end{aligned}
$$

(Q)
(Q)

Simple species are OK

but bigger molecules are definitely not
e.g. $H C_{7} \mathrm{~N}$ abundance uncertain to an order of magnitude because of a single rate!

$$
\text { For } \mathrm{HC}_{9} N, p_{\max }=5521!
$$

For most species with $n_{c}>2, p_{\max } \sim 500$

How many reactions were found to be totally unimportant by this method?
$p_{\text {total }}=0$ for about a third of them.
But that doesn't mean those reactions will never be important

under any conditions

(A)

Some random thoughts in conclusion

Sensitivity analysis squared:
how sensitive is a sensitivity analysis?
Not clear that any results are transferrable
What IS an important reaction / species ?
Matching observations?

