Photodissociation

Ewine F. van Dishoeck Leiden Observatory/MPE

www.strw.leidenuniv.nl/~ewine/photo

Based on reviews by van Dishoeck (1988), Kirby & van Dishoeck (1988), Roberge et al. (1991), van Dishoeck et al. (2006), van Hemert & van Dishoeck (2008)

Overview

- Processes
- Radiation fields of astrophysical interests
- Theory vs. experiments
- Small molecules
- Large molecules: PAHs
- Water ice
- Conclusions and questions

Processes: small molecules

Direct p.d. Ex: H₂⁺, OH, H₂O

Predissociation Ex: CO

Coupled states p.d. Ex: OH

Spontaneous Radiative dissociation Ex: H₂

Potential curves for H₂⁺ ion

Potential curves OH

- All 4 processes contribute

Photodissociation through coupled states

Non-adiabatic interactions in OH 2,3 $^{2}\Pi$ – X $^{2}\Pi$

vD, vH, Alison & Dalgarno 1984

Solution of coupled equations

Resonances with Fano profiles, located close to vibrational levels in diabatic bound potential

H₂ spontaneous radiative dissociation

90% of absorptions into **B** and C states are followed by emission back into bound vibrational levels of the X state **10%** of the absorptions are followed by emission into the unbound vibrational continuum, leading to dissociation

Photodissociation rate

Continuum photodissociation

$$k_{pd} = \int_{912A}^{\infty} \sigma_{pd}(\lambda) I(\lambda) d\lambda$$

where σ_{pd} is the cross section in cm²

Discrete photodissociation

$$k_{pd} = \sum_{\text{lines}} \frac{\pi e^2}{m_e c^2} \lambda_{\text{line}}^2 f_{\text{line}} \eta_{\text{line}} I(\lambda_{\text{line}})$$

where *f* is oscillator strength and η is the dissociation probability

Interstellar radiation field

Figure 5. The intensity of the interstellar radiation field as a function of wavelength cf. Draine (1978) (full line), Mathis et al. (1983) (long-dashed line), Gondhalekar et al. (1980) (short-dashed line) and Habing (1968) (dash-dotted line).

Note linear scale; uncertanties ~50%

Cosmic-ray induced radiation

 $H_2 + CR => H_2^+ + e^*$ $H_2 + e^* => H_2^* + e$ $H_2^* => H_2 + hv$

Stephens & Dalgarno 1970 Gredel et al. 1987

-Detailed line + continuum spectrum peaking around 1600 Å and continuing below 912 Å

Other radiation fields

- Ly-α dominated
 - Shocks,
- Stellar blackbodies T_{eff}=4000-10000 K
 Disks, cool PDRs, ...
- Solar radiation T_{eff}=5500 K + Ly α
 Comets

See van Dishoeck et al. 2006

A0 star radiation field vs. scaled ISRF

- Results sensitive to adopted UV field, especially <1100 Å
- Affects some molecules, but not all

Jonkheid et al. 2006

Attenuation of radiation in clouds

- Inside an interstellar cloud, *I*(λ) will be diminished by several effects
- <u>Continuum</u> attenuation by dust grains: calculation depends on scattering properties of grains such as albedo and scattering phase function

$$I(A_V) \approx I_0(A_V = 0) \exp(-\gamma A_V)$$

Intensity inside Intensity at edge Intensity at to 0.6 for µm size grains

Cross sections: theory

Diatomics:

- Ab initio quantum chemical calculation of potential curves and transition dipole moments for lowest ~5 roots of each symmetry
- Solve for nuclear motion on surfaces, taking couplings between states into account
- Compute cross sections by integration of product vibrational wave functions of ground and excited states and transition dipole moment.

Works well if number of electrons not too large: ~30 Most hydrides of astrophysical interest calculated, some heavier diatomics

HCl as a test case

Quantitative comparison with experiment

HCl cross section A-X

- Excitation energies within 0.2-0.3 eV
- Oscillator strengths and cross sections within 20-30%

Cross sections: theory

- Triatomics
 - Same recipe possible for light hydrides, but now calculating full 3D surfaces and solving dynamics in 3D
 - Excellent quantitative agreement with experiment for H_2O \tilde{A} X and higher transitions
 - Detailed predictions of product energy distributions, e.g., OH rotational excitation
 - Similar calculations for CH₂, NH₂, HCO⁺
 - Very difficult for heavier triatomics
 - Ions, especially O-containing ones, lower rates

Kroes et al. 1993; Harrevelt & van Hemert 2000-200x Bearda et al. 1994, vD et al. 1996, Vetter et al. 199x, Koch et al. 1995

Time-dependent wavepacket dynamics

From **1D** => **3D**

CD vs CH

Also: branching ratio to $C + H_2$ vs CH + H

Kroes, Bearda, vD, vH 1993-5

Cross sections: theory

Polyatomics

- Only vertical excitation energies + transition dipole moments feasible
- Use correlation diagrams to obtain insight whether dissociation likely
- Simplest assumption: all transitions into states above E_{dis} and below E_{ion} lead to dissociation => upper limit to p.d. rate

Cross sections: experiments

- Limited (mostly) to stable molecules
- Absorption cross sections of many (stable) molecules measured over broad energy
 - High accuracy (~20%) if absorption is continuous
 - Large uncertainties (~order of magnitude) if absorption is discrete and lines unresolved
- Need to measure fluorescence and ionization cross sections to determine dissociation cross sections
 - Usually assume all absorptions above IP lead to ionization

Example: CH₄

High accuracy

Lee & Chiang 1983

Example: O₂

High accuracy

Example: NO

Many unresolved bands => large uncertanties

Guest & Lee 1981

Cross sections: recent experiments

- Lots of beautiful experiments on state- and time-resolved photodissociation dynamics, but usually at a single wavelength (193 nm, 157 nm)
- Not much useful for astrophysics since 1980's
- CO measurements Eidelsberg, Rostas et al. => update of CO isotopic photodissociation in progress

Products

- Diatomics: computed from dynamics, but outcome of predissociation process not well known if multiple states involved
 - $OH => O(^{3}P), O(^{1}D), O(^{1}S)$
 - $CH^+ \Rightarrow C + H^+$
 - Product ratio varies depending on radiation field
- Triatomics: computed from dynamics for light hydrides, but only accurate for lowest states
- Polyatomics: unknown, both from theory and experiments; no reasonable guesses, except which products are energetically feasible
 - What does UMIST06 assume?
 - Watch out for experiments at high pressure => subsequent reactions

Uncertainties

- Rates: estimated by EvD based on above considerations and critical evaluation of literature; categories A (<50%), B (factor 2) or C (factor of 10)
 - Includes estimates of higher-lying channels below IP or below 13.6 eV
 - Note: these assignments only hold for standard ISRF! Could be different for solar radiation field
- Products: no quantification of uncertainties possible, except for simplest diatomics

Photodissociation database

- Summarized in reviews and made available on WWW at <u>www.strw.leidenuniv.nl/~ewine/photo</u>
 - 71 molecules photodissociation
 - 21 atoms photoionization
 - 17 molecules photoionization
- Includes cross section files and rates for different radiation fields
- Comparison with Huebner et al. AMOP database in progress
- Direct integration of cross sections over radiation field and radiative transfer included in Leiden PDR code since mid-1990's (Jansen et al. 1995, van Zadelhoff et al. 2003, Jonkheid et al. 2004-2007)

Small carbonaceous molecules

- Use increased computing power to determine vertical excitation energies and oscillator strengths of 9 states per symmetry of heavier species
- C₃, C₄, C₂H, *l* and *c*-C₃H, *l* and *c*-C₃H₂, HC₃H, *l*-C₄H and *l*-C₅H
- Compute E_{dis} and IP
- Assume all absorptions above E_{dis} and below IP lead to dissociation

Caveats

- Comparison with exp and other calculations shows that E_{ex} accurate to 0.2-0.3 eV and f to better than 30% for lower states
- Higher states (≥ 5'th root per symmetry) difficult to calculate because of heavy mixing of states and orbitals
 - E_{ex} O.K. to determine whether below IP or 13.6 eV
 - Magnitude of f (strong, weak) O.K.
 - Several new, strong Rydberg states found
- Rates are upper limits (but expected to be close to actual values)

Photodissociation rates in ISRF

Species	Rate (s ⁻¹)
<i>l</i> -C ₃	5.0(-9)
<i>l</i> -C ₄	8.5(-9)
<i>l</i> -C ₂ H	1.6(-9)
<i>l</i> -C ₃ H	1.8(-9)
c-C ₃ H	1.1(-9)
<i>l</i> -C ₄ H	3.7(-9)
<i>l</i> -C ₅ H	1.3(-9)
HC ₃ H	2.2(-9)
$c-C_3H_2$	1.4(-9)
$l-C_3H_2$	5.1(-9)

- All rates rapid => short lifetimes in PDRs
- Bare carbon chains largest rates
- Odd-numbered C_nH lowest rates

Questions

- How good is assumption that all absorptions above E_{dis} lead to dissociation?
 - Some experimental evidence from Choi et al. 2000 for C₄, where absorption at 5.2-5.4 eV shows C₃ + C production, minor C₂ + C₂
 - Consistent with phase space theory in which product states are statistical
 - Internal conversion to ground state with no barriers to dissociation
- Is dissociative ionization important?
 - c-C₃H₂ has several strong states just above IP=9.15 eV

Large molecules

- Density of vibrational levels of ground state becomes so high that excited states can couple with them non-radiatively: *internal conversion*
 - Alternatives: fluorescence or intersystem crossing followed by phosphorescence
- Some fraction of energy will end up in vibrational mode leading to dissociation; rest will cascade by infrared photons
- Main question: when does molecule become stable against photodissociation? When N>25?
- Large molecules have first IP around 7 eV => (dissociative) photoionization?

Photodestruction PAHs

 UV absorption → hydrogen loss followed by carbon loss

Visser et al. 2007

PAH destruction in disks

- $N_{\rm C}$ < 40: entire disk
- $N_{\rm C} > 40$: part of disk \rightarrow only $N_{\rm C} = 100$ survives as close as few AU from the star

PDRs in disks vs. clouds

- Spectral shape radiation field: 30000=>4000 K
 - Affects H₂, CO, C p.i., CN, N₂, ...
 - \blacksquare => rates as function of T_{eff}
 - Resonance lines: Lyman α
 - \blacksquare => cross sections at 1216 Å
- High intensity radiation fields up to 10⁷xISRF
 - Photodissociation of ions important?
 - = > new calculations of small species
- Grains grown to µm size
 - => rates for larger grains
- Gas/dust mass ratio not equal to 100 (> or <?)</p>
- Photodesorption of ices

Interaction photons with ices: molecular dynamics study of H₂O

- Periodic slab of crystalline ice (Ih)
- 8 bilayers
- 6 moving bilayers
- 60 H₂O molecules per bilayer
- **Rigid H₂O molecules**
- Classical dynamics

y: 23.4 Å

Andersson et al. 2005

Photodissociation of H_2O ice

Top view

Two top bilayers; molecule in 1st bilayer Duration: 0.4 ps

Photodissociation of H₂O ice

Side view

Two top bilayers; molecule in 2nd bilayer Duration: 0.6 ps

Outcome of photodissociation

• The probability of H desorption decreases by ~50% per bilayer

• 20% recombination in third bilayer

Results absorption spectrum

Peaks Gas phase: 7,5 eV 1st bilayer: 9,4 eV 2nd and 3rd bilayer: 9,6 eV Exp,: 8,6 eV

- See compilation of ice absorption spectra various species by Mason et al. (2006)

Conclusions

- Diatomics: accurate rates, except for heavy diatomics dominated by predissociation
- Triatomics: simplest hydrides accurate (including products), but becomes more uncertain if not measured
- Polyatomics: smaller O.K. if measured; within factor of few if vertical spectrum calculated.
 Products highly uncertain

Future work

- Finalize comparison with other databases
- Update CO isotopic photodissociation
- N₂ photodissociation?
- Requests for other (calculable) molecules?
- Stimulate experimentalists to do large molecules over broad wavelength range
- More work on ices