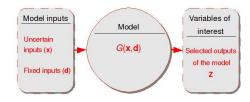
P. Pernot⁽¹⁾, S. Plessis⁽¹⁾,
N. Carrasco⁽²⁾, E. Hébrard⁽²⁾,
M. Dobrijevic⁽³⁾ & V. Wakelam⁽³⁾

⁽¹⁾Labo. de Chimie Physique, CNRS/UPS 11, Orsay
 ⁽²⁾Service d'Aéronomie du CNRS, Verrières
 ⁽³⁾Labo. d'Astrophysique de Bordeaux, CNRS/UB1

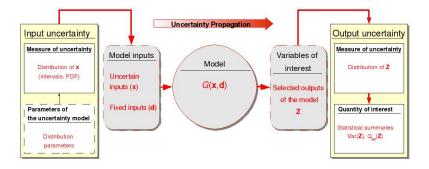
Plan

1 Methodology

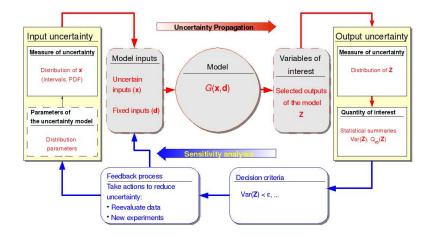

- The Framework
- Evaluated databases of reaction rates
- Design of PDF for low-T reaction rates
- Important reactions in Titan's ionosphere
- 3 Management of uncertainties for branching ratios

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

4 Conclusions


The Framework

Treatment of uncertainty in modelling


The Framework

Treatment of uncertainty in modelling

The Framework

Treatment of uncertainty in modelling

The key reaction concept

The Framework

- Our goal is to *optimally* reduce prediction uncertainty for photochemical models at low T
 - "*optimally*", because low-T experiments are expensive and simulations are computer intensive
- We need to identify parameters of the models (reaction rates, branching ratios...) which are responsible for the large prediction uncertainty on variables of interest
 - the corresponding reactions are the "key reactions" of the UP/SA modeling
- We want to establish an iterative process between modelers and experimentalists
 - pointing out "key reactions" for new experiments should be based on sane uncertainty analysis

The key reaction concept

- Our goal is to *optimally* reduce prediction uncertainty for photochemical models at low T
 - "*optimally*", because low-T experiments are expensive and simulations are computer intensive
- We need to identify parameters of the models (reaction rates, branching ratios...) which are responsible for the large prediction uncertainty on variables of interest
 - the corresponding reactions are the "key reactions" of the UP/SA modeling
- We want to establish an iterative process between modelers and experimentalists
 - pointing out "key reactions" for new experiments should be based on sane uncertainty analysis

The key reaction concept

- Our goal is to *optimally* reduce prediction uncertainty for photochemical models at low T
 - "*optimally*", because low-T experiments are expensive and simulations are computer intensive
- We need to identify parameters of the models (reaction rates, branching ratios...) which are responsible for the large prediction uncertainty on variables of interest
 - the corresponding reactions are the "key reactions" of the UP/SA modeling
- We want to establish an iterative process between modelers and experimentalists
 - pointing out "key reactions" for new experiments should be based on sane uncertainty analysis

Methodology

Evaluated databases of reaction rates

• We need a mathematical representation for uncertain model inputs.

What have existing databases to offer to uncertainty-aware modelers?

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Methodology

Evaluated databases of reaction rates

Shopping for uncertainties

- udfa⁰⁶
 - $k_i(T) = \alpha_i (T/300)^{\beta_i} \exp(-\gamma_i/T)$
 - The accuracy is described by a letter A, B, C, D, E where the errors are < 25%, < 50%, within a factor of 2, within an order of magnitude, and highly uncertain, respectively.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

- No T-dependence of uncertainty
- No pdf proposed

Methodology

Evaluated databases of reaction rates

Shopping for uncertainties

- osu_01_2007
 - $k_i^0(T) = \alpha_i (T/300)^{\beta_i} \exp(-\gamma_i/T)$
 - $F_i = 1.25, 1.5, 2.0 \text{ or } 10.0$
 - $\log k_i(T) = \log k_i^0(T) \pm \log F_i$
 - No T-dependence of uncertainty

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

No pdf proposed

Methodology

Evaluated databases of reaction rates

Shopping for uncertainties

• Neutral reactions : IUPAC - NASA/JPL, Hébrard*et al.* (JPPC, 2006; PSS, 2007)

•
$$k_i^0(T) = \alpha_i (T/300)^{\beta_i} \exp(-\gamma_i/T)$$

$$F_i(T) = F_i(300 \text{ K}) \exp \left(g_i \left|\frac{1}{T} - \frac{1}{300}\right|\right)$$

- F_i is proportional to the **standard** uncertainty, $CI \simeq 67\%$ or $CI \simeq 95\%$
- "Both uncertainty factors, $F_i(300 \text{ K})$ and g_i , do not necessarily result from a rigorous statistical analysis of the available data."

Methodology

Evaluated databases of reaction rates

Shopping for uncertainties

- Ion-molecule reactions : Anicich (JPL 2003)
 - Global rate $k_i \pm F_i$ (F_i in percent)
 - Branching ratios $\{b_{ij}\}_{j=1,N}$
 - No reported T-dependence on properties and uncertainties

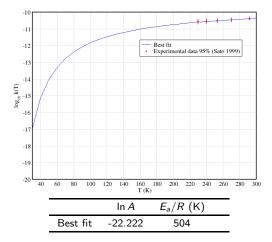
▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

No reported uncertainty on branching ratios

Methodology

Evaluated databases of reaction rates

Shopping for uncertainties

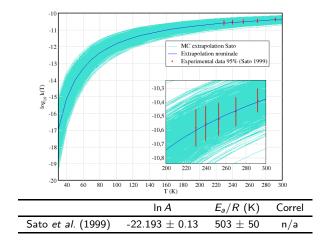

- Electron recombination : Adams et al. (MSR 2006), Florescu & Mitchell (PR 2006)
 - Global rate $k_i(T) = \alpha_i (T/300)^{\beta_i}$
 - Branching ratios $\{b_{ij}\}_{j=1,N}$
 - No uncertainty, search the original literature
 - Representation by hierarchical Dirichlet distribution Work in progress, see later...

▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Methodology

Design of PDF for low-T reaction rates

Statistical analysis $N(^{2}D) + C_{2}H_{4} \longrightarrow CH_{3}CN + H$

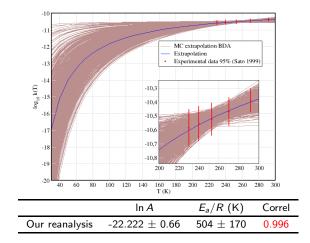


◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ∽ ⊙へ⊙

Methodology

Design of PDF for low-T reaction rates

 $\begin{array}{l} \mbox{Statistical analysis} \\ N(^2D) + C_2H_4 \longrightarrow CH_3CN + H \end{array}$

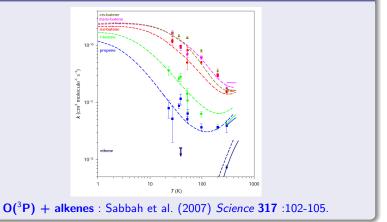


◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Methodology

Design of PDF for low-T reaction rates

Statistical analysis $N(^{2}D) + C_{2}H_{4} \longrightarrow CH_{3}CN + H$

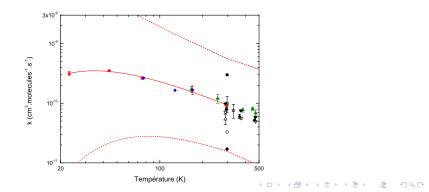


◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ● ● ●

Design of PDF for low-T reaction rates

Improper extrapolation laws

Non-Arrhenius Low-T behaviour of reaction rates


◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 - つへで

Methodology

Design of PDF for low-T reaction rates

Conflicting data

$CH + CH_4$

Methodology

Design of PDF for low-T reaction rates

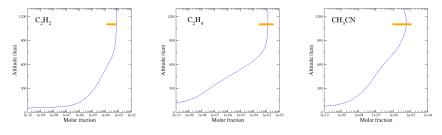
- Experts are usually trained to estimate "best values"
- Assessing uncertainty (PDF elicitation) is much more difficult :

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

- exagerating uncertainty "just to be on the safe side" is detrimental to UP/SA ("Garbage in, garbage out...")
- underestimation might lead to wrong "key reactions"
- might require interaction with elicitation experts

Design of PDF for low-T reaction rates

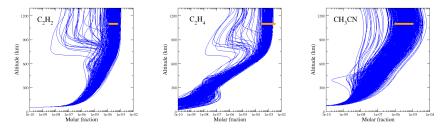
Uncertainty of low-T reaction rates : conclusions


• Pessimistic

 evaluation of 1000s reaction rates and uncertainties by commities of experts will take eons

Optimistic

- uncertaintywise, few reactions in the model play a dominant role;
- sensitivity analysis can help to identify them provided we get reasonable uncertainty assessments ("GIGO") (Dobrijevic *et al.* (2008) *PSS* 56 :1630-1643)
- iterative process between experiments and simulations

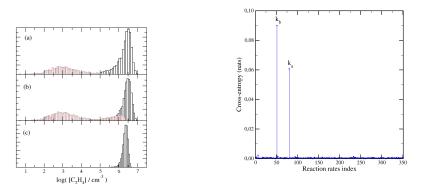

UP on 1D photochemical model

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○

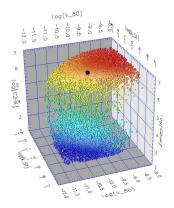
Nominal run

UP on 1D photochemical model

▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @


Uncertainty propagation with "Hébrard et al. (JPPC 2006)" database

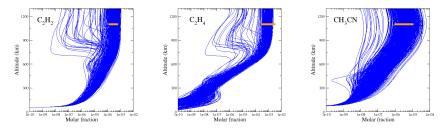
Sensitivity Analysis


Which input parameters are most affected by the filtering of low $\mathsf{C}_2\mathsf{H}_4$ densities ?

Cross-entropy analysis : only 2 reactions involved !

- $CH + CH_4 \longrightarrow C_2H_4 + H$; $F_a = 12.7$
- $CH + H \longrightarrow C + H_2$; $F_b = 6.8$

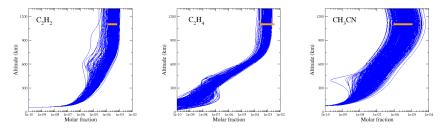
Sensitivity Analysis



▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

Alternative filtering methods

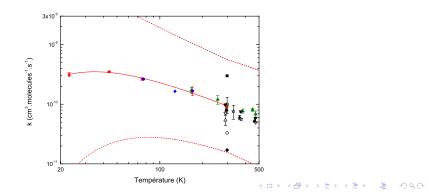
- "Chemical Filtering": $k_a[CH_4] > k_b[H]$
- Uncertainty reduction : $F_a = F_b = 2$


UP on 1D photochemical model

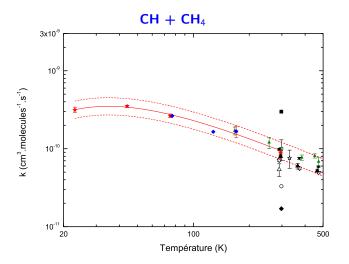
Uncertainty propagation with "Hébrard *et al.*" database (M. Dobrijevic *et. al.*, submitted)

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

UP on 1D photochemical model


Uncertainty propagation with filtering

(M. Dobrijevic et. al., submitted)


▲ロ▶▲母▶▲目▶▲目▶ 目 のへで

Effects of update of rate database?

$CH + CH_4$

Effects of update of rate database?

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q @

Parametric uncertainties of branching ratios

$A + B \longrightarrow P_1; k$

- Partial rate constants $k_i = k * b_i; \sum_i b_{i,i} = 1$
- Usual representation in databases ("1 line, 1 reaction")
 - if uncertainty is given, it is thus a combination of F_k and F_{b_i}

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

Parametric uncertainties of branching ratios

$$\begin{array}{rcl} A+B \longrightarrow P_1 \; ; \; k, \; b_1 \\ \longrightarrow P_2 \; ; \; k, \; b_2 \end{array}$$

• Partial rate constants $k_i = k * b_i; \sum_i b_{,i} = 1$

• Usual representation in databases ("1 line, 1 reaction")

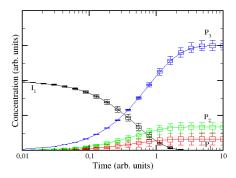
• if uncertainty is given, it is thus a combination of F_k and F_{b_i}

▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Parametric uncertainties of branching ratios

$$\begin{array}{ccc} A+B \longrightarrow P_1 \; ; \; k, \; b_1 \\ \longrightarrow P_2 \; ; \; k, \; b_2 \end{array}$$

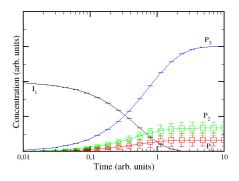
- Partial rate constants $k_i = k * b_i; \sum_i b_{,i} = 1$
- Usual representation in databases ("1 line, 1 reaction")
 - if uncertainty is given, it is thus a combination of F_k and F_{b_i}


Branching ratios and the sum rule

$$\begin{split} I_1 + M_1 &\longrightarrow P_1 \ ; \ k_1, \ b_{11} \\ I_1 + M_1 &\longrightarrow P_2 \ ; \ k_1, \ b_{12} \\ I_1 + M_2 &\longrightarrow P_3 \ ; \ k_2 \end{split}$$

 $[M_i] \gg [I_i]$ $F_k \ll F_b$

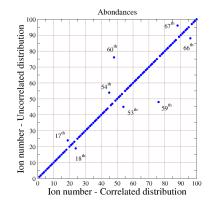
Branching ratios and the sum rule



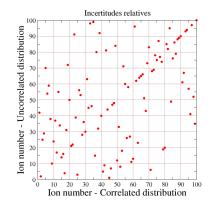
 $k_{11} = k_1 * b_{11} = 0.33 \pm 0.12, \ k_{12} = k_1 * b_{12} = 0.67 \pm 0.12$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Branching ratios and the sum rule

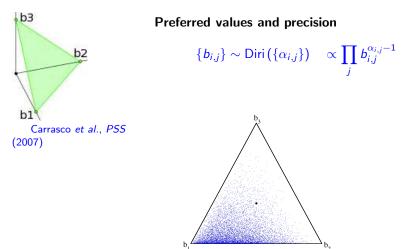

Correlated partial rates

 $\{k_{11}, k_{12}\} = k_1 * \{b_{11}, b_{12}\} \sim \text{Diri}(15, 30)$


▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

Effect of sum constraint on UP for a complex system

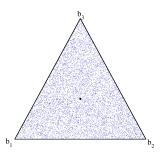
▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()


Effect of sum constraint on UP for a complex system

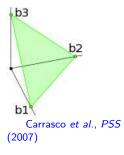
◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 - のへ⊙

PDFs for branching ratios

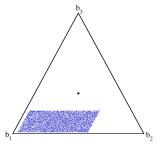
Implementing the sum constraint


PDFs for branching ratios

Implementing the sum constraint


No preference : total uncertainty

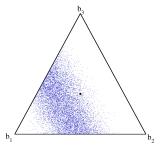
 $\{b_{i,j}\} \sim \mathsf{Diri}(1, 1, ..., 1)$


PDFs for branching ratios

Implementing the sum constraint

Preferred intervals

 $\{b_{i,j}\} \sim \mathsf{Diut}\left(\left\{b_{i,j}^{\min}, b_{i,j}^{\max}\right\}\right)$


PDFs for branching ratios

Implementing the sum constraint

Partial "total uncertainty"

 $\{b_{i,j}\} \sim \mathsf{Diri}\left(\alpha_{i,1}, \alpha_{i,2} * \mathsf{Diri}\left(1, 1\right)\right)$

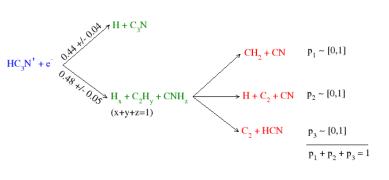
Coupling ion and neutral chemistry

$$A + e^{-}(h\nu) \longrightarrow A^{+} + e^{-} + e^{-}(h\nu)$$
$$A^{+} + B \longrightarrow C + D^{+}$$
$$A^{+} + e^{-} \longrightarrow X + Y + \dots$$

$$X + e^{-}(h\nu) \longrightarrow X^{+} + e^{-} + e^{-}(h\nu)$$
$$X^{+} + A \longrightarrow E + F^{+}$$

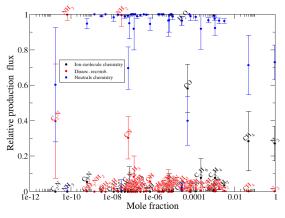
ż

・ロト・「聞・ 《聞・ 《聞・ 《曰・


BRANCHING	RATIOS	OF	THE	DR	OF	DCCCN ⁺

Products		Branching Ratio	
	$C_3N + D$	0.44 ± 0.04	
	$DCC + CN, D + C_2 + CN, DCN + C_2$	0.48 ± 0.05	
	$C_2N + DC, N + C_3D$	0.02 ± 0.01	
	$D + C + C_2N$	0.04 ± 0.02	
	$DC_2N + C$	0.02 ± 0.01	
	$ND + C_3$	0.00 ± 0.01	

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ∽ ⊙へ⊙


W. D. Geppert at al., Astroph. J. (2004)

Hierarchical Dirichlet modeling (Carrasco et Pernot, JPCA 2007)

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 - つへで

Application to Titan ionosphere (work in progress)

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

Partial rates or Branching ratios?

 $\begin{array}{l} A+B \longrightarrow P_1; \ \{k, \ b_1\} \ \mathrm{or} \ k_1? \\ \longrightarrow P_2; \ \{k, \ b_2\} \ \mathrm{or} \ k_2? \end{array}$

• if reaction rates and branching ratios are measured by different experiments/techniques

• keep separated uncertainty statements and representation in database

- if not, proceed as usual ("1 line, 1 reaction")
- Advantages of keeping an explicit separation of uncertainty sources

• T-dependence of k might be different from b_i ;

- more pertinent sensitivity analysis (key parameters);
- easier to manage the sum rule wrt. uncertainties.

Partial rates or Branching ratios?

 $\begin{array}{l} A+B \longrightarrow P_1; \ \{k, \ b_1\} \ \mathrm{or} \ k_1? \\ \longrightarrow P_2; \ \{k, \ b_2\} \ \mathrm{or} \ k_2? \end{array}$

• if reaction rates and branching ratios are measured by different experiments/techniques

• keep separated uncertainty statements and representation in database

- if not, proceed as usual ("1 line, 1 reaction")
- Advantages of keeping an explicit separation of uncertainty sources
 - T-dependence of k might be different from b_i ;
 - more pertinent sensitivity analysis (key parameters);
 - easier to manage the sum rule wrt. uncertainties.

Conclusions

- photochemical models should not ignore the large uncertainty in chemical parameters :
 - low-T extrapolation of reaction rates need uncertainty-aware kinetics database
 - products distributions / branching ratios very important to enforce sum constraint the larger the uncertainties, the more important the conservation laws
- uncertainty propagation and sensitivity analysis are powerful tools for improving model precision
- *key reactions* are identified by their majority contribution to model imprecision
- this requires adapted uncertainty representation and a new generation of kinetics database (KiDA)

Beloved collaborators and funding agencies

- N. Carrasco, E Hébrard (SA, Verrières-le-Buisson)
- S. Plessis (LCP, Orsay)
- M. Dobrijevic, V. Wakelam (LAB, Bordeaux)

- CNRS
- CNES
- EuroPlaNet
- Programme National de Planétologie

▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @