Neutral-Neutral Reactions

Ian Smith

Universities of Cambridge and Birmingham, UK

Panel Meeting ISSI Bern 2nd December 2008

Inte	Interstellar & Circumstellar Molecules									
(E. ⊦	(E. Herbst(2007) & www.astrochymist.net)									
N=2	N=2	N=3	N=3	N=4	N = 5	N = 6	N = 7	N = 8	N = 9	N = 10
H ₂	AIF	H ₃ +	C ₃	CH₃	CH₄	CH ₃ OH	CH ₃ NH ₂	HCOOCH ₃	(CH ₃) ₂ O	(CH ₃)CO
СН	AICI	CH₂	C ₂ O	NH ₃	SiH ₄	CH₃SH	CH₃CCH	CH ₃ C ₂ CN	C₂H₅OH	CH ₃ C ₄ CN
CH⁺	NaCl	NH ₂	C ₂ S	H₃O⁺	CH₂NH	C ₂ H ₄	CH₃CHO	HC ₆ H	C₂H₅CN	CH₃CH₂CHO
NH	KCI	H₂O	C ₂ P	H₂CO	H ₂ C ₃	CH₃CN	c-CH ₂ OCH ₂	С ₇ Н	CH₃C₄H	(CH ₂ OH) ₂
ОН	SiC	H₂S	CO2	H₂CS	<i>с</i> -С ₃ Н ₂	CH₃NC	CH ₂ CHCN	HOCH₂CHO	C ₈ H	
SH	SiN	C₂H	N ₂ O	/-C₃H	H₂COH⁺	HC ₂ CHO	HC₄CN	CH₃COOH	HC ₆ CN	
HF	SiO	HCN	ocs	<i>с-</i> С ₃ Н	H₂CCN	NH₂CHO	C ₆ H	H₂CCCHCN	CH ₃ CHCH ₂	
C ₂	SiS	HNC	SO ₂	нссн	H₂NCN	HC₃NH⁺	H ₂ CCHOH	H ₂ C ₆	CH ₃ CONH ₂	
CN	РО	нсо	c-SiC ₂	HCNH⁺	H₂CCO	H ₂ C ₄	C ₆ H⁻	CH ₂ CHCHO	C ₈ H⁻	N = 11
со	SO	HCO⁺	SiCN	H ₂ CN	нсоон	HC₄H		NH ₂ CH ₂ CN		HC ₈ CN
CO⁺	SO⁺	HOC⁺	SiNC	HCCN	C₄H	C₅H		C_2H_6		CH₃C ₆ H
CF⁺	FeO	HCP	AINC	HNCO	HC ₂ CN	C₅N				
СР	N_2^+	HNO	MgCN	HOCO⁺	HC ₂ NC	C ₅ O				N = 12
CS		HN ₂ ⁺	MgNC	HNCS	C₄Si	C₅S				C ^e H ^e
NO		HCS⁺		C ₂ CN	C ₅					
PN			N=4	C ₃ O	C₄N					N = 13
NS			C₃N⁻	C ₃ S	CNCHO					HC ₁₀ CN
			? PH ₃ ?	c-SiC ₃	C₄H⁻					

CRESU Technique for Ultra-Low Temperatures (B R Rowe)

Isentropic expansion of gas through Laval nozzle

Frequent collisions maintain thermal equilibrium

Each nozzle provides a supersonic flow uniform in temperature, density and velocity

Schematic diagram of combined PLP-LIF / CRESU apparatus

The CRESU method – 'Pros and Cons'

- Rapid expansion and lack of collisions with walls mean super-saturated conditions can be obtained
- Only method for studying thermal rates of molecular processes over a range of very low temperatures (down to ca 13 K)

- New nozzle for each temperature
- Can only reach 13 K
 - Solution: development of new pulsed version of the CRESU method
 - Reaction products and branching ratios
 Solution: observation of products by IR diode laser spectroscopy ?
- Very large gas flows make experiments difficult where co-reagents require synthesis
 Solution: pulsed Laval nozzles
- Difficult to study reactions between unstable radicals: e.g. $O(^{3}P) + OH \rightarrow O_{2} + H$
- Solution: produce both radicals by pulsed photolysis

Neutral-Neutral Reactions: Summary of Experiments

- Canosa et al. list 93 reactions: 73 studied in continuous CRESU (Rennes, Birmingham, Bordeaux); 20 in pulsed CRESU (Arizona, Berkeley, Göttingen)
- Continuous CRESU reach as low as 13 K; pulsed CRESU to 53 K

Radicals: $B({}^{2}P_{J})^{,} C({}^{3}P_{J}), O({}^{3}P_{J}), AI({}^{2}P_{J})^{,} and Si({}^{3}P_{J})$ CN, OH, CH, NH, C₂(X), C₂(a), C₂H, C₄H

Molecules: alkenes/alkynes (52); saturated molecules (19); radicals (15); aromatics (2); others (5)

Reactions	Concerned species	Person(s) in charge
$C + C_3 O \rightarrow C_3 + CO$	C ₃ O	IWMS & J-CL
$C + OCN \rightarrow CO + CN$	OCS	IWMS & J-CL
$H + CH_2 \rightarrow CH + H_2$	СН	IWMS & J-CL
$O + CN \rightarrow CO + N$	CN	IWMS & J-CL
$N + CN \rightarrow C + N_2$	CN	IWMS & J-CL
$O + C_2 \rightarrow CO + C$	C ₂	IWMS & J-CL
$O + C_2 H \rightarrow CO + CH$	C ₂ H	J-CL (& IWMS)
$O + C_3 H \rightarrow CO + C_2 H$	C₃H	J-CL (& IWMS)
$N + NO \rightarrow N_2 + O$	NO	J-CL (& IWMS)
$CN + NH_3 \rightarrow$	NH ₂ CN	IWMS (& Dahbia
NH ₂ CN + H		Talbi, Paul Seakins)

Reactions	Concerned species	Person(s) in charge
$O + NH \rightarrow NO + H$		IWMS
$O + NH_2 \rightarrow HNO + H$		IWMS
$O + HNO \rightarrow NO + OH$		IWMS
$N + C_2 N \rightarrow CN + CN$		IWMS
$N + C_4 N \rightarrow CN + C_3 N$		IWMS
$O + C_3 N \rightarrow CO + C_2 N$		IWMS
$N + C_3 \rightarrow CN + C_2$		IWMS
$N + C_2 H \rightarrow CN + CH$		IWMS
CN + HCCCN →		IWMS
NCCCCN + H		

Reactions	Comments
CN + NH ₃ → NH ₂ CN + H	Rate constants for overall reaction measured down to 13 K. No info on branching ratio (\rightarrow NH ₂ CN + H to HCN + NH ₂). Dahbia has carried out calculations. Paul Seakins to do experiments (at room <i>T</i>).
$N + NO \rightarrow N_2 + O$	Numerous experiments at room <i>T</i> and above. New experiments planned in Bordeaux for lower <i>T</i>
$H + CH_2 \rightarrow CH + H_2$	Quite extensive exptl measurements on this reaction (and its reverse) at room <i>T</i> and above.
$O + CN \rightarrow CO + N$	Several room <i>T</i> measurements. Little on <i>T</i> -dependence (unlikely to be strong)
$N + CN \rightarrow C + N_2$	There are two experimental measurements: one at room <i>T</i> , one suggests a very bizarre <i>T</i> -dependence'
$O + C_2 H \rightarrow CO + CH$	2 measurements from same group giving rather different values – one gives <i>T</i> -dependence
$C + C_3 O \rightarrow C_3 + CO$	No measurements available. Estimate based on comparison of reactions of C(³ P) with alkenes
$C + OCN \rightarrow CO + CN$	No measurements available.
$O + C_2 \rightarrow CO + C$	No measurements available, apart from one at 8000 K!!
$O + C_3 H \rightarrow CO + C_2 H$	No measurements; same value adopted as for O + C ₂ H

'Rationale' for estimating rate constants

If room T rate constant is available, is it >> than 10⁻¹¹ cm³ s⁻¹? If so, k(10 K) is probably of the order of 10⁻¹⁰ cm³ s⁻¹

If reaction is one between two radicals, a factor involving the electronic degeneracies is assumed to lower the rate constant from simple collision value (i.e., reaction does not occur on all PES's)

Radiative Association

Ian Smith

Universities of Cambridge and Birmingham, UK

Panel Meeting ISSI Bern 2nd December 2008

Reactions	Concerned species	Person(s) in charge
$C + H_2 \rightarrow CH_2 + hv$	73 !	J-CL (& IWMS)
$CH_3^+ + H_2 \rightarrow C_2H_5^+ + hv$	18	DG (& IWMS)
$C^+ + H_2 \rightarrow CH_2^+ + hv$	C ₃	DG (& IWMS)
$C_2H_2^+ + H_2 \rightarrow C_2H_4^+ + hv$	C ₂ H ₂ O; C ₂ H ₃ ; C ₂ H ₂ ⁺ ; C ₂ HO ⁺ ; C ₂ H ₂ N ⁺ ; H ₃ C ₃ +	DG (& IWMS)
$CH_3^+ + CO \rightarrow C_2H_3O^+ + hv$	C ₂ H ₂ O; C ₂ H ₃ O ⁺	DG
$C_3H^+ + H_2 \rightarrow C_3H_3^+ + hv$	C ₃ H ₂ ; H ₂ C ₃ ; C ₃ H ⁺ ; C ₃ H ₂ ⁺ ; C ₃ H ₃ ⁺ ; H ₃ C ₃ +	DG
$HCO^{+} + H_2O \rightarrow CH_3O_2^{+} + hv$	CH ₂ O ₂	DG
$S + CO \rightarrow OCS + hv$	OCS	J-CL (& IWMS)
$Si^+ + H_2 \rightarrow SiH_2^+ + hv$	HNSi	DG (?)

Radiative Association: Direct Experiments

- Experiments are possible in case of ion + neutral
 down to 10 K with H₂ as neutral
- Results obtained using 22-pole ion trap reported by Dieter Gerlich in mid 1990's for C⁺ + H₂, CH₃⁺ + H₂, C₂H₂⁺ + H₂. These are the basis of the recommendations on the data sheets.
- Experiments employed both $p-H_2$ and $n-H_2$. Form of H₂ in dense clouds?
- No experiments possible on neutral-neutral reactions: e.g. C + H₂

Reactions	Concerned species	Person(s) in charge
$C + H_2 \rightarrow CH_2 + hv$	73 !	J-CL (& IWMS)
$CH_3^+ + H_2^- \rightarrow C_2^- H_5^+ + hv$	18	DG (& IWMS)
$C^+ + H_2 \rightarrow CH_2^+ + hv$	C ₃	DG (& IWMS)
$C_2H_2^+ + H_2 \rightarrow C_2H_4^+ + hv$	C ₂ H ₂ O; C ₂ H ₃ ; C ₂ H ₂ ⁺ ; C ₂ HO ⁺ ; C ₂ H ₂ N ⁺ ; H ₃ C ₃ +	DG (& IWMS)
$CH_3^+ + CO \rightarrow C_2H_3O^+ + hv$	$C_2H_2O; C_2H_3O^+$	DG
$C_3H^+ + H_2 \rightarrow C_3H_3^+ + hv$	C ₃ H ₂ ; H ₂ C ₃ ; C ₃ H ⁺ ; C ₃ H ₂ ⁺ ; C ₃ H ₃ ⁺ ; H ₃ C ₃ +	DG
$HCO^{+} + H_2O \rightarrow CH_3O_2^{+} + hv$	CH ₂ O ₂	DG
$S + CO \rightarrow OCS + hv$	OCS	J-CL (& IWMS)
$Si^+ + H_2 \rightarrow SiH_2^+ + hv$	HNSi	DG (?)

Collisional and Radiative Association

$C + H_2 \rightarrow CH_2 + hv = an important test case$

- Husain and co-workers have measured the thirdorder rate constant for association at 300 K: k_{He}° = 6.9 × 10⁻³² [He] cm³ s⁻¹. Given a reasonable estimate for k_{He} of 1.0 × 10⁻¹¹ cm³ s⁻¹, we find (k_a / k_d) = 6.9 × 10⁻²² cm³, and therefore: $k_{\text{RA}} = k_{\text{rad}} (k_{\text{ass}} / k_{\text{diss}}) = k_{\text{rad}} \times 6.9 \times 10^{-22} \text{ cm}^3$
- The vibrational modes of CH₂ have low transition probabilities: estimates yield k_{rad} = 140 s⁻¹ − so k_{RA} ≈ 10⁻¹⁹ cm³ s⁻¹ at 300 K
 (J-CL suggests a value 5 times less)

$C + H_2 \rightarrow CH_2 + hv - some more 'thoughts'$

- Harding et al have calculated ab initio PES's for CH₂. They consider that CH₂(X³B₁) is formed via a transition from a weakly bound ³A₂ state that correlates with C(³P) + H₂. This may mean that internal states close to the dissociation limit have mixed X³B₁ and ³A₂ character and that *electronic transitions* from these levels to low-lying levels in X³B₁ may cause stabilisation
- A possible approach is to vary the radiative association rate coefficient between wide limits to find the 'best' values by comparing predicted and observed abundances
- Another possibility is that theory explores the possibility that I suggest.

ISSI Meeting: Questions to be addressed

- Assumption: emphasis mainly on chemistry in 'cold cores' of dense ISC's
- Errors in rate coefficients measured at low temperatures
- Estimates of rate coefficients at low temperatures from data at higher temperatures
- Estimates where there are no measurements of rate coefficients
- Products of reactions?

Categories of Reaction

Ion-Molecule Reactions

 (a) ions + non-polar molecules
 (b) ions + polar molecules

Neutral-Neutral Reactions

 (a) radicals + molecules
 (b) radicals + radicals

Radiative Association

{electron-molecule processes} X

Caveats and Acknowledgements

Kinetic experiments measure rate coefficients but rarely products or branching ratios – which are equally important in models

Reactants for reactions in ISM may not be in LTE – local thermodynamic equilibrium

This presentation leans heavily on articles by Canosa et al and by Gerlich in

Low Temperatures and Cold Molecules ed. IWMS to be published by World Scientific in 2008

Reactions of lons with Non-Polar Molecules

'Langevin model' assumes central potential (in cgs): $V(R_{AB}) = -\alpha q^2 / 2 R_{AB}^4$

Leads to

 $k(T) = 2\pi q (\alpha/\mu)^{1/2}$

- Model predictions borne out by experiment
- No apparent influence of quadrupole or non-spherical polarisability
- Possible effects of fine-structure (spin-orbit) states

Rate Coefficients / 10⁻⁹ cm³ molecule⁻¹ s⁻¹

Reactants	T = 8 K	T = 20 K	T = 30 K	Langevin
He⁺ + N₂	1.2	1.3	1.3	1.7
$\text{He}^+ + \text{O}_2$	1.0	0.85		1.6
He ⁺ + CO	1.5	1.4		1.8
$N^+ + O_2$	0.55			0.95
$N^+ + CH_4$	0.82			1.4
N⁺ + CO	1.1			1.1
H_3^+ + CO			1.7	2.0
$H_3^+ + N_2$			1.3	1.9
$H_3^+ + CH_4$			1.9	2.4

Comparison of *T*-dependence: non-polar *versus* polar molecules

Reactions of Ions with Polar Molecules

Potential now depends on orientation:

 $V(R_{AB}) = -\alpha q^2 / 2 R_{AB}^4$ $- q \mu_D \cos\theta / 2 R_{AB}^2$

 Theory (Bowers, Troe, Clary, etc) based on
 'capture' – suggests k(T)
 depends on rotational state
 of reactants Rate Coefficients (a Tn) / 10-9 cm3 molecule-1 s-1

Reactants	T = 27 K	T = 68 K	n
He⁺ + HCI	11.0	4.6	- 0.94
He ⁺ + SO ₂	8.2	6.5	- 0.25
He⁺ + H₂S	5.5	4.6	- 0.19
He⁺ + NH₃	4.5	3.0	- 0.44
He⁺ + H₂O	4.3	1.8	- 0.94
C ⁺ + HCI	3.8	1.9	- 0.75
C ⁺ + SO ₂	5.7	4.1	- 0.36
$C^* + H_2S$	4.8	3.0	- 0.51
C ⁺ + NH ₃	4.6	3.2	- 0.39
C⁺ + H₂O	12.0	5.2	- 0.91
N ⁺ + NH ₃	5.2	3.2	- 0.53
N ⁺ + H₂O	9.9	6.0	- 0.54

Ion-Molecule Reactions: Summary and Exceptions

Where for A⁺ + B: k(298 K) > 10⁻⁹ cm³ s⁻¹ if B is non-polar, assume k(T) = k(298 K) if B is polar, assume k(T) α T^{-0.5}

If $k(298 \text{ K}) < 10^{-10} \text{ cm}^3 \text{ s}^{-1}$, ?? e.g. $CH_4^+ + O_2$, examples in figure (Gerlich)

Categories of Reaction

Ion-Molecule Reactions
 (a) ions + non-polar molecules
 (b) ions + polar molecules

Neutral-Neutral Reactions

 (a) radicals + molecules
 (b) radicals + radicals

Radiative Association

{electron-molecule processes} X

Rate Coefficients and *T*-dependence for Collisional Association

Rate Coefficients (α Tⁿ) / 10⁻²⁷ cm⁶ molecule⁻² s⁻¹

Reaction	15 K	~20 K	~50 K	~70 K	~150 K	n
$N_2^+ + N_2 + N_2$			1.5	1		
$O_2^{+} + O_2 + O_2$		>1	>0.3	0.2		
CH_3^+ + H ₂ + He		3.4		1.9		
CH_3^+ + CO + He		85		34		- 1.1
$CH_{3}^{+} + N_{2} + He$		12		1.5		- 1.7
$CH_3^+ + H_2O + He$		>70		>40		
C ⁺ + H₂ + He		< 0.1				
Ar ⁺ + Ar + Ar		~0.005	~0.001			
H₃O ⁺ + H₂O + He		27	8.7		2.1	– 1.3
$H_3O^+ + H_2O + N_2$			17	10		
NH₄ ⁺ + NH₃ + He	93	51	17		2.3	- 1.6
$NH_4^+ + NH_3 + Ar$			29			
$NH_4^+ + NH_3 + N_2$			124	50	8.7	- 2.4

Rate Coefficients and *T*-dependence for Collisional Association

Reaction	15 K	~20 K	~50 K	~70 K	~150 K	n
$N_2^+ + N_2 + N_2$			1.5	1		
$O_2^+ + O_2 + O_2$		>1	>0.3	0.2		
$CH_3^+ + H_2 + He$		3.4		1.9		
CH_3^+ + CO + He		85		34		– 1.1
$CH_3^+ + N_2 + He$		12		1.5		- 1.7
CH_3^+ + H_2O + He		>70		>40		
C⁺ + H₂ + He		< 0.1				
Ar ⁺ + Ar + Ar		~0.005	~0.001			
$H_3O^+ + H_2O + He$		27	8.7		2.1	– 1.3
[」] つ ⁺ + H ₂ O + N ₂			17	10		
4 ⁺ + NH ₃ + He	93	51	17		2.3	– 1.6
4 ⁺ + NH ₃ + Ar			29			
${}_{4}^{+}$ + NH ₃ + N ₂			124	50	8.7	- 2.4

	-rx + + e = 30	6 .	1 -2 -1

Rate Coefficients (α Tⁿ) / 10⁻³⁰ cm⁶ molecule⁻² s⁻¹

Reactants	298 K	Range of (<i>T</i> /K)	n	
CH + N₂ + Ar	0.16	53 — 584	- 2.2	
CH + CO + Ar	4.1	53 – 584	- 2.1	
CH + H₂ + Ar	5.2	13 – 744	- 1.6	
CN + NO + Ar	2.6	99 – 450	- 2.1	
OH + NO + Ar	0.45	23 – 298	-2.6	
OH + NO ₂ +				
OH + butenes +	data at high-p limit only			

Radiative Association and the ISM

 Important processes either (a) involve H₂ or (b) large species

e.g. C⁺ + H₂ and CH₂⁺ + H₂ – rate coefficients measured in ion traps

problems if excited electronic states might be involved: e.g. $C + C_n$

ca. 10 K (Gerlich)

Categories of Reaction

Ion-Molecule Reactions

 (a) ions + non-polar molecules
 (b) ions + polar molecules

Neutral-Neutral Reactions

 (a) radicals + molecules
 (b) radicals + radicals

Radiative Association

{electron-molecule processes} X

7-dependence of rate coefficients

 'all' fast low temperature reactions have k(298 K) > 10⁻¹¹ cm³ molecule⁻¹ s⁻¹

the rate coefficients increase at lower temperatures – but form of *k*(*T*) *versus T* varies

For nearly all reactions k(10-20 K) are $1-4 \times 10^{-10} \text{ cm}^3$ molecule⁻¹ s⁻¹

œ 0 k / 10^m cm³ molecule¹ 100 TIK 0 (b) k / 10" cm² molecule⁻¹ 0 0 100 TIK k / 10th cm³ molecule⁴ (a) 0 10 100 TIK

 $CN + NH_3$

CN + C₂H₆

 $CN + C_2H_2$

Neutral-Neutral Reactions: Capture Theories

- Capture theories have been applied by Troe, Clary, Stoecklin, Klippenstein and others
- In contrast to ion-molecule reactions, the longrange attraction is much weaker so that maxima in effective potentials are at smaller separations
- Georgievskii and Klippenstein examined 26 neutral-neutral reactions by long-range TST (including all terms in long-range potential)

They found that for 18 reactions k_{calc} > 1.5 × k_{expt}

Two transition state model (Klippenstein)

Rate coefficient may be limited by 'inner' transition state – which may have higher or lower value of V(R_{AB}) but will have lower entropy

Quantitative application requires: (a) accurate long/ medium range potential (b) µJ application of TST

Two transition state model: CN + C₂H₆

Comparison between experimental and μ J-TST calculations for $CN + C_2H_6$

?? Can results be generalised **??**

Neutral-Neutral Reactions

Ian Smith

Universities of Cambridge and Birmingham, UK

Panel Meeting ISSI Bern 9th January 2008

Reported Interstellar and Circumstellar Molecules

N=2	N=2	N=3	N=3	N=4	N = 5	N = 6	N = 7	N = 8	N = 9	N = 10
H ₂	AICI	H ₃ +	HCP	NH ₃	CH ₄	CH ₃ OH	CH ₃ NH ₂	HCOOCH ₃	(CH ₃) ₂ O	(CH ₃)CO
СН	PN	CH₂	ocs	H₃O⁺	SiH₄	CH₃SH	CH₃CCH	CH ₃ C ₂ CN	C₂H₅OH	CH ₃ C₄CN
CH⁺	SiN	NH ₂	MgCN	H ₂ CO	CH₂NH	C ₂ H ₄	CH₃CHO	$C_6 H_2$	C₂H₅CN	CH₃CH₂CHO
NH	SiO	H ₂ O	MgNC	H₂CS	H ₂ C ₃	CH₃CN	c-CH ₂ OCH ₂	C ₇ H	CH₃C₄H	(CH ₂ OH) ₂
ОН	SiS	H₂S	NaCN	I-C₃H	/-C ₃ H ₂	CH₃NC	CH ₂ CHCN	HOCH₂CHO	C ₈ H	
HF	CO⁺	C₂H	SO ₂	c-C₃H	<i>с-</i> С ₃ Н ₂	H₂CCHO	HC₄CN	сн₃соон	HC ₆ CN	
C ₂	SO⁺	HCN	N ₂ O	нссн	H₂CCN	NH₂CHO	C₅H	H ₂ CCCHCN	CH ₃ CHCH ₂	
CN	РО	HNC	SiCN	HCNH⁺	H₂NCN	HC₃NH⁺	H ₂ CCHOH	H ₂ C ₆	CH ₃ CONH ₂	
СО	SH	НСО	CO ₂	H₂CN	CH₂CO	H ₂ C ₄	C ₆ H⁻	CH ₂ CHCHO	C₅H⁻	N = 11
CS	AIF	HCO⁺	c-SiC ₂	c-C₃H	нсоон	C₅H				HC ₈ CN
СР	FeO	HOC⁺	SiNC	HCCN	C₄H	C₅N				CH₃C ₆ H
NO	SiC	HN₂ ⁺	AINC	HNCO	HC ₂ CN	C₅O				
NS	CF⁺	HNO		HOCO⁺	HC ₂ NC	C₅S				N = 12
SO	? N ₂ ?	HCS⁺		HNCS	C₄Si					C ₆ H ₆
HCI		C ₃		C ₂ CN	C ₅					
NaCl		C ₂ O		C ₃ O	C₄N					N = 13
KCI		C ₂ S		C ₃ S	H₂COH⁺					HC ₁₀ CN
				SiC ₃	C₄H⁻					

Neutral-Neutral Reactions: Summary of Experiments

Canosa et al. list 93 reactions: 73 studied in continuous CRESU (Rennes, Birmingham, Bordeaux); 20 in pulsed CRESU (Arizona, Berkeley, Göttingen)

Continuous CRESU reach as low as 13 K, more generally ca. 25 K; pulsed CRESU to 53 K

Radicals: $B({}^{2}P_{J})^{,} C({}^{3}P_{J}), O({}^{3}P_{J}), AI({}^{2}P_{J})^{,} and Si({}^{3}P_{J})$ CN, OH, CH, NH, C₂(X), C₂(a), C₂H, C₄H

Molecules: alkenes/alkynes (52); saturated molecules (19); radicals (15); aromatics (2); others (5)

CRESU measurements of rate constants at low temperatures

- Signifies a pressure-dependent association reaction
- Metathesis reactions with k(298 K) > 1 × 10⁻¹⁰ cm³ molecule⁻¹ s⁻¹
- Metathesis reactions with k(298 K) > $10 5 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹
- Metathesis reactions with k(298 K) > 5 1 \times 10⁻¹¹ cm³ molecule⁻¹ s⁻¹

	CH ₄	C_2H_6	NH ₃	H ₂	D ₂	HBr	N ₂	CO	C_2H_2	C_2H_4	C₃H₅	сн₃ссн	CH2CCH2	butenes	02	NO	NO ₂	O(³ P)
B(²P)									23	23					23			
Al(² P)															23			
C(³ P)									15	15		15	15		15	15		
Si(³ P)									15	15					15	15		
O(³ P)											23			27				
СН(² П)	23	23	23	53	23		53	53	23	23				23	13	13		
ОН(² П)						23								23		23	53	38
CN(² Σ ⁺)		25	25						25	25		15	15		13			
$C_2 H(^2\Sigma)$									15	15	15	27	27		15			

also data for reactions of ${}^{1}C_{2}({}^{1}\Sigma_{q}^{+})$, ${}^{3}C_{2}({}^{3}\Pi_{u})$ and $C_{4}H$

CRESU measurements of rate constants at low temperatures

- radical + saturated molecule
 - radical + unsaturated molecule
- radical + radical

	CH₄	C_2H_6	NH ₃	H ₂	D ₂	HBr	N ₂	со	C ₂ H ₂	C ₂ H ₄	C ₃ H ₆	СН₃ССН	CH₂CCH₂	butenes	O ₂	NO	NO ₂	O(³ P)
B(² P)									23	23					23			
AI(² P)															23			
C(³ P)									15	15		15	15		15	15		
Si(³ P)									15	15					15	15		
O(³ P)											23			27				
СН(² П)	23	23	23	53	23		53	53	23	23				23	13	13		
ОН(² П)						23								23		23	53	38
CN(² Σ ⁺)		25	25						25	25		15	15		13			
C ₂ H(² Σ)									15	15	15	27	27		15			

also data for reactions of ${}^{1}C_{2}({}^{1}\Sigma_{g}^{+})$, ${}^{3}C_{2}({}^{3}\Pi_{u})$ and $C_{4}H$

Reactions of Radicals with Alkenes/Alkynes

Reaction will be fast at low temperatures (10 – 20 K) if:

- k(298 K) > 5 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ and/or
- (I.E. E.A.) > *ca*. 8.75 eV

Reactions of alkenes/alkynes with O(³P) atoms should provide crucial test

Why low temperature kinetics of O + alkenes?

Extensive kinetics measurements at and above room temperature

Some reactions show positive T dependence (e.g. propene & 1-butene) – some negative T dependence (e.g. iso-butene & cis-2-butene)

Rate constants and activation energies correlate with I.E. of the alkene (*Cvetanovic et al.*)

?? Will some *k*(*T*)'s decrease to low temperatures, some increase**??**

Kinetic Data for Reactions of O(³P) with Alkenes

	(I.E. – E.A.)/eV	<u>k(298 K)</u> 10 ⁻¹¹ cm ³ s ⁻¹	<u><i>T</i>-dependence</u>
trans-2-butene	7.64	2.2	– ve
<i>cis</i> -2-butene	7.65	1.8	– ve
<i>iso</i> -butene	7.76	1.7	– ve
1-butene	8.09	0.42	+ ve
propene	8.27	0.40	+ ve
ethene	9.05	0.073	+ ve

CRESU Experiments on Reactions of O(³P) with Alkenes (*Ludovic Bennier, Hassan Sabbah, Ian Sims & IWMS*)

 O(³P) atoms are generated by pulsed laser photolysis of NO₂ at 355 nm (tripled Nd:YAG laser)

a small-ish concentration of NO is included in the reaction mixture, and variation in the O(³P) atom concentration is followed by observing the intensity of the chemiluminescence from NO₂*

Rate constants for reaction of O(³P) with alkenes

Theoretical calculations on O(³P) + alkene reactions (Yuri Georgievskii and Stephen Klippenstein)

Ab initio calculations characterise the long-range potentials

---- trans-butene ---- ethene

Generally two maxima – two transition states – 'outer' and 'inner'

Dynamics treated by µJ version of TST

For O(³P) + ethene, inner TS is dominant ('real' barrier)

For O(³P) + alkenes with low values of (I.E. – E.A.), outer TS is dominant, barrier is wellsubmerged

 For intermediate cases, influence of both barriers is important with their relative importance depending on temperature

Rate constants for reaction of O(³P) with alkenes

- *cis*-butene
 - *trans*-butene
- *iso*-butene
- 1-butene
- propene
- Solid lines from expts of Fontijn
- Dashed lines from μJ -TST calculations
- O(³P) + ethene too slow to measure

Conclusions

Rate constants for reaction of O(³P) atoms with alkenes show a complex dependence on temperature

The semi-empirical arguments introduced in the Faraday Discussion paper of Smith et al. that reactants with (I.E. – E.A.) < ca. 8.75 eV will occur rapidly at low temperature hold up rather well

The values of k(T) and their dependence on T are wellmatched by a two transition state model using μJ version of TST

Radical-Radical Reactions

At least one PES should have no maximum and probably a 'deep' minimum

Several PES's probably correlate with reactants not all leading (without a barrier) to products

- k(T) may be lowered by degeneracies and neardegeneracies
- Can an inner transition state lower rate below that for capture?

	O ₂	NO	NO ₂	O(³ P)
B(² P)	23			
AI(² P)	23			
C(³ P)	15	15		
Si(³ P)	15	15		
O(³ P)				
СН(2П)	13	13		
ОН(² П)		23	53	38
CN(² Σ ⁺)	13			
C ₂ H(²∑)	15			

Radical-Radical Reactions: CN + O2

experimental k(T)
show strong negative Tdependence - in
contrast to 'capture'
calculations

main features of experimental k(T) are reproduced by 2-TS model (Klippenstein)

Reactions of Radical with Saturated Molecules

 Data set from CRESU
 experiments is limited

	CH ₄	C ₂ H ₆	NH ₃	H ₂	D ₂	HBr
B(² P)						
AI(² P)						
C(³ P)						
Si(³ P)						
O(³ P)						
CH(²∏)	23	23	23	53	23	
OH(²∏)						23
CN(²Σ⁺)		25	25			
C ₂ H(² Σ)						

Reactions of Radicals with Saturated Molecules

Values of k(298 K) / 10⁻¹² cm³ molecule⁻¹ s⁻¹

	E.A./eV	H ₂	CH ₄	C_2H_6	C_3H_8	i-C ₄ H ₁₀	n-C ₄ H ₁₀
I.E./eV		15.43	12.51	11.52	10.95	10.57	10.53
C(³ P)		(17)	?	?	?	?	?
СН(² П)	1.238	(160)	9 1	280	425	448	483
H(² S)	0.754	10-4	1.5(-7)	2.8(-5)	1.5(-4)	1.1(-3)	2.9(-4)
O(³ P)	1.461	9(-6)	1.7(-5)	1.4(-4)	9.4(-3)	0.11	2.6(-2)
OH(² Π)	1.827	1.7(-3)	6.1(-3)	0.25	1.1	2.1	2.4
CN(² Σ ⁺)	3.862	2.8(-2)	0.60	28	75	100	
$C_2 H(^2\Sigma)$	2.969	0.7	2.7	43	80	96	120

Reactions of Radical with Saturated Molecules

C(³P) and CH(²Π) react rapidly with saturated molecules – if exothermic reaction is available

Alkanes will not react with $H(^{2}S)$, $O(^{3}P)$ or $OH(^{2}\Pi) -$ probably the reactions of these radicals with saturated molecules can be ignored

Most alkanes will react rapidly with $CN(^{2}\Sigma^{+})$ and $C_{2}H(^{2}\Sigma)$

Reactivity of C(³P) atoms ?

Values of k(298 K) / 10⁻¹² cm³ molecule⁻¹ s⁻¹

	E.A./ eV	CH₄	C_2H_6	C ₃ H ₈	<i>і-</i> С ₄ Н ₁₀	<i>п-</i> С ₄ Н ₁₀
I.E./eV		12.51	11.52	10.95	10.57	10.53
C(³ P)						
CH(²∏)	1.238	91	280	425	448	483
H(²S)	0.754	1.5(-7)	2.8(-5)	1.5(-4)	1.1(-3)	2.9(-4)
O(³ P)	1.461	1.7(-5)	1.4(-4)	9.4(-3)	0.11	2.6(-2)
ОН(² П)	1.827	6.1(-3)	0.25	1.1	2.1	2.4
CN(² Σ ⁺)	3.862	0.60	28	75	100	
$C_2 H(^2\Sigma)$	2.969	2.7	43	80	96	120

Some final thoughts !

Examination of available rate data suggests that for any neutral-neutral reaction with k(298 K) > 5 x 10⁻¹² cm³ molecule⁻¹ s⁻¹ there is no 'real' barrier on the MEP and k(10-20 K) is likely to be ca. 2 x 10⁻¹⁰ cm³ molecule⁻¹ s⁻¹ (factor of 2 uncertainty ?)

For radical-radical reactions k(10-20 K) may be lowered by 'electronic degeneracy factor'

Theoretical point for discussion: how does two-TS model with dependence on E and J mesh with dependence of k(T)on rotational states of reactants?