### Dissociative recombination reactions



Wolf D. Geppert ISSI workshop, Bern (CH) December 2008

#### Important electron-ion processes



### Mechanisms of dissociative recombination (DR)



### Importance of dissociative recombination (DR) in space

- \* Major process in molecular clouds, planetary ionospheres and cometary comae
- $\star$  final step in synthesis of neutrals (e. g.  $CH_4$ )



Competing process for ion-molecule reactions

$$CH^+ + e^- \rightarrow C$$

+ H STOP

**★** Sometimes unique destruction pathway for ions  $(c-C_3H_3^+)$  in Titan's ionosphere)

# What information is required about DR reactions ?

**★** Feasability in the ISM (absence of barrier, two-body process)

→ generally no problem, but: competition with ion-molecule reactions with abundant species (e.g. H<sub>2</sub> in dark clouds)

#### **★** Reaction rate

- (R. Johnsen: "always about  $3 \times 10^{-7}$  cm<sup>-3</sup>s<sup>-1</sup> at 300 K")
- $\rightarrow$  works fine with small ions HCO+,  $N_2H^{\scriptscriptstyle +}$
- → DR of larger ions tend to be much faster (often in the range of 2×10<sup>-7</sup> cm<sup>3</sup>s<sup>-1</sup> at 300 K)
- $\rightarrow$  Exponential dependence not always T<sup>-0.5</sup>

#### ★ Branching ratios

**Big problem:** unpredictable, counter-intuitive, results from different methods disagree:

 $CH_5^+ + e^- \rightarrow CH_4 + H$ only 5 % in ring (Semaniak et al.), dominant in afterglow (Adams et al.)

### Methods for investigating DR reactions

Two groups:

Flowing afterglow methods

**★** Production of He<sup>+</sup> by microwave discharge

- $\star$  Ion production by consecutive reactions
- **★** Measurements of ion and electron (Langmuir probe) decay

#### Storage ring methods

- **†** Ions stored in magnetic or electrostatic ring
- **★** Merged with electron beam



### FA methods - advantages and disadvantages

#### Advantages

- **†** Thermic equilibrium by frequent collisions
- ★ Low running costs

#### Disadvantages

- **\star** Restricted to ions that are easily produced (e. g. by protonation through H<sub>3</sub><sup>+</sup>)
- ★ No pure ion beam
- No interstellar conditions (T=100-700K, collisions of intermediates with gas molecules possible)
- ★ Detection of al products difficult
- **†** Intermediates can be deactivated by collisions

### The CRYRING storage ring



# Steps during the experiment

- 1. Formation of ions in source
- 2. Mass selection by bending magnet
- 3. Injection via RFQ and acceleration
- 4. Merging with electron beam
- 5. Detection of the neutral products

# Ring methods - advantages and disadvantages

#### Advantages

- ★ Mass selection of ions enables study of more "exotic" species
- ★ Ultrahigh vacuum (10<sup>-11</sup> mbar), excludes 3-body processes
- ★ Stepless variation of collision energy down to ~2meV
- Identification of all possible reaction pathways (for lighter ions)

#### Disadvantages

- **★** Restricted to lighter ions (Cryring: M < 100 Dalton)
- **★** Isomers and isobars cannot be separated
- **★** Contributions of long-lived excited states possible
- Ion current measurements difficult (until recently)
- ★ Full branching ratio analysis only for small ions High set-up and running costs

#### General problems: Ion production

- ★ Mostly by discharge
- ★ Ring methods by hollow-cathode discharge
   → high energies involved (100-400 eV)
- ★ FA mostly by (e. g. by protonation through H<sub>3</sub><sup>+</sup> or charge transfer from e. g. Ar<sup>+</sup>)
- ★ Precursors must be easily evaporated → but: electrospray ion source
- **†** Isomer ratio affected by precursor choice

### **General Problems: Different isomers**

- Many ions detected in cometary comae + planetary ionospheres (Cassini-Huygens mission) by mass spectrometers
- ★ Question of isomerism arises, e. g. in C<sub>3</sub>H<sub>3</sub><sup>+</sup> (cyclic and linear form)
- ★ Linear form undergoes ion neutral reactions, cyclic only DR



### HCO<sup>+</sup>/HOC<sup>+</sup>

★ HCO<sup>+</sup>/HOC<sup>+</sup> ratio about 360-6000 in dense clouds (Apponi & Ziurys 1997)

**†** In FALP and hollow cathode ion sources both isomers formed:

$$H_3^+ + CO \rightarrow HCO^+ + H_2 (98\%) + HOC^+ + H_2 (2\%)$$

**★** Especially when CO is ionised

$$H_2 + CO^+ \rightarrow HCO^+ + H (~50 \%)$$
  
 $HOC^+ + H (~50 \%)$ 

★ DR of HCO<sup>+</sup> and HOC<sup>+</sup> have 3 different pathways:

$$\begin{array}{rcl} \mathsf{HCO}^{+} + e^{-} & \rightarrow & \mathsf{H} + & \mathsf{CO} & \Delta \mathsf{H} = - & 7.45 \ \mathsf{eV} \\ & \rightarrow & \mathsf{HC} + & \mathsf{O} & \Delta \mathsf{H} = + & 0.17 \ \mathsf{eV} \\ & \rightarrow & \mathsf{HO} + & \mathsf{C} & \Delta \mathsf{H} = - & 0.75 \ \mathsf{eV} \end{array}$$

$$\begin{array}{rcl} \mathsf{HOC}^{+} & \mathsf{e}^{-} & \rightarrow & \mathsf{H} & \mathsf{+} & \mathsf{CO} & \Delta \mathsf{H} & = & -7.79 \ \mathsf{eV} \\ & \rightarrow & \mathsf{HC} & \mathsf{+} & \mathsf{O} & \Delta \mathsf{H} & = & -0.17 \ \mathsf{eV} \\ & \rightarrow & \mathsf{HO} & \mathsf{+} & \mathsf{C} & \Delta \mathsf{H} & = & -1.09 \ \mathsf{eV} \end{array}$$



- ★ In DCO<sup>+</sup> excited states vith long lifetime (v<sub>3</sub>), not in HCO<sup>+</sup> (Heninger et al. 1999) → CD + O channel opens
- ★ C + OH (C+ OD) channels maybe from HOC+ contaminations

### General problem: Excitation in e g. $H_2^+$

- DR faster for vibrationally excited states of H<sub>2</sub><sup>+</sup>
- Opening of direct channel(s) at v>1
- **★** Cool ions by supersonic ion source
- ★ Cooling in ring by superelastic collisions
  H<sub>2<sup>+</sup>(v=n)</sub> + e<sup>-</sup> → H<sub>2<sup>+</sup>(v<n)</sub> + e<sup>-</sup>

**\star** Imaging allows to gauge v(H<sub>2</sub><sup>+</sup>)







### General problems: Nuclear spin and DR

- ★ Different rates of DR in ortho/para H<sub>2</sub><sup>+</sup>
- ★ Resonances in ortho and para H<sub>2</sub><sup>+</sup>
- $\star$  DR of hot  $H_2^+$  faster
- ★ Resonances different and broader in H<sub>2</sub><sup>+</sup>
- ★ Differences observed in H<sub>3</sub><sup>+</sup> (I=1/2, 3/2) also

|   | Rate constants × 10 <sup>-7</sup> cm <sup>3</sup> s <sup>-1</sup> |                     |  |
|---|-------------------------------------------------------------------|---------------------|--|
| V | Normal H <sub>2</sub>                                             | Para H <sub>2</sub> |  |
| 0 | 1.4                                                               | 2.7                 |  |
| 1 | 11                                                                | 6.0                 |  |
| 2 | 14                                                                | 13.6                |  |
| 3 | 1.6                                                               | 3.7                 |  |

DR rate constants of normal and para  $H_2^+$  at different vibrational excitation levels



# **HCNH**<sup>+</sup>

- ★ Major ion in Titan's atmosphere
- ★ DR of HCNH<sup>+</sup> could be responsible for HNC/HCN ratio
- ★ Rates: FA: 3.5 × 10<sup>-7</sup> CRYRING: 2.83 × 10<sup>-7</sup>(T/300)<sup>-0.65</sup>
- **★** Branching ratios very different

| After-<br>glow  | $\begin{array}{rcl} HCNH^{+} & e^{-} & \rightarrow \\ & & \rightarrow \\ & & & \rightarrow \end{array}$  | $HCN/HNC + H$ $CN + 2H$ $CN + H_2$                     | 0.00 -0.68<br>0.00 - 0.31<br>0.37 -0.69 |
|-----------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------|
| Storage<br>ring | $\begin{array}{rccc} HCNH^{+} & e^{-} & \rightarrow \\ & & \rightarrow \\ & & & \rightarrow \end{array}$ | $\frac{HCN}{HNC} + H$ $\frac{CN}{CN} + \frac{2H}{H_2}$ | 0.68<br>0.32<br>0.00                    |

| • | Different | production | pathways: |  |
|---|-----------|------------|-----------|--|
|---|-----------|------------|-----------|--|

Afterglow:  $H_3^+$  + HCN

Storage ring:  $CH_3NH_2 + e^{-1}$ 

 $\rightarrow$  Different isomers (H<sub>2</sub>CN<sup>+</sup> or CNH<sub>2</sub><sup>+</sup> could be produced)

 $\star$  Flowing afterglow measurements assume slow DR of H<sub>3</sub><sup>+</sup> (probably no consequences since reaction

 $H_3^+$  + HCN  $\rightarrow$  HCNH<sup>+</sup> +  $H_2$  is fast)



★ Collisional desactivation of intermediate HCNH  $\rightarrow$  Unlikely to lead to CN + H<sub>2</sub>



Excited states of HCNH<sup>+</sup> in the ring  $\rightarrow$  should have same cross section than ground state



Such discrepancies also seen in other ions, e. g.  $D_3S^+$ 



Branching ratio HCN + H / HNC + H still unclear But: theoretical investigations point to a 1:1 ratio

#### **Recommended values:**

| Branching ratios:          |             |      |
|----------------------------|-------------|------|
| $HCNH^+ + e^- \rightarrow$ | HCN/HNC + H | 0.68 |
| $\rightarrow$              | CN + 2H     | 0.32 |
| $\rightarrow$              | $CN + H_2$  | 0.00 |

Rate constant:  $2.83 \times 10^{-7} (T/300)^{-0.65} \text{ cm}^3 \text{s}^{-1}$ 

# $C_2H_4^+$

- Can easily transfer protons to other hydrocarbons in high density media (planet and satellite atmospheres
- **DR** could outcompete proton transfer in lower-density objects
- So far only ring experiment (ion probably difficult to form in afterglow)

| Branching rat    | ios:                            |                 |      |
|------------------|---------------------------------|-----------------|------|
| $C_2H_4^+ + e^-$ | $\rightarrow$ $C_2H_3$ +        | Н               | 0.11 |
|                  | $\rightarrow C_2H_2 +$          | H <sub>2</sub>  | 0.06 |
|                  | $\rightarrow C_2H_2 +$          | 2H              | 0.66 |
|                  | $\rightarrow C_2H +$            | $H + H_2$       | 0.10 |
|                  | $\rightarrow CH_4 +$            | С               | 0.01 |
|                  | $\rightarrow$ CH <sub>3</sub> + | СН              | 0.02 |
|                  | $\rightarrow$ CH <sub>2</sub> + | CH <sub>2</sub> | 0.04 |

Rate constant:  $5.6 \times 10^{-7} (T/300)^{-0.76} cm^3 s^{-1}$ 

Values seem reasonable !

### HSiO<sup>+</sup>/HOSi<sup>+</sup>



No measurements available due to

- lack of suitable precursor
- existence of 2 isomers, HOSi<sup>+</sup> more stable
- ★ Educated guess from isovalent ions difficult, HCO<sup>+</sup> and HN<sub>2</sub><sup>+</sup> lose H, HCS<sup>+</sup> breaks C-S bond
   → Equal distribution between H + SiO and HO + Si seems good assumption (DR to HSi + O almost thermoneutral)

★ No real reason to defect from model values:

Branching ratios:<br/> $HSiO^+ + e^- \rightarrow H + SiO$ 0.50<br/>O.50HO + Si0.50Rate constant: $3.0 \times 10^{-7} (T/300)^{-0.50} cm^3 s^{-1} = 1$  Johnsen

### H<sub>2</sub>CO<sup>+</sup>/HCOH<sup>+</sup>

The DR of all  $CH_xO^+$  ions have been investigated. Why not  $CH_2O^+$  ?

 $\rightarrow$  two isomers almost equal in energy

- Possibility to guess ?
- ★ HCO<sup>+</sup> and H<sub>3</sub>CO<sup>+</sup> leave their CO-bond intact with DR, With more hydrogenated ions (CH<sub>3</sub>OH<sub>2</sub>) the heavy atom bond is preferentially broken
- Assuming 90 % CO bond retention in  $CH_2O$  we consider ejection Of two hydrogen atoms to be a major process
- **\star** No conclusions about the behaviour of two different isomers possible; for the guesses we consider  $H_2CO^+$

#### **Recommended values:**



Rate constant:  $5.0 \times 10^{-7} (T/300)^{-0.70} \text{ cm}^3 \text{s}^{-1}$ 

 $\rightarrow$  more in line with other CH<sub>x</sub>O<sup>+</sup> ions

# HC<sub>5</sub>NH⁺

- ★ Several isomers available, discussion restricted to linear HCCCCCNH<sup>+</sup>
- $\star$  No measurements, but following conclusions from HC<sub>3</sub>NH<sup>+</sup>:
  - around 50 % retention of carbon-nitrogen chain
  - no breakage of multiple bonds
  - 50 % break-up into 2 fragments with 2 resp. 4 heavy atoms
- **★** No three-body channels energetically available

#### **Recommended values:**

| Branching ratios:            |                |                            |
|------------------------------|----------------|----------------------------|
| $HC_5NH^+ + e^- \rightarrow$ | $C_5 N + H_2$  | 0.04 (heavy rearrangement) |
| →                            | $HC_5N + H$    | 0.23                       |
| $\rightarrow$                | $C_5 NH + H$   | 0.23                       |
| $\rightarrow$                | $HCN + HC_4$   | 0.22                       |
| $\rightarrow$                | $HNC + HC_4$   | 0.22                       |
| $\rightarrow$                | HC₄N + HC      | 0.00 (triple bond break)   |
| $\rightarrow$                | $HC_3N + HC_2$ | 0.06 (rearrangement)       |
| $\rightarrow$                | $HC_2N + HC_3$ | 0.00 (triple bond break)   |
| $\rightarrow$                | $H_2C_5 + N$   | 0.00 (triple bond break)   |

Rate constant:  $2.0 \times 10^{-6} (T/300)^{-0.70} \text{ cm}^3 \text{s}^{-1}$ 

# CNC<sup>+</sup>

- **★** No experimental studies available
- **\star** No kicking out of central atom in  $CO_2^+$ ,  $SO_2^+$  and  $OCS^+$
- **★** No three-body channels energetically available
- Rate constants of somewhat alike three-atomic ions around 4.0 × 10<sup>-7</sup> cm<sup>3</sup>s<sup>-1</sup>

#### **Recommended values:**

| Branching ratios:                |      |
|----------------------------------|------|
| $CNC^+ + e^- \rightarrow CN + C$ | 0.95 |
| $\rightarrow C_2 + N$            | 0.05 |

Rate constant:  $4.0 \times 10^{-7} (T/300)^{-0.60} \text{ cm}^3 \text{s}^{-1}$ 



#### **★** Neither experimental studies nor guesses available

**†** Data situation too poor to make any guesses



- Information available very poor
- **★** No reason to change the guesses in the models (any will do)



- **†** Theoretical studies show existence of 5 isomers
- **★** No similar ions studied, guesses very difficult
- **★** No changes from model values suggested

## HC<sub>4</sub>S⁺



- Elusive ion, only one ab initio study (published in Mandarin)
- **\*** No founded guesses possible





#### Future chances in DR measurements

- Improvement of ion sources to perform experiments with rovibrationally cold ions
- Create pure on beams of isomeric species (e.g through cluster dissociation)
- Extend measurements to heavier and more "difficult" ions using a ring with higher rigidity (Lanzhou, China)
- Use of electrospray ion Sources to create ions from badly evaporable precursors

