ntroc	
THUOU	uction

Monte Carlo simulations

Results

Stochastic heating

Extra

H₂ formation on stochastically heated grains

Herma Cuppen

Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University

11 November 2008

Problem of molecular hydrogen

- Rate constant α should be 2×10^{-17} cm³ s⁻¹ (Jura (1974))
 - Gas phase type reaction between grain and H atom

Molecular hydrogen formation

H_2 formation in diffuse clouds

Monte Carl simulations

Results

Stochasti heating

Extra

- atomic H abundance ($\approx 100 \text{ cm}^{-3} \approx 3 \times 10^{6} \text{ cm}^{-2} \text{ s}^{-1}$)
- gas temperature (60-100 K)
- grain temperature (≈ 20 K)
- energies of evaporation
- hopping barriers

Monte Carlo simulations

- + Individual atoms can be followed
- + Laboratory and interstellar fluxes can be used
- \pm All energy barriers have to be provided
 - High demand of cpu
 - No dynamical and structural information

Surfaces

Surfaces

$$k_{hop} = \nu \exp\left(-\frac{\mathbf{E}_{h} + i\mathbf{E}_{l}}{kT}\right)$$
$$k_{des} = \nu \exp\left(-\frac{\mathbf{E}_{D} + i\mathbf{E}_{l}}{kT}\right)$$

Monte Carlo simulations

Introduction Monte Carlo simulations	Sequence of processes is chosen using random numbers according to transition probabilities			
Results				
Stochastic heating	Free parameters			
Extra	 temperature flux surface energy barriers 			
	Grain			
	Hydrogen			
	Oxygen			
	Top view of the surface (50 $ imes$ 50 sites) \sim 1 day			

Results at constant temperature

Efficient H₂ formation for rough surface

Cuppen & Herbst, MNRAS (2005), 361, 565-576

Influence of the lateral bond

Strong dependence of temperature range on lateral bondFor small lateral bond still increase in temperature range

Cuppen & Herbst, MNRAS (2005), 361, 565-576

Stochastic heating in diffuse clouds

Introduction

Monte Carlo simulations

Results

Stochastic heating

Extra

Interstellar grains are pulse heated by photons from stars in a stochastic manner

 $P_{\lambda} = \pi r^2 I_{\lambda} Q_{abs}(\lambda) D_{\lambda}$

Stochastic heating in diffuse clouds

Introduction

Monte Carlo simulations

Results

Stochastic heating

Extra

Interstellar grains are pulse heated by photons from stars (Draine, ARAA, 41 (2003) 241)

Grain temperature

Small grains have a lower temperature most of the time.Small grains have a stronger temperature fluctuations.

Grain temperature

Small grains have a lower temperature most of the time.Small grains have a stronger temperature fluctuations.

Results for stochastic heating

Efficiency is highly grain size dependent

Cuppen, Morata and Herbst, MNRAS (2006), 367, 1757

Results for α

Monte Carlo simulations

Results

Stochastic heating

Extra

	$A_{V} = 0.5$	$A_V = 0.5$	$A_V = 0.5$
flat	$6.50 imes10^{-19}$	$1.99 imes10^{-18}$	$2.91 imes10^{-18}$
rough	$3.12 imes 10^{-17}$	4.75×10^{-17}	$5.62 imes10^{-17}$
α should	l be $2 imes 10^{-17}$	$ m cm^3~s^{-1}$	

Rate is high enough for the rough surface to explain observations

Results for stochastic heating

 $a_0 = \exp(\min(2.13 \arctan(281(r - 0.02)) - 3.656, 62000(r - 0.01) - 8))$ $a_1 = \min(24.2 \exp(-97.18r), 1423r - 4.11)$ $a_2 = \max(-134r + 1.43, 299r - 2.88)$

Laboratory experiments

TPD experiments

Desorption under laboratory conditions

Analysis of TPD experiments

Extra	

- Fitted with simple rate equations
- Translated to interstellar conditions (very low fluxes)

Analysis of TPD experiments

Extra

- Fitted with simple rate equations
- Translated to interstellar conditions (very low fluxes)
- \rightarrow Only efficient for 6-10 K

Analysis of TPD experiments

Extra

- Fitted with simple rate equations
- Translated to interstellar conditions (very low fluxes)
- \rightarrow Only efficient for 6-10 K
- \rightarrow Not a possible formation route

Interstellar grains

have a "fluffy" shapeare bare in these conditions

10-500 nm

TPD experiments

Experimental confirmation of simulation results at higher temperatures