Interstellar surfaces: from Laboratory to Models

- Day 1
 - Introduction and overview
- Day 2
 - Surface Reactions
- Day 3
 - Desorption of ices
- Day 4
 - Photoprocessing of ices
- Day 5

Grand Challenges

Things we can look back at in 5 years and say "now we understand X much better"

- physisorption mobility (Day 2 + 5))
- Charge (Day 4)
- standard ice mixtures/porosity (Day 4)
- structural calculations
- need of stochastic methods (Day 1)
- 3 phase model (gas-surface-bulk) (Day 1)
- Modelling experiments (Day 2)
- Database? (citation) (Day 3)

Day 1: Overview and Introduction

- Xander Tielens "The Astronomical Context"
- Steve Charnley "Constructing surface reaction networks"
- Herma Cuppen "Microscopic simulations of grain surface chemistry
- Ingo Lohmar "Analytical and numerical studies of the simplest interstellar surface reaction"
- Anton Vasyunin "Study of stochastic effects in grain surface chemistry"

Steve Charnley

Surface Simulation Issues

- Gas and grain chemistries solved in tandem
- Surface vs. bulk population
- Max. ~ 10⁶ particles on surface

- Surface population changes by arrivals and reactions:
 - i) particles are removed from the reactive population by arrivals

ii) surface reactions uncover particles in the sub-surface monolayer and return them to the reactive population.

Calibration: Simulation of Gas-Grain Chemistry

Rodaers & Charnlev (2008)

Herma Cuppen

Monte Carlo

Rate equations

H₂CO and CO locked up in lower layers
 n(CO)/n(H) ratio determines CH₃OH and H₂CO formation

Day 2 Surface Reactions

- Naoki Watanabe (Hydrogenation/deuteration)
- Sergio loppolo (CO/O2 hydrogenation)
- Jean-Louis Lemaire (H2 formation)
- Farahjabeen Islam (Formation pumping of H2)
- Rob Garrod (Gas-grain model)
- Maria Elisabetta Palumbo (Ion irradiation)

Rob Garrod

Model Summary:

Timeline of Complex Molecule Formation in Hot Cores

- Ices: Store of molecular material formed during collapse phase. (Hydrogenation)
- Continuously (but slowly) broken down: Cosmic-Ray-induced photodissociation → functional-group radicals
 Gradual warm-up of hot core (10 - 200K) (not the old step-function)
- 4) Increased mobility

ightarrow addition of functional-group radicals

5) Evaporation at varying temperatures

Lab data is crucial

- Surface chemical routes to complex molecules require accurate data:
 - Large molecules' desorption energies
 - Functional-group radical mobilities
- Photodissociation branching channels of methanol ice (and others)
 - \Rightarrow IS ratios of the most complex molecules
- Need to test new surface mechanisms in the lab
- Need to model lab results with models directly applicable to ISM

Sergio loppolo I O₂ VS CO

Naoki Watanabe

What we can know from our experiments

What we can do

measurements of H (D) atom flux and column densities of parent & product molecules on the surfaces.

– What we can not do -

measurements of <u>number density of H atoms on the surfaces</u> and migration rate.

- Very high flux (deposition rate) enables:
 - atoms to encounter a reactant without long-distance migration.
 - us to obtain the significant amount of products.
- Our experiments provide <u>effective</u> reaction rates.

Good¹ reaction channels, relative rates, activation barrier for reaction Poor migration

Jean-Louis Lemaire

Dulieu, Amiaud, Baouche, Momeni, Fillion, Lemaire, 2005, CPL, 404, 187

Day 3: Desorption of Ices

- Tonek Jansen kMC simulations of TPD
- Karin Oberg Segregation and desorption of mixed ices
- Martin McCoustra Interpreting Laboratory
 Desorption Data in an Interstellar Framework
- Zainab Awad Mantle Desorption and Chemical Evolution in Warm Cores around Solar-like stars

Tonek Jansen

Simulation 3-site model (high θ)

NO

Ν

Ο

Rates and coverages

Day 4: Photoprocessing

- Lou Allamandola Ice grain photochemistry: It's worse than you think
- Stefan Andersson Photochemistry of water
- George Hassel Incorporating Laboratory
 Results into Gas-Grain Chemistry Models
- Dimtry Semenov Chemical evolution of Protoplanetary Disks

Lou Allamandola

<u>RECOMMENDATION 1</u>

Define several standard ices representative of different astronomical environments and study all processes on these standards

<u>RECOMMENDATION_2</u>

Simplify models at some point to paint big picture. Use the semi-empirical approach of the computational chemist rather than try to model every detail.

<u>RECOMMENDATION 3</u>

Consider Charged interstellar ices

Loss of neutral pyrene (Py) and growth of Py⁺ PyOH, PyOH⁺, and possibly PyO⁻ uponVUV irradiation of H₂O/Py (~1000/1) ice at 10K

Bouwman et al. ApJL, submitted

Stefan Andersson

What is the influence on the solid-phase chemistry?

- "High-energy" H atoms
 - $H + H_2O \rightarrow OH + H_2$
 - H + other species in ice (CO, ...)
- OH radicals
 - OH + CO \rightarrow H + CO₂
- Vibrationally excited H₂O?
- Local heating?

What is the influence of photodesorbed species on the gas-phase chemistry?

- "High-energy" H atoms
- Vibrationally excited H₂O?
- OH radicals

George Hassel

Day 5: Experimental techniques

- Liv Hornekaer Insights gained from complimentary experimental techniques in laboratory studies of surface reactions of interstellar relevance
- Elias Vlieg Determining interface structures using microscopy and X-ray diffraction
- Harold Linnartz Laboratory astrochemistry: problems, solutions, and problems to be solved

Experimental challenges

Mobility of physisorbed species

Complexity

-To what level of detail do we need to understand interstellar surface reactions?

Influence of grain size

Harold Linnartz

- to which extend may we simplify (i.e. work under laboratory controlled conditions)?
- to which extend may we cheat (i.e. use higher fluxes / densities, worse vacuum) ?
- to which extend may we extrapolate (3 hr laboratory experiment to 10⁶ yrs) ?
- to which extend do we <u>really</u> know where we are talking about ?

Scientific challenges

More data on well characterized samples

Two lab data Internal state distributions (less important) TPD's over a wider temperature interval

More "realistic samples"

-influence of small size

-Role of small grains/PAHs

-extrapolation issues

Reaction induced desorption Complex molecule formation Charge

How well can interstellar grains be characterized?

Overall summary of the meeting

- •Adsorption and desorption relatively well understood with good parameters available for stable species.
- For surface reactions, we are getting there
- Charged species are not addressed yet
- Mobility of reactive species still hard to measure
- Gas phase and surface reactions are very different and need different modelling approaches

Overall summary of the meeting

- •Adsorption and desorption relatively well understood with good parameters available for stable species.
- For surface reactions, we are getting there
- Charged species are not addressed yet
- Mobility of reactive species still hard to measure
- Gas phase and surface reactions are very different and need different modelling approaches
- Don't be afraid!!! There are ways around this and to couple them.