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Grand Challenges

Things we can look back at in 5 years and say
“now we understand X much better”

 physisorption mobility (Day 2 + 5)

« Charge (Day 4 )

« standard ice mixtures/porosity (Day 4)
« structural calculations

« Nneed of stochastic methods (Day 1)

« 3 phase model (gas-surface-bulk)jDay 1)
« Modelling experiments (Day 2}

« Database? (citation)j(Day 3)



Day 1: Overview and Introduction

. Xander Tielens “The Astronomical Context”

. Steve Charnley “Constructing surface reaction
networks”

« Herma Cuppen “Microscopic simulations of
grain surface chemistry

. Ingo Lohmar “Analytical and numerical studies
of the simplest interstellar surface reaction”

» Anton Vasyunin “Study of stochastic effects in
grain surface chemistry”



Steve Charnley
Surface Simulation Issues

- Gas and grain chemistries solved in tandem

- Surface vs. bulk population

- Max. ~ 106 particles on surface
SURFACE POPULATION X;

— p———
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BULK POPULATION X

mantle

- Surface population changes by arrivals and reactions:
i) particles are removed from the reactive population by arrivals

if) surface reactions uncover particles in the sub-surface monolayer
and return them to the reactive population.



Calibration: Simulation of Gas-Grain Chemistry
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Herma Cuppen

Monte Carlo Rate equations
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Day 2 Surface Reactions

Naoki Watanabe (Hydrogenation/deuteration)
Sergio loppolo (CO/O2 hydrogenation)
Jean-Louis Lemaire (H2 formation)
Farahjabeen Islam (Formation pumping of H2)
Rob Garrod (Gas-grain model)

Maria Elisabetta Palumbo (lon irradiation)



Rob Garrod

Model Summary:
Timeline of Complex Molecule Formation in Hot Cores

) lces: Store of molecular material formed
during collapse phase. (Hydrogenation)

2) Continuously (but slowly) broken down:
Cosmic-Ray-induced photodissociation

— functional-group radicals
3)  Gradual warm-up of hot core (10 - 200K)

(not the old step-function)

4) Increased mobility

— addition of functional-group radicals

5) Evaporation at varying temperatures




Lab data is crucial

» Surface chemical routes to complex molecules require
accurate data:

- Large molecules’ desorption energies
- Functional-group radical mobilities

» Photodissociation branching channels of methanol ice
(and others)

—> IS ratios of the most complex molecules

*» Need to test new surface mechanisms in the lab

* Need to model lab results with models directly
applicable to ISM



Sergio loppolo
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Naoki Watanabe

What we can know from our experiments

What we can do

measurements of H (D) atom flux and
column densities of parent & product molecules on the surfaces.

— What we can not do

N

measurements of number density of H atoms on the surfaces and migration rate.

sticking coefficient, recombination rate, desorption rate

\

© Very high flux (deposition rate) enables:

atoms to encounter a reactant without long-distance migration.
us to obtain the significant amount of products.

© Our experiments provide effective reaction rates.

!

\ . . o . .
C_,QOC"reactlon channels, relative rates, activation barrier for reaction

?00( migration



Jean-Louis Lemaire

Desorption of molecular
hydrogen on grains
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Day 3: Desorption of Ices

. lTonek Jansen kMC simulations of TPD

. Karin Oberg Segregation and desorption of
mixed ices

« Martin McCoustra Interpreting Laboratory
Desorption Data in an Interstellar Framework

« Zainab Awad Mantle Desorption and Chemical
Evolution in Warm Cores around Solar-like
stars



Tonek Jansen

Simulation 3-site model (high 6)




Rates and coverages

NO desorption

NO dissociation
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Karin Oberg

Surface segregation

during desorption
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Qualitative model
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Day 4: Photoprocessing

Lou Allamandola Ice grain photochemistry: It's
worse than you think

Stefan Andersson Photochemistry of water

George Hassel Incorporating Laboratory
Results into Gas-Grain Chemistry Models

Dimtry Semenov Chemical evolution of
Protoplanetary Disks



Lou Allamandola
RECOMMENDATION 1

Define several standard ices representative of
different astronomical environments and study
all processes on these standards

RECOMMENDATION 2

Simplify models at some point to paint big

picture. Use the semi-empirical approach of the
computational chemist rather than try to model every
detail.

RECOMMENDATION 3
Consider Charged interstellar ices




Loss of neutral pyrene (Py) and growth of Py*
PyOH, PyOH", and possibly PyO uponVUV

irradiation of H,O/Py (~1000/1) 1ce at 10K
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Stefan Andersson

What is the influence on the solid-phase
chemistry?

* “High-energy” H atoms
— H+H,0—> OH+H,
— H + other species inice (CO, ...)

* OH radicals
— OH+CO > H +CO,

* Vibrationally excited H,0?

* Local heating?



What is the influence of photodesorbed species
on the gas-phase chemistry?

* “High-energy” H atoms

* Vibrationally excited H,0?

* OH radicals



George Hassel _ [ ]
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Day 5: Experimental techniques

» Liv Hornekaer Insights gained from
complimentary experimental techniques In
laboratory studies of surface reactions of
interstellar relevance

. Elias Vlieg Determining interface structures
using microscopy and X-ray diffraction

. Harold Linnartz Laboratory astrochemistry:
problems, solutions, and problems to be solved



Liv Hornekaer/Discussion

Experimental challenges

Mobility of physisorbed species

Complexity

-To what level of detail do we need to
understand interstellar surface reactions?

Influence of grain size



Harold Linnartz

» to which extend may we simplify (i.e. work
under laboratory controlled conditions) ?

« to which extend may we cheat (i.e. use
higher fluxes / densities, worse vacuum) ?

» to which extend may we extrapolate (3 hr
laboratory experiment to 10° yrs) ?

« to which extend do we really know where
we are talking about ?



Scientific challenges

More data on well characterized samples
Two lab data
Internal state distributions (less important)
TPD’s over a wider temperature interval
More "realistic samples”
-influence of small size
-Role of small grains/PAHSs
-extrapolation issues
Reaction induced desorption
Complex molecule formation
Charge

How well can interstellar grains be characterized?



Overall summary of the meeting

« Adsorption and desorption relatively well understood with
good parameters available for stable species.

« For surface reactions, we are getting there
«Charged species are not addressed yet
« Mobility of reactive species still hard to measure

« Gas phase and surface reactions are very different and
need different modelling approaches



Overall summary of the meeting

« Adsorption and desorption relatively well understood with
good parameters available for stable species.

« For surface reactions, we are getting there

«Charged species are not addressed yet

« Mobility of reactive species still hard to measure

« Gas phase and surface reactions are very different and
need different modelling approaches

«Don't be afraid!!! There are ways around this and to couple
them.



