Photodesorption of Ices

S

Karin Öberg, Ruud Visser Construction Karin Öberg, Ruud Visser Construction Constru

leiden

Ice desorption at cloud and disk edges

★Excess H₂O at cloud edges

 \star Observed delayed freezeout of H₂O and CO₂ at outer few A_V of clouds

 \star Cold HCO₂⁺ in clouds and towards a protostar

★Cold CO gas in protoplanetary disks

★Cold H₂O observations possible in disks with Herschel

Bergin et al. 2005

Previous photodesorption estimates

★CO

★Estimates based on theory and experiments on noble gases
 ★10⁻⁸ - 10⁻⁵ photon⁻¹

$\star H_2O$

★Estimates inferred from experiments and observations of cloud edges

★10⁻⁴ - 10⁻² photon⁻¹

★CO₂

★No estimates

Hartquist & Williams 1990, Melnick et al. 2005, Westley et al. 1995

Photodesorption in the laboratory

$CO + N_2$ photodesorption

★CO desorption is efficient: 2.7x10⁻³

★Pure N₂ desorption is slow: $<2x10^{-4}$

★CO desorption only
 from surface layer
 ★Explains thickness
 independence
 ★Explains mixed
 experiments
 ★Explains T dependence

Deriving H₂O photodesorption: Oth vs. 1st order reactions

Have to separate photo-chemistry and photodesorption

Use different kinetics of surface and bulk reactions

Deriving H₂O photodesorption: The total yield

★ Total photodesorption rate at 100 K: ~4 x 10⁻³ photon⁻¹ ★8 x 10⁻³ photon⁻¹ in Westley et al.

★No dependence on flux, time or photon fluence★Total yield is thickness and temperature dependent

Deriving H₂O photodesorption: Photodesorption products

Temperature dependence of photodesorption products: H₂O, OH and O₂

Deriving CO₂ photodesorption: Mass balance calculations

Have to separate photochemistry and photodesorption

Compare lost CO₂ with major formation product - CO

Deriving CO₂ photodesorption: Mass balance calculations

 ★Similar to H₂O dependencies
 ★Can separate CO and CO₂ desorption products

★For both H₂O and CO₂ increased temperature increases ice diffusion, which increases the desorption yield

★Sub-monolayer desorption inferred from model of multi-layer desorption

Surface photodesorption of CO ice

Öberg et al. 2007, Takahashi & van Hemert in prep.

Co-photodesorption of N₂ ice

Öberg et al. submitted to A&A, Takanashi & van Hemert in prep.

Dissociation and desorption of H_2O and CO_2

Andersson et al. 2008, Öberg et al. submitted to ApJ

Photodesorption in astrochemical models

★1st vs. 0th order vs. in between
★dependent on ice coverage

★Cloud edges vs cloud cores
 ★in the lab always start with multilayer
 ★in clouds build up ice from sub-monolayers
 ★good estimates of desorption products for multi-layer ices

Photodesorption rate equations

★Cloud edges:

 $R_{\rm CO} = 10^{-3} \left(2.7 - (T - 15) \times 0.17\right) \times \sigma_{\rm gr} f_{\rm CO} I_{\rm UV} \times x$ $R_{\rm CO_2} = \left(0.6 \times 10^{-3}\right) \times \sigma_{\rm gr} f_{\rm CO_2} I_{\rm UV} \times x$ $R_{\rm H_2O} = \left(1.2 \times 10^{-3}\right) \times \sigma_{\rm gr} f_{\rm H_2O} I_{\rm UV} \times x$

$$f_{\rm CO} = \frac{n_{\rm CO^{(s)}}}{n_{\rm ice}}$$
$$x = \frac{n_{\rm ice}}{n_{\rm gr} \times n_{\rm sites}}$$

Photodesorption rate equations

 \star Build-up of ices 1<x<3 at 10 K, 1<x<10 at T>30 K: $R_{\rm CO} = 10^{-3} \left(2.7 - (T - 15) \times 0.17 \right) \times \sigma_{\rm gr} f_{\rm CO} I_{\rm UV}$ $R_{\rm CO_2} = 10^{-3} \left(1.2(1 - e^{-x/2.9}) + 1.1(1 - e^{-x/4.6}) \right) \times \sigma_{\rm gr} f_{\rm CO_2} I_{\rm UV}$ $R_{\rm H_2O} = 10^{-3} \left((1.3 + 0.032 \times T)(1 - e^{-x/l(T)}) \right) \times \sigma_{\rm gr} f_{\rm H_2O} I_{\rm UV}$ **★**Cloud cores: $R_{\rm CO_2} = (2.3 \times 10^{-3}) \times \sigma_{\rm gr} f_{\rm CO_2} I_{\rm UV}$ $R_{\rm H_2O} = 10^{-3} \left(1.3 + 0.032 \times T \right) \times \sigma_{\rm gr} f_{\rm H_2O} I_{\rm UV}$ ${\mathcal X}$

Consequences for cloud cores: CO

Consequences for disks: H_2O

Model of H_2O gas to gas+ice ratio in premain sequence star and disk without and with photo-desorption turned on.

Photodesorption has a large impact on the gas chemistry, which should be easily detectable with Herschel

Uncertainties and ways to reduce them

★Quantified uncertainties - factor of ~2
 ★UV spectra, flux in lab - can be improved with current set-up
 ★Ice loss rate - requires new set-up to be improved

★Quantifiable uncertainties
 ★Pure vs. mixed vs. layered ices
 ★UV spectra, UV flux and temperature structure in space
 ★Uncertainties that are difficult to quantify

★Ice structure in space vs the lab
 ★extrapolation to cloud and disk conditions - grain material and structure, UV flux (linear over 2 orders of magnitude)
 ★total grain surface

Importance of uncertainties in models

Photodesorption experiments to come

★CO:H₂O, CO₂:H₂O and CO:CO₂ mixtures at 15 K
★Monolayer of CO on gold, N₂ and H₂O at 15 K
★Monolayer of H₂O on gold, N₂ and CO at 15 K
★CH₃OH, CH₄ and NH₃ estimates