Selection of important reactions

What is an important reaction?

A reaction that form and destroy the most a species - does not mean that improving/changing its rate coefficient will change the abundance of the species.

Ex: main reaction of O_2 formation $O + OH \rightarrow O_2 + H$ (k)

What is an important reaction?

In the context of this work: important reaction = change in its rate coefficient (by more than a factor of 2) changes model predictions

It might be direct relation: example of HC₅N

main reaction forming HC₅N: C₅H₂N⁺ + e⁻ \rightarrow HC₅N + H "important" reaction using sensitivity analysis: C₅H₂N⁺ + e⁻ \rightarrow HC₅N + H

Or an indirect relation: example of CO the most "important" reaction using sensitivity analysis: $C + H_2 \rightarrow CH_2$

Strategy

0D gas-phase model + absorption/desorption processes

Fixed parameters:

 $\zeta = 1.3 \times 10^{-17} \text{s}^{-1}$, low metal elemental abundances, Av=10 **Different models:** 1) 10K, 2×10⁴ cm⁻³, all initial C into C+

2) I0K, 2x10⁴cm⁻³, half initial C into CO

- 3) I0K, 2×10^5 cm⁻³, all initial C into C+
- 4) 10K, $2x10^{5}$ cm⁻³, half initial C into CO

Amount of variation:

- I) f=uncertainty range (~x2)
- 2) f=factor of 10 for all reactions

8 models x 2500 runs

Method:

random variation of the rate coefficients between k/f and $k \ge f$. Computation of Pearson correlation coefficients.

Criteria for the selection of important reactions:

Consider only abundant species $(x > 10^{-11})$ Two times: 10^5 and 10^6 yr Correlation coefficients larger than 0.3

Pearson correlation coefficients

$$P_{j}^{i}(t) = \frac{\sum^{l} (X_{j}^{l} - \bar{X}_{j})(k_{i}^{l} - \bar{k}_{i})}{\sqrt{(\sum^{l} (X_{j}^{l} - \bar{X}_{j})^{2} \sum^{l} (k_{i}^{l} - \bar{k}_{i})^{2}}}$$

X abundance species, \overline{X} mean abundance k rate coefficient, k mean rate coefficient

Results

Table I: List of reactions that influence several species

Reaction	Concerned species
$C + H_2 \rightarrow CH_2 + photon$	73
$CH_{3}^{+} + H_{2} \rightarrow CH_{5}^{+} + photon$	18
$C_2H_2^+ + H_2 \rightarrow C_2H_4^+ + photon$	C ₂ H ₂ O; C ₂ H ₃ , C ₂ H ₂ +, C ₂ H ₀ +, C ₂ H ₂ N+, C ₂ H ₄ +
$CH_3^+ + CO \rightarrow C_2H_3O^+ + photon$	C ₂ H ₂ O, C ₂ H ₃ O ⁺
$C_2H_4^+ + e^- \rightarrow C_2H_3 + H$	C_2H_2O , C_2H_3
HSiO ⁺ + e ⁻ → SiO + H HSiO ⁺ + e ⁻ → Si + OH	Si, SiO
$C_{3}H+ + H_{2} \rightarrow C_{3}H_{3}^{+} + photon$ $C_{3}H+ + H_{2} \rightarrow H_{3}C_{3}^{+} + photon$	$C_{3}H_{2}, H_{2}C_{3}, C_{3}H^{+}, C_{3}H_{2}^{+}, C_{3}H_{3}^{+}, H_{3}C_{3}^{+}$
$CH_{3^+} + HCN \rightarrow C_2H_4N^+ + photon$	C_2H_2N , HC_3N , C_2H_3N , $C_2H_4N^+$
$C_4H_{2^+} + H \rightarrow C_4H_{3^+} + photon$	C ₄ H ₂ , C ₅ H, C ₆ H ₆ , C ₄ H ₃ +
$CH_{3^{+}} + NH_{3} \rightarrow CH_{6}N^{+} + photon$	CH₃N, CH₅N
$C_4H_{2^+} + O \rightarrow HC_4O^+ + H$	C ₃ O, HC ₄ O ⁺

Results

Table 2: List of reactions for abundant and observed species

Reaction	Concerned species
Neutral-Neutral reactions	
$C + C_3 O \rightarrow C_3 + CO$	C ₃ O
$C + OCN \rightarrow CO + CN$	OCS
$H + CH_2 \rightarrow CH + H_2$	СН
$O + CN \rightarrow CO + H$	CN
$N + CN \rightarrow C + N_2$	CN
$O + NH \rightarrow NO + H$	NH
$O + C_2 \rightarrow CO + C$	C ₂
$O + C_2 H \rightarrow CO + CH$	C₂H
$O + C_3 H \rightarrow C_2 H + CO$	C₃H
$N + C_3 \rightarrow CN + C_2$	C ₃
$N + NO \rightarrow N_2 + O$	NO
$O + NH_2 \rightarrow HNO + H$	NH ₂
$O + HNO \rightarrow NO_2 + H$	N ₂ O
$CN + NH_3 \rightarrow NH_2CN + H$	NH₂CN
$O + C_3 N \rightarrow CO + C_2 N$	C ₃ N
$N + C_4 N \rightarrow CN + C_3 N$	C ₄ N
$N + C_4 H \rightarrow C_4 N + H$	C ₄ N
$N + C_2 N \rightarrow CN + CN$	C ₂ N
$CN + HC_5N \rightarrow NC_6N + H$	NC ₆ N
$CN + HC_3N \rightarrow NC_4N + H$	NC4N

Association reactions	
$C_4H_2^+ + HC_3N \rightarrow C_7H_3N^+ + photon$	HC ₇ N
$HS+ + H_2 \rightarrow H_3S^+ + photon$	H ₂ S
$HCO^+ + H_2O \rightarrow CH_3O_2^+ + photon$	CH ₂ O ₂
$C^+ + H_2 \rightarrow CH_2^+ + photon$	C ₃
$S + CO \rightarrow OCS + photon$	OCS
$CH_{3^+} + HC_3N \rightarrow C_4H_4N^+ + photon$	CH ₃ C ₃ N
$CH_{3^+} + HC_5N \rightarrow C_6H_4N^+ + photon$	CH₃C₅N
$Si^+ + H_2 \rightarrow SiH_{2^+} + photon$	HNSi

Ion-neutral reactions	
$C_2H_3^+ + O \rightarrow C_2H_2O^+ + H$	$C_2H_2O^+$
$C^+ + S \rightarrow S^+ + C$	H ₂ CS
$C_5H^+ + N \rightarrow C_5N^+ + H$	C ₅ H ₂ N ⁺ , HC ₅ N
$C_2H_4^+ + N \rightarrow C_2H_2N^+ + H_2$	$C_2H_2N^+$
$C_4H_2^+ + S \rightarrow HC_4S^+ + H$	C ₄ S
$H_{3}^{+} + C \rightarrow CH^{+} + H_{2}$	C ₃ H ₃
$H_{3}^{+} + O \rightarrow OH^{+} + H_{2}$	H₃O+
$C_2H_3^+ + N \rightarrow C_2NH^+ + H2$	C ₂ NH+

Dissociative recombination	
$HC_4O+ + e^- \rightarrow C_3O + CH$	C ₃ O
$H_2NC^+ + e^- \rightarrow HNC + H$	HNC, H ₂ NC ⁺
$C_5H_2N^+ + e^- \rightarrow C_5N + H_2$	$C_5H_2N^+$
$HC_4S^+ + e^- \rightarrow C_4S + H$	C ₄ S
$H_2CO^+ + e^- \rightarrow CO + H + H$	H ₂ CO ⁺
$CNC^+ + e \rightarrow CN + C$	CNC+
$HC_4S^+ + e^- \rightarrow C_4S + H$	C ₄ S
$HC_{3}S^{+} + e^{-} \rightarrow C_{3}S + H$ $HC_{3}S^{+} + e^{-} \rightarrow C_{2}S + CH$	C₃S

Impact of the new rate coefficients on the model predictions

V. Wakelam

Proposed modifications

34 reactions studied in total
Proposed changes:
11/18 neutral-neutral
2/2 ion-neutral
5/5 association reactions
4/9 dissociative recombination

Comparison with the OSU rate coefficients at I0K

The identified association reactions impact more species.

Atomic carbon

Reaction $O + C_2 \rightarrow CO + C$ increased by a factor 3

Reaction O + C₂H \rightarrow CO + CH decreased by a factor of I0 Reaction C + H₂ \rightarrow CH₂ decreased by more than a factor of I0

Reaction O + C₃N \rightarrow CO + C₂N decreased by about a factor of 2 + combined effect with other reactions...

Reaction C⁺ + S \rightarrow C + S⁺ decreased by about a factor of I0 + **combined** effect with C + H₂ \rightarrow CH₂

Reaction CS + O \rightarrow OCS set to 0

Comparison between models and observations

Molecular cloud: LI34N (42 observed species)

Old rate coefficients:

80.9% of observed abundances reproduced by the model non-reproduced molecules: NO, H₂S, CH₃OH, CH₃CHO, HC₇N, HCO⁺, HCS⁺ and SiO

New rate coefficients: 76.2% of observed abundances reproduced by the model non-reproduced molecules: CH, H₂S, OCS, CH₃OH, CH₃CHO, HC₅N, HC₇N, HCO⁺, HCS⁺ and SiO

Molecular cloud: TMCI (53 observed species)

Old rate coefficients:

77% of observed abundances reproduced by the model non-reproduced molecules: CN, OH, CH₃OH, CH₃CHO, C₃H₃N, C₃H₄, CH₃C₃N, HC₉N, HCO⁺, HCS⁺, H₂NC⁺ and SiO

New rate coefficients: 75% of observed abundances reproduced by the model non-reproduced molecules: CN, OH, C₂H, OCS, CH₃OH, CH₃CHO, C₃H₃N, C₃H₄, CH₃C₃N, HC₅N, HC₉N, HCO⁺, HCS⁺, H₂NC⁺ and SiO

Summary

34 reactions were studied and 65% were changed.

Association reactions have an impact on many reactions. Other reactions can have an impact on specific species. Non linear effects have been seen (combined effects of modified reactions).

The modifications worsen the agreement with observations: OCS and HC₅N.