The Construction of a Gas-Phase Chemical Network for Dense Regions

ERIC HERBST DEPARTMENTS OF PHYSICS, CHEMISTRY AND ASTRONOMY THE OHIO STATE UNIVERSITY

Gaseous interstellar molecules (>150)

N=2		N=3		N=4	N = 5	N = 6	N = 7	N = 8	N = 9	N = 10
H ₂	AICI	CH ₂	C ₂ S	NH ₃	CH₄	CH ₃ OH	CH ₃ NH ₂	HCOOCH ₃	(CH ₃) ₂ O	(CH ₃) ₂ CO
СН	PN	H ₂ S	ocs	H₂CO	SiH₄	CH₃SH	CH₃CCH	CH ₃ C ₂ CN	C₂H₅OH	CH ₃ C ₄ CN
NH	SiN	NH ₂	ССР	H₂CS	CH₂NH	C_2H_4	CH₃CHO	HC ₆ H	C ₂ H ₅ CN	CH ₃ CH ₂ CHO
OH	SiO	H ₂ O	SiNC	H₂CN	C ₅	H ₂ C ₄	c-CH ₂ OCH ₂	C,H	CH₃C₄H	(CH ₂ OH) ₂
O ₂ (?)	SiS	HNO	NaCN	I-C₃H	/-C ₃ H ₂	CH₃CN	CH ₂ CHCN	HOCH ₂ CHO	C₅H	
HF	PO	C ₂ H	SO ₂	<i>с-</i> С ₃ Н	<i>с</i> -С ₃ Н ₂	CH₃NC	HC₄CN	СН ₃ СООН	HC₅CN	
C ₂	SH	HCN	N ₂ O	нссн	H₂CCN	NH ₂ CHO	C₅H	H ₂ CCCHCN	CH ₃ CONH ₂	N = 11
CN	AIF	HNC	SiCN	HNCO	H₂NCN	CH₂CNH	H ₂ CCHOH	H ₂ C ₆	CH ₂ CHCH ₃	HC ₈ CN
СО	FeO	нсо		HNCS	CH₂CO	С₅Н		CH₂CHCHO		CH₃C ₆ H
CS	SiC	c-SiC ₂		HCCN	нсоон	C₅N		C₂H ₆		
СР		MgCN		C ₂ CN	C₄H	HC₄N		NH₂CH₂CN		
NO		MgNC		C ₃ O	HC₂CN	C₅S(?)				N = 12
NS		AINC	H_3^+	C ₃ S	HC₂NC	HC₄H				C ⁶ H ⁶
SO		НСР	HCO+	c-SiC ₃	C₄Si					
HCI	CH ⁺	C ₃	HOC ⁺	C ₃ N ⁻	HNCCC	HC₂CHO				
NaCl	CO ⁺	C ₂ O	N_2H^+	H ₃ O ⁺	СИСНО	c-C ₃ H ₂ O				N = 13
KCI	SO ⁺	CO2	HCS ⁺	HCNH ⁺	H ₂ COH ⁺					HC ₁₀ CN
N ₂ (?)	CF ⁺		HCNO	HOCO ⁺	C ₄ H ⁻	HC ₃ NH ⁺	C ₆ H ⁻		C ₈ H ⁻	

Gaseous Molecules - 1972

- H2,CH, CH+, CN, OH, CO, SiO, CS
- H2O, H2S, HCO+, OCS
- NH3, H2CO, HNCO
- HC3N, HCOOH
- CH3OH, CH3CN, NH2CHO
- All dense clouds thought to be similar in their coldness; Sgr B2 most common source

Considerations

- 1. Need for kinetics rather than thermodynamics?
- 2. Likely range of physical conditions (cold cloud, fluorescent lamp?)
- 2. Elements and abundances (an interstellar cloud? Our atmosphere?)
- 3. Steady-state or time-dependent (importance of initial concentrations)
- 4. Dominant processes
- 5. Historical: what is already known
- 6. Sequential: improvements & extensions based on new laboratory and theoretical work.
- 7. Experimental Collaborators

In the beginning (Herbst & Klemperer 1973):

- Cold dense cloud (temperature "low"):
 - Non-thermodynamic system
 - Reactions must be exothermic and nearly barrierless
 - Existence of cosmic rays → ions and ion-molecule reactions ($\zeta_{\rm H} = 10^{-15} 10^{-17} \, {\rm s}^{-1}$) (Solomon & Werner 1971)
 - Dominant elements H and He → ionization of H, H2, He most important
 - H2 assumed to be dominant form of hydrogen based on prior work of Salpeter and colleagues
 - Steady-state then estimated to be reached quickly (actually too quickly)

Efficient Low T Gas-Phase Reactions

- 1. Ion-molecule reactions
- 2. Radiative association reactions
- 3. Dissociative recombination reactions
- 4. Radical-radical reactions
- 5. Radical-stable reactions (later)
- 6. Photodestruction (diffuse gas)

H₂ Formation

- If necessary, assume that every H atom that hits and sticks to a cold grain leaves after reacting with another H atom (Jura).
- A pseudo-gas-phase rate law can then be obtained by using the well-known gas-to dust ratio:
- d[H2]/dt = k[H]n, where k is the velocity of H multiplied by the grain cross section multiplied by the dust-to-gas number ratio.

Primary Ions

$H_2,He + COSMIC RAYS \rightarrow H_2^+,He^+,H^+$

Elemental abundances: C,O,N = 10(-4); C<O

$$H_2^+ + H_2 \rightarrow H_3^+ + H \text{ (fast)}$$

 $He^+ + H_2 \rightarrow Products \text{ (slow)}$

Primary ions: H_3^+ , H^+ , He^+

SECONDARY IONS & NEUTRALS $H_3^+ + C \rightarrow CH^+ + H_2$ $CH_{n^{+}} + H_{2} \rightarrow CH_{n+1}^{+} + H; n=1,2$ $CH_3^+ + H_2 \rightarrow CH_5^+ + h\nu (1976)$ CH_{5}^{+} + e \rightarrow CH_{4} CH_{3} , CH_{2}^{**} Similar story for OH, H₂O (guessed branching fraction; later phase space theory, later experiments)

Radical-Atom Processes

- C + OH \rightarrow CO + H
- N + OH \rightarrow NO + H
- N + NO \rightarrow N2 + O
- O + OH \rightarrow O2 + H
- N + CH \rightarrow CN + H

More secondary diatomics

More lons

- He+ + CO \rightarrow C+ + O + He
- H3+ + CO \rightarrow HCO+ + H2 prediction
- H3+ + N2 \rightarrow HN2+ + H2
- He+ + N2 \rightarrow N+ + N + He
- C+ + CH4 \rightarrow C2H2+ + H2, C2H3+ +

H**

Ammonia

- N+ + H2 → NH+ + H (slightly endothermic)
- Requires spin-orbit excitation of N+ or ortho-H2 **
- NH3+ + H2 → NH4+ + H unusual temperature dependence **
- NH4+ + $e \rightarrow$ NH3 + H (est. 90%)

Review: Chemical Formation and Destruction in HK

- lons
- Formation: ζ , ion-molecule reactions
- Destruction: dissociative recombination, reactions with H₂ and atoms (C,O)
- Neutrals
- Formation: dissociative recombination and radical-neutral atom
- Destruction: ion-molecule reactions with 10 major ions
- Radical destruction: neutral reactions with atoms

Cosmic Ray Photons

- Additional destruction step (Prasad & Tarafdar 1983)
- e^{*} + H2 \rightarrow H2^{*} \rightarrow H2 + photon
- Leads to radiation field 10⁻⁴ of unshielded interstellar UV field
- Rates written as aζ, with a>>1

Ion-Polar Reactions

 Herbst & Leung 1986 used the lockeddipole approximation for linear neutrals (assuming rotational relaxation) and an approximation to the trajectory-scaling model of non-linear neutrals. In both cases, large dipole approximations were used and only the T-dependent term was kept. (k prop. to $T^{-1/2}$)

More Radiative Association Reactions

- C+ + H2 → CH2+ (on to CH5+) 1973
- CH3+ + polyatomics; e.g.
- CH3+ + HCN \rightarrow CH3NCH+ 1980
- and later
- C + H2 \rightarrow CH2 2004?
- CH + H2 → CH3 1997
- C + C3 \rightarrow C4 2004

Model History (pre-1990)

- 1973 Herbst & Klemperer: first dense cloud model (100 reactions) steady-state solution; paper tape
- 1980 Prasad & Huntress: first large models with many reactions and time-dependent solutions
- 1989 Herbst & Leung: first "complex" molecules included
- 1989: Millar, Bennett, Herbst: deuterium fractionation included in large models
- Important work of UMIST, Dalgarno, Langer, Roueff, Black, van Dishoeck, Smith, Tielens, Hollenbach and many others.....
- Ion-molecule studies by groups headed by David Smith, Wes Huntress, Eldon Ferguson, Bertrand Rowe, Dieter Gerlich, and others.....

ORGANIC SYNTHESIS CONT. (HL 1989)

SOME SYNTHETIC REACTION CLASSES:

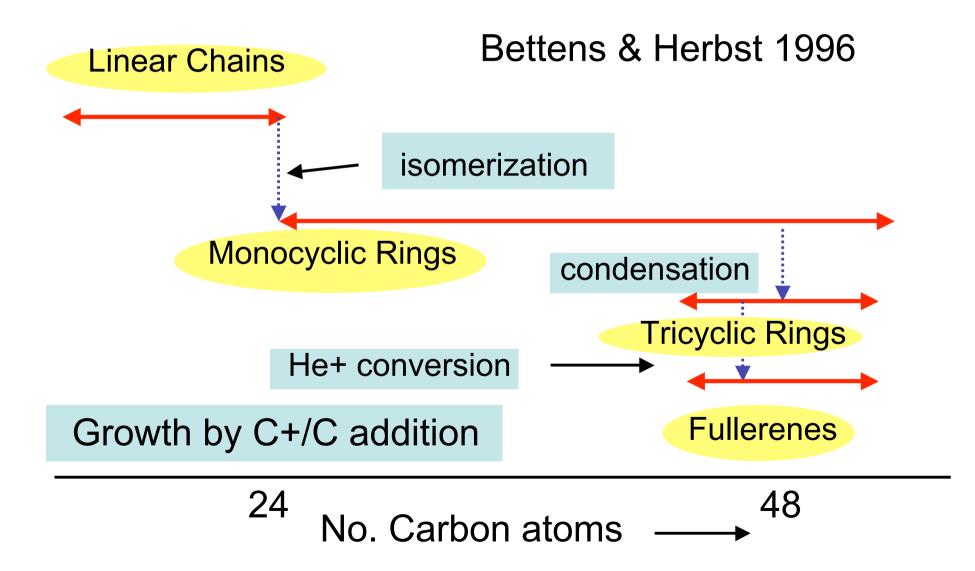
A. CARBON INSERTION $C^+ + CH_4 - ---- > C_2H_3^+ + H$ $----- > C_2H_2^+ + H_2$ B. CONDENSATION $C_2H_2^+ + C_2H_2 - ---- > C_4H_3^+ + H$ C. ATOM IC INSERTION $N + C_3H_3^+ - ---- HC_3NH^+ + H$

D. LOSS OF HYDROGEN $C_{n}H_{m}^{+} + H_{2}$ NO REACTION

E. NEUTRAL-NEUTRAL

 $C + C_2H_2 \quad \forall \quad C_3H + H$

Carbon "Insertion" Route


- C+ + C2H2 \rightarrow C3H+ + H
- C3H+ + H2 \rightarrow c-C3H3+, H2C3H+
- C+ + C3H2 \rightarrow C4H+ + H
- C4H+ + H2 \rightarrow C4H2+ + H
- C4H2+ + e \rightarrow C4H + H

Unsaturated hydrocarbon products; tend towards linearity

Radical-Neutral Reactions

- Started with the work of David Husain as discussed in Clary et al. 1994 for C atoms
- Most work (especially at low T) performed by Birmingham and Rennes groups since then although crossed-beam experiments have also proven to be useful.
- Herbst, Millar et al. 1994
- Bettens et al. "new neutral-neutral model" 1995
- Smith et al. osu.2003 (2004)
- NET RESULT: harder to produce large molecules if C<O (TMC-1 especially) unless models restricted to measured rates.

EXTENSION TO FULLERENES

Addition of a New Molecule

- Example: CH2CNH (keteneimine)
- Formation: Most likely:
- CH3CNH+ + $e \rightarrow$ CH3CN + H;
- CH3NC + H,?
- CH2CNH + H
- But how is protonated acetonitrile formed?
- CH3+ + HCN \rightarrow C2H4N+ (structure?)
- Destruction: reactions with ions; mainly but not completely by protonation, cosmic-ray photons

Negative Ion Chemistry

- Formation occurs by:
- Radiative attachment (Herbst 1981)

 $C_6H + e C_6H + hv$

• Dissociative attachment (Petrie & Herbst 1997)

 $H_2C_6 + e \oplus C_6H^- + H$

(normally endothermic unless neutral an unusual species such as a carbene)

Few experimental and detailed theoretical studies.....

Destruction occurs by associative detachment, mutual neutralization, and photodetachment as well as ion-molecule reactions, that lead to new ions.

Additions for Higher Temperatures

- Hot Cores 100-300 K
- Photon-dominated regions 100 1000 K (gasphase)
- Shocks 1000-5000 K (gas-phase)
- Reactions with barriers and endothermic reactions turn on.
- $X + H2 \rightarrow XH + H$ become important.
- Road to thermodynamics (stellar atmospheres) must include backwards reactions

Rate Coefficient Estimation

- Guided extrapolation
- Ion-non-polar Langevin/ analogous systems
- Ion-polar trajectory scaling and locked dipole approaches (osu); T^{-1/2} law (Rate06)
- Dissociative recombination: estimation from experiments (H3+ + e most difficult)
- Radiative association: statistical estimate; three-body analogy (Sean Smith, Juergen, Jean-Christophe, Ian, Bates, Herbst)
- Attachment: statistical estimate (Herbst)
- Radical-neutral: ask lan/ analogous systems/ twotransition-state model (see Klippenstein in lan's new book)

Product Estimation

- Exothermicity, spin conservation
- Similar reactions and classes (e.g. protonation, H-atom transfer)
- Calculations
- Ask experts (Ian, David Smith, Wolff Geppert)

Current Gas-Phase Networks

Rate06* <u>www.udfa.net</u> (every 5 years)

osu.2008* <u>www.physics.ohio-state.edu/~eric/</u> (maintained by Valentine)

Meudon <u>http://aristote.obspm.fr/MIS/</u>

Others: PAHs (Lepp & Dalgarno, Valentine), shocks (des Foréts), IRC+10216 (C-rich, joint UMIST-osu), thermodynamic equilibrium (Andrew Markwick-Kemper)

* Anion extensions available upon request (similar results for cold clouds) Walsh et al.

The Future

- Gas-grain networks
- Stochastic solutions
- Coupled with hydrodynamics
- Solved for cold cores, pre-stellar cores, hot cores, protoplanetary disks, PDR's XRDR's, diffuse clouds, IR dark clouds, external galaxies, early universe....
- Teams of investigators