Potential importance of neutral-neutral reactions involving the CH₂ radical

Evelyne Roueff ⁽¹⁾ Maryvonne Gerin ⁽²⁾ N. Marcelino ⁽³⁾ J. Cernicharo ⁽³⁾ B. Tercero ⁽³⁾

(1) LUTh & UMR 8102 CNRS, Observatoire de Paris, France
 (2) LERMA & UMR 8112 CNRS, Observatoire de Paris, France and ENS
 (3) DAMIR, Madrid, Spain

New observational facts (1)

High angular observations of $H^{13}CO^+$, HCO, CCH and H_2 at PdB

 Detection of HCO in the Horsehead nebula (Gerin et al. AstroPh 1108.1470) Table 4. Inferred column densities and abundances with respect to molecular hydrogen, $e.g. \chi(X) = N(X)/N(H_2)$.

Molecule	Method	HCO peak	DCO+ peak
$N(H_2)$ [cm ⁻²]	1.2 mm cont.	1.9×10^{22}	2.9×10^{22}
N(HCO) [cm ⁻²]	$T_{ex} = 5 \text{ K}$	3.2×10^{13}	4.6×10^{12}
N(H ¹³ CO ⁺) [cm ⁻²]	Full excitation	5.8×10^{11}	5.0 × 10 ¹² *
N(HCO ⁺) [cm ⁻²]	12C/13C=60	3.5×10^{13}	2.3×10^{14}
χ (HCO)		1.7 × 10 ⁻⁹	1.6×10^{-10}
$\chi(H^{13}CO^+)$		3.1×10^{-11}	1.7 × 10 ⁻¹⁰
χ (HCO ⁺)		1.9 × 10 ⁻⁹	7.9×10 ⁻⁹
* Deter et al (2007a)	1 7 10-9 : 5 110	10 l	from the slow

 Pety et al. (2007a) [†] 1.7 × 10⁻⁹ if HCO arises only from the cloud surface (A_V ≈ 3).

 HCO detected with a large fractional abundance

HCO

- Test of the HCO channel in the photodissociation of H₂CO
- Test of the O+CH₂ reaction
- Available in the UMIST chemical network
- Measured at high temperature
- Theoretical study?

UMIST data base results on neutralneutral reactions with CH₂

•	$CH_2 + O \rightarrow CO + H2$	8.00E-110.00	0.0	1900 - 2600
	within 25% Lit. Search			
•	$CH_2 + O \rightarrow CO + H + H$	1.33E-100.00	0.0	10 - 2500
	within 25% Lit. Search			
•	$CH_2 + O \rightarrow HCO + H$	5.01E-110.00	0.0	1200 - 1812
	within 25% Massurament	(not in OSLI)		

Photodissociation of H_2CO :

Theoretical calculations by Yin et al. (Science 2006) and Troe, JPC A 111, 3868 (2007) : HCO channel available for $\lambda > 310$ nm

HNCO isomers

- HNCO detected in numerous regions
- Detection of HOCN towards SgB2 (together with laboratory frequencies)
- Detection of HCNO in cold clouds
- Geometry and stability revisited by Mladenovic & Lewerenz (2008) : HCNO is linear, HOCN is planar

Formation enthlapies from theoretical calculations at "subchemical" accuracy (Schuurman et al. 2004)

Chemical pathways to HCNO and HOCN ? I. Ionic channels

- No obvious parent molecule candidate
- HCNH⁺ + O ? No reaction
- NCO⁺ + OH \rightarrow HNCO⁺
- NCO + H₃⁺ → HNCO⁺, HOCN⁺, not HCNO⁺ (3380 K)
- HNCO⁺, HOCN⁺ & HCNO⁺ react with H₂ giving H₂NCO⁺, HNCOH⁺, HCNOH⁺, H₂CNO⁺
- DR channels : $H_2NCO^+ \rightarrow HNCO$ HNCOH⁺ \rightarrow HNCO (and HOCN) $H_2CNO^+ \rightarrow HCNO$ HCNOH⁺ \rightarrow HCNO

	kcal/mol
NCO+	308
HNCO+	243
HOCN+	267
HCNO+	302
H ₂ NCO ⁺	167
HNCOH+	186 ±?
HCNOH+	246
H ₂ CNO ⁺	254

theoretical values (Mebel et al. 1996, Hop et al. 89)

Chemical pathways to HCNO and HOCN ? II. Neutral-neutral channels

- CN + O₂ → NCO + O (studied by Sims et al. 1994 at low temperature
- NCO + H₂ → HNCO + H measured between
 591-913K k = 1.4(-11) exp(-1082/T)
 (Perry et al. 1985, JCP 82, 5485)
- CH₂ + NO → HCNO + H (Glarborg 1998, CF 115, 1) no activation barrier found by Roggenbuck & Temps, 1998, CPL 285, 422)

Chemical modelling attempt of H, N, C and O chemical family

T = 10K, $n(H_2) = 10^5 \text{ cm}^{-3}$

<u>HNCO</u>

fabric: 8.797312E-15 destru: 8.797312E-15 abond: 1.001162E-04

Processus de fabrication de hnco :

```
h2nco+ + electr = hnco h
83.64 % 785
hncoh+ + electr = hnco h
13.52 % 790
7.3580E-15 cm-3 s-1 7.3494E-11 s-1
1.1891E-15 cm-3 s-1 1.1877E-11 s-1
```

Chemical modelling attempt of H, N, C and O chemical family

Chemical modelling attempt of H, N, C and O chemical family

HOCN

fabric: 4.237854E-17 destru: 4.237854E-17 abond: 4.840400E-07

Processus de fabrication de hocn : hncoh+ + electr = hocn h 4.1002E-17 cm-3 s-1 8.4708E-11 s-1 96.75 % 789

Processus de destruction de hocn :

- \bigcirc 60.46 % 640
- 38.04 % 633

+ hocn = oh nco 2.5621E-17 cm-3 s-1 5.2932E-11 s-1

h + hocn = nco h2 1.6122E-17 cm-3 s-1 3.3308E-11 s-1

Some quantitative comparison

from Marcelino et al. 2009	Source	N (HCNO) 10^{10} cm^{-2}	N (HNCO) 10^{12} cm^{-2}	$n({ m H_2})$ $10^5~{ m cm^{-3}}$	R hnco/hcno
Prediction of NCO	B1 L1527 L1527-B	21(1)/17 6(1)/4.5 5(1)/4.0	9(1)/8.0 2.2(6)/1.8 0.9(5)/0.8	6 5 5	42/47 37/40 18/20
	L1544 L183 TMC-1 Orion-KL	8(3)/6.3 6(2)/5.0 $\leq 1.3/\leq 1.4$	5(1)/4.1 3.4(3)/2.5 5.7(4)/4.5 9000(2000)	$0.7 \\ 0.5 \\ 0.3$	62/66 57/50 >390/>320 >1100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CO R			nomor	t with

Γ=	(0	К

0.1	0.005	0.004	0.04	0.47	0.02	0.8	
0.3	0.01	0.01	0.08	1.30	0.07	1.5	
1.0	8.6	18	6.30	38.0	6.6	29	
3.0	7.4	18	3.10	12.0	4.5	58	
10	5.1	9.3	1.20	2.0	2.0	72	
30	3.2	3.4	0.58	0.31	0.8	58	
50	2.5	2.0	0.41	0.13	0.5	49	
100	1.7	0.9	0.25	0.04	0.3	36	

 satisfactory agreement with
observations
 several guesses need to be
critically analysed
• further observations needed of
the 3 isomers (IRAM 2009)

Conclusions

 \checkmark possible role of CH₂ (X ³B₁) in interstellar chemistry • HCO formation route in PDR : $CH_2 + O$? spin conservation HCNO formation route : CH₂ + NO ? \checkmark further observations of the 3 HNCO isomers: HNCO (quasi-linear) HOCN (quasilinear), HCNO (linear Σ^+) in various environments ✓ HOCNH⁺ DR branching ratios critical for the HNCO/HOCN ratio experimental and/or theoretical check? \checkmark Grain formation path ? Discrimination between the isomers?