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SPECTROSCOPY

Isotropic albedo contribution in RHESSI spectra

During this meeting J. Kašparová and E. Kontar continued in the analysis of isotropic

albedo contribution in RHESSI spatially integrated spectra. Albedo is formed by the primary

flare photons scattered in the photosphere and modifies the mean electron flux distribution

F̄ (E) determined from the observed total photon spectra, i.e. from the primary plus scat-

tered component.

They focused mainly on the distribution of spectral indices of total photon spectra with

respect to the flare position on the solar disc. Using all suitable RHESSI flares detected

above 50 keV, they found that only spectral index at ∼ 20 keV shows tendency of being

spatially dependent, see Figure 1.

Fig. 1.— Spectral index γ0 at the 15 - 20 keV range as a function of heliocentric angle

(µ = cos θ). Colour lines (cyan, yellow, red, and blue) indicate models with primary single

power-law spectrum: γp = 2.0, 2.5, 3.0, and 3.5, respectively.

This is consistent with modelled influence of albedo which predicts the largest deviation

between the primary γp and total γ photon spectral indices at energies below 20 keV, where

γ < γp. However, γp strongly depends on γ which can vary with energy and from flare

to flare. The effect of albedo is more pronounced for flatter primary spectra, therefore the

analysis was limited to flares with γ < 3.5. Other difficulty is connected with the thermal

component which can contribute to the photon spectrum at these energies and “mask” the

albedo component. Thus, the flares with substational thermal component were excluded from
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the analysis. The resulting sample of flares is not large (∼ 25 flares), data show scatter, and

subsequently the spatial dependecy of γ cannot be regarded as confirmed yet. Therefore, it

was decided to extend the analysis also to the RHESSI flares detected only up to 50 keV in

order to increase the number events.

On the other hand, the flattest total photon spectra or those with the largest change in

spectral indices at different energy ranges are consistent with a dip in F̄ (E) below ∼ 20 keV.

All such dips are found only for flares on the solar disc and all of the dips can be removed

by taking into account the isotropic albedo contribution relevant to the flare position on the

disc, see Figure 2.

To determine F̄ (E), a new version of regularisation software developed by E. Kontar was

used. The software is designed to find F̄ (E) directly from the detected RHESSI count flux,

i.e. it does not require a conversion of the data into photon flux prior to the regularisation.

The resulting F̄ (E) are consistent with those obtained by the regularisation software of

A. M. Massone (regularised F̄ (E) from photon flux).

Fig. 2.— Regularised F̄ (E) of the flare on Jan 8, 2004 determined using total (left) and

primary (right) count spectra. Notice the dip below ∼ 20 keV for the case of total spectra.

Influence of systematic errors in the photon spectrum on the inversion

Monte Carlo techniques were used to calculate plausible systematic errors in the photon

spectrum. These errors had an rms deviation of 5% and were correlated over energy ranges so

that they would represent credible calibration-based errors in the photon spectrum (Figure 3

shows plots of the error factors as a function of energy). These factors were used to multiply
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Fig. 3.— Simulated error factors as a function of energy. Top left panel: factor 1. Top right

panel: factor 2. Bottom left panel: factor 3. Bottom right panel: factor 4.

a real photon spectrum. The original and four distorted photon spectra were each inverted to

corresponding electron spectra using the inversion software. Comparison of the four distorted

electron spectra (hereafter referred to as F1, F2, F3, F4) with the original (F0), showed rms

differences of between 6% and 10%, as shown in Table 1. The conclusion was that unknown

calibration errors would not be unduly magnified by spectral inversion.

Mean Value Standard Deviation

F1/F0 1.003 0.091

F2/F0 0.987 0.080

F3/F0 1.001 0.067

F4/F0 0.993 0.069

Table 1: Comparison of the four distorted electron spectra with the original.
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Fig. 4.— Reconstructed error factors as a function of energy.

Reconstruction of the differential emission measure

Under a purely thermal interpretation of an observed solar hard X-ray bremsstrahlung

spectrum, it can be shown [1] that the differential emission measure ξ(T ) is related to the

mean electron spectrum F̄ (E) by the equation

F̄ (E) =
23/2E

(πme)
1/2

∫ ∞

0

ξ(T )

(kT )3/2
e−E/kTdT (1)

where T is the temperature and k is the Boltzmann constant.

A completely rigorous description of the thermal model then requires the introduction of

two integral equations. First, the (isotropic) source-averaged effective electron flux spectrum

F (E), is related to the photon spectrum by means of the Volterra integral equation

I(ε) =
nV

4πR2

∫ ∞

ε

F (E)Q(ε, E)dE , (2)

with a fully correct form of Q(ε, E). Second, the inversion of Eq. 1 allows to recover ξ(T )

from F (E).
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However a basic technical difficulty is due to the fact that solving the second inverse

problem is extremely problematic. Simple changes of variables reduce this problem to a

Laplace transform inversion problem with noisy data. Most inversion methods for the real

Laplace transform have been formulated within the framework of regularization theory for

ill-posed inverse problems. At the core of these approaches there is the search for an optimal

trade-off between stability against unphysical oscillations and accurate reproducibility of the

data. Such an optimization result is obtained either by fixing a real positive regularization

parameter in Tikhonov-like methods [4] or by applying some stopping rule to iterative pro-

cedures. However, the present application is particularly challenging owing to the particular

nature of the solar spectral data involved here. Typical solar F (E) are characterized by a

large dynamic range (at least three orders of magnitude for around one order of magnitude in

the E range) and, more significantly, the corresponding ξ(T ) have completely different forms

at low and high T : at small T , a near thermal (δ function) component which differs from zero

only in a small T range (narrow support); at high T , a monotonic component spread over a

large interval. A consequence of this complexity in the source function is that regularization

approaches may lose some (or most) of their effectiveness. For example, the reconstruction

of ξ(T ) at low T with classical Tikhonov regularization may correctly reproduce the location

of the temperature peak but typically presents ringing effects whose negative components,

which are numerical artefacts, may induce to conclude that the spectrum is not thermally

interpretable. Negative ringing can be eliminated by applying a reconstruction method with

positivity constraint. However such an approach is not effective while recovering the high

temperature part of ξ(T ) which has a power-law-like behavior and requires regularization

methods with more smoothing power. To deal with these kinds of difficulty, we have utilized

the following approach: an iterative scheme with positivity constraint (projected Landweber

method [3]) is applied for the inversion of the low energy part of F (E), in order to eliminate

unphysical ringing effects with negative oscillations in the reconstruction of the part of ξ(T )

characterized by a narrow support; then, a first order Tikhonov regularization method is

applied for the inversion of the high-energy part of F (E), where an appropriate boundary

condition constrains the reconstructed ξ(T ) to behave well (i.e., with a slope compatible

with the spectral index of the photon data) at high T . The two reconstructed ξ(T ) are then

connected together noting that each inverted part of F (E), if known with sufficient precision,

could in principle provide information on ξ(T ) in the whole T range.

In Fig. 5 a simple example is considered in which the simulated differential emission

measure (solid line) comprises an isothermal component (at T0 = 4keV) at low electron

energies plus a power law behavior at high energies.

In real F (E), energies up to typically 10 keV must be avoided owing to the presence of

(or problematical correction for) lines of non-bremsstrahlung origin or to systematic errors
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Fig. 5.— Inversion of F (E) corresponding to the theoretical ξ(T ) plotted in solid line.

Reconstruction (dashed) obtained by inverting the low-energy part of the electron spectrum

with the projected Landweber method and the high-energy part with first order Tikhonov

regularization and by connecting the two restorations.

introduced by the hardware. In other words, a typical experimental situation is that F (E) is

inverted from electron energies bigger than the temperatures involved in the thermal process.

In order to study the effect of this on the inversion method, we considered the test shown

in Fig. 6. The electron spectrum corresponding to an isothermal ξ(T ) with T0 = 7 keV is

inverted for different electron energy sampling ranges: 2−20 keV (solid), 2−7 keV (dashed),

7−20 keV (dotted) and 20−70 keV (dot-dashed). Defining the “centroid” temperature of the

reconstructed distributions by < T >=
∫

Tξ(T )dT/
∫

ξ(T )dT and Tmax as the temperature

at which the recovered ξ(T ) peaks, we found that if T0 is higher than the energy range

considered, the reconstruction preserves the symmetry of the δ-function (so that Tmax and

< T > more or less coincide) but the peak temperature is notably overestimated (almost

20%). If T0 is smaller than the sampled energies (which is the realistic situation), the

reconstruction is rather skewed (in such a way that Tmax is bigger than < T >, as opposed

to the case of Tikhonov regularization), presents a widened Full Width at Half Maximum

(FWHM) and the peak temperature is slightly underestimated: for example, if the selected

range is 20 − 70 keV, the reconstructed Tmax is ∼ 5% smaller than the true one.

After the meeting a fully revised version of the paper Regularized reconstruction of the

differential emission measure from solar flare hard X-ray spectra, has been submitted to

Solar Physics.
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Fig. 6.— Reconstruction of a δ-function peaked at T0 = 7 keV when the corresponding F (E)

is sampled over different electron energy ranges: 2 − 20 keV (solid); 2 − 7 keV (dashed);

7− 20 keV (dotted); 20 − 70 keV (dot-dashed). The reconstruction method is the projected

Landweber method with positivity.

IMAGING

For this meeting Dr. Gordon J. Hurford (Space Sciences Laboratory - University of Cal-

ifornia at Berkeley), RHESSI leading scientist for the imaging problem [2], joined the team.

As far as the problem of image construction from raw RHESSI data using regularization

techniques, our results have been so far exploratory.
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