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Abstract 

 

The cooling of plasmas in closed coronal loops by thermal conduction is important 

when considering their detectability at X-ray and EUV wavelengths. A non-local 

formalism of thermal conduction originating in laboratory plasmas is used and it is 

shown that while the effect is unlikely to be important for loops that are in a steady 

state, it does play a significant role in loops that are impulsively heated (e.g. by 

nanoflares). Such loops are “under-dense”, and so hot electrons have a relatively long 

mean free path. Analytic and numerical models are presented, and it is shown that 

conduction cooling times are lengthened quite considerably. A comparison of various 

cooling times with ionisation times is also presented, and it is noted that this 

conductive physics may enhance the chances of observing hot nanoflare-heated 

plasma. 
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1. Introduction 

 

There is currently widespread interest in whether the solar corona can be heated by a 

large number of discrete energy releases, presumably associated with the magnetic 

reconnection process. Commonly referred to as the “nanoflare model” in light of the 

original suggestion of energy release in units of 10
24

 ergs (Parker, 1988: see also 

Cargill, 1994), it has been suggested that the key information about impulsive energy 

release (location, intensity, temporal evolution) is best seen at high temperatures, at 

least a few 10
6
 K (e.g. Winebarger and Warren, 2004; Patsourakos and Klimchuk, 

2006; Parenti et al, 2006). While measurements of the corona from the SOHO and 

TRACE spacecraft focus on temperatures of typically 2 x 10
6
 K or lower, new 

opportunities to measure high temperature coronal plasmas have arisen with the XRT 

instrument on Hinode and, later in 2008, with the AIA on SDO. However, at this time 

it is unclear what one could expect to actually detect (but see Parenti et al., 2006). 

One difficulty lies in the evolution of the coronal temperature and density following 

an impulsive heating event. Cargill (1994) and Cargill and Klimchuk (2004) showed 

that a nanoflare heated corona initially is under-dense with respect to a static corona at 

the same temperature, and at later times is over-dense. Since the high temperature 

plasma is under-dense, and the intensity of an emission line scales as n
2
, one can see 

that there are potential detectability problems that can be compounded by 

instrumental sensitivity and difficulties in attaining ionisation equilibrium. 

 

The density and temperature of an impulsively heated loop depend on the relative 

importance of two cooling processes: thermal conduction to the chromosphere and 

optically thin radiation to interplanetary space. The conductive phase drives an upflow 

(Antiochos and Sturrock, 1978), while the radiative phase is associated with a 

downflow (e.g. Cargill, Mariska, and Antiochos, 1995: hereafter CMA95; Bradshaw 

and Cargill, 2005). The cooling is governed by an energy equation of the form: 
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where p, v, n and T are the pressure, velocity, number density and temperature, γ the 

ratio of specific heats and s the coordinate along the magnetic field. In addition there 

is an equation of state: nkTp 2= , with k being the Boltzmann constant. Here κ0 = 10
-6

  

ergs cm
-1

 s
-1 

K
-7/2

 is the thermal conductivity coefficient, and RL(T) is the optically 
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thin radiative loss function. For a loss function of the form 2/1)( −= TTRL χ (a common 

approximation between 10
5
 and 10

7
 K: Priest, 1982), one can show that a loop of half-

length L will cool by conduction and radiation with characteristic times τc and τr, and 

their ratio τc/τr defined as (CMA95): 
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This shows that conductive cooling dominates for hot, tenuous (under-dense) loops, 

and radiative cooling dominates for cool, dense loops. If we consider “typical” 

parameters following impulsive heating (T = 10
7
 K, n = 10

9
 cm

-3
, L = 2 x 10

9
 cm), we 

find τc = 10 sec. Thus any hot source may be short lived. A further consequence is 

that this cooling time may be less than the time needed to create the ionisation states 

that is required to infer the presence of hot plasmas. 

 

This paper provides an assessment of the possible lifetime of hot, impulsively-heated 

coronal plasmas in active region (non-flaring) loops. In particular, we focus on the 

usual description of conductive losses which relies on the Spitzer-Harm (hereafter 

SH: Spitzer and Harm, 1953) formalism that assumes a short electron mean free path. 

This assumption has been sporadically questioned over the years, especially in the 

context of the cooling of impulsively-heated flare plasmas (e.g. Karpen and DeVore, 

1987, Ljepojevic and MacNiece, 1989), but not in the context of impulsive nanoflare 

heating. Since violation of the SH assumption increase cooling times, it is important 

to assess its effect. 

 

Section 2 introduces two alternative models of conductive cooling: the so-called 

“free-streaming” model, and the non-local model. In Sections 3 and 4 we assess these 

for a range of loop conditions immediately following impulsive heating. In Section 5, 

we discuss the cooling times with respect to the times needed to create the highly 

ionised states needed to infer high coronal temperatures. 

 

2. Conductive cooling models  

  

The classic theory of conductive cooling was developed by Cohen, Spitzer and Roulty 

(1950) and Spitzer and Harm (1953), and involves a solution of the Boltzmann 



 4 

equation for a distribution function that deviates weakly from Maxwellian due to a 

temperature gradient with a characteristic scale of LT. We define the electron mean 

free path in an electron-proton plasma as: 

)ln/2()/(ln8/)( 442 Λ=Λ= nVenkT eeee πωπλ cm, 

where lnΛ is the Coulomb logarithm, taken as having a value of 20, and Ve and ωe are 

the electron thermal speed and electron plasma frequency respectively and Te the 

electron temperature. The SH model is valid for λ/LT << 1 (e.g. Luciani, Mora, and 

Virmont, 1983; Karpen and DeVore, 1987; Ljepojevic and MacNiece, 1989), where 

the inequality suggests that terms of order (λ/LT)
2
 can be neglected. However, for 

electrons in the tail of the distribution, SH will eventually fail for most values of λ/LT 

since these energetic electrons travel large distances (>> λ) before interacting with the 

background plasma.  

 

A number of approaches have been made to address deviations from SH conduction. 

If we define the SH heat flux as dsdTTqSH /2/5

0κ= , the simplest approach involves 

recognising that there is a maximum heat flux at each location when the electrons are 

said to “free stream”: efs nkTVq 5.0= . In fact for temperatures in the range of a few 

MK, as considered in this paper, this condition is only met in very tenuous coronal 

plasmas, of order 10
8
 cm

-3
 (see Bradshaw and Cargill, 2006 for a further discussion 

and full numerical simulations of this regime, and Patsourakos and Klimchuk, 2005 

for further simulations of nanoflares when free-streaming is included).  

 

However, other effects can lead to a deviation from SH conduction. Luciani, Mora 

and Virmont (1983) used results from laser plasmas to suggest that a conduction front 

arising from impulsive heating was modified by the streaming of very high energy 

electrons ahead of the front. In the context of the corona, this means that high energy 

electrons would move ahead of the conduction front into cooler ambient plasma. This 

“non-localisation” of the conduction led to the formalism described below in which 

the heat flux at any one point is determined by the temperature and density structure 

of the entire atmosphere under consideration. This approach was implemented into 

numerical models of solar flare plasmas (Smith, 1986; Karpen and DeVore, 1987) 

who showed significant delays in the cooling of flare plasma, and consequent plasma 
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upflows. Ljepojevic and MacNiece (1989) compared a solution of the Fokker Planck 

equation with a number of analytical heat flux limiting scenarios, including that of 

Luciani, Mora and Virmont. They showed that for models of a flare the approach of 

Luciani, Mora and Virmont was the most satisfactory. 

 

Luciani, Mora and Virmont (1983: see also Luciani, Mora, and Pellat, 1985) express 

the non-local flux as: 

∫= dyyswyqsq SHNL ),()()(       (3) 

where 
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y and z are dummy variables, and the integration in Equation (3) is over the entire 

loop length. The quantity )(2)( yyNL λφλ =  is an “effective” electron mean free path 

(Luciani, Mora, and Virmont, 1983) for an electron-proton plasma. The coefficient φ 

= 32 was derived from the Fokker-Planck simulations of Luciani, Mora, and Virmont, 

and Ljepojevic and MacNiece argue that φ should be smaller in regions of lower 

temperature. This is because λ of the near-thermal electrons is otherwise over-

estimated. Luciani, Mora, and Virmont also noted that Equation (3) reduced to the 

correct SH flux in the limit of very short mean free path at all locations. 

 

3. Application to coronal energy balance models 

 

In this section we explore in simple terms the implications of non-local heat 

conduction for coronal energy balance models. Throughout this paper we make the 

assumption that the heating takes place near the top of a loop (or strand). Using the 

equation of state we can write Λ= ln4/)( 43
pekTe πλ , so that the plasma at the top of 

a loop has the largest values of λ. For SH conduction to be valid we would expect that 

the ratio α = λ/L be small, where L is the loop half-length (we assume L and LT are 

the same). We find  

Λ= ln4/)( 43
pLekTe πα ,     (5) 
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and can insert some simple models that relate the coronal temperature to the pressure 

and length into Equation (5). For example, the Rosner, Tucker, and Vaiana (1978) 

scaling law, which applies to loops with steady, spatially uniform heating,  states that 

2/1
0

43 )4/()( κχkpLkT = , and on setting χ = 6 x 10
-20

, we find α = 2 x 10
-4

, which 

suggests that SH conduction is likely to be valid (see also Ciaravella, Peres, and Serio, 

1991). It is only for high loops that additional stratification decreases the validity of 

SH conduction in steady state (Ciaravella, Peres, and Serio, 1991, 1993).  

 

On the other hand, impulsive heating models do not initially have a simple 

relationship between temperature and density. A heating event can, in principle, occur 

in a loop structure with arbitrary temperature and density and, as noted in the 

Introduction, impulsively-heated loops are initially underdense with respect to a 

steady-state model. This will lead to larger values of λ. However, the cooling of such 

loops, as well as the conduction-driven upflows, will lead to SH eventually becoming 

the correct description. The nanoflare heating model of Cargill (1994) predicts that at 

the start of the main conductive cooling phase, 
hAQT /)1(10103 ξ+=  and 

ALQknT 2/)1(3 ξ+= , where Q is the nanoflare energy, Ah is the cross-sectional area 

of the loop or strand being heated and ξ is the ratio of the pre-nanoflare thermal 

energy in the loop to the nanoflare energy. In the expression for T, the numerical 

factor arises from the details of the model of Antiochos and Sturrock (1978). Here we 

find that α = 6 x 10
-3

, independent of all loop parameters. Studies of non-local 

conduction suggest that it becomes important for such values of α. 

 

4. Solutions for non-local conduction for simple heating scenarios 

 

To address the limitations of SH conduction, we consider loop cooling using two 

models. The first, discussed in Section 4.1, assumes that the cooling is static. This 

implies that the heat flux into the chromosphere is all radiated away (Antiochos and 

Sturrock, 1976). The second model allows the lower atmosphere to respond to the 

heat flux by driving an upflow (“chromospheric evaporation”: Antiochos and 

Sturrock, 1978), and is discussed in Section 4.2. 

 

4.1 Static Cooling 
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In the absence of flows, the loop pressure is spatially constant, and the initial density 

profile n(s) does not evolve in time. The static heat conduction equation is solved: 

s
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with the non-local flux calculated from Equation (3): as noted earlier, the SH case 

arises in the limit of short mean free path. While this approach ignores the effect of 

radiation in the lower atmosphere, it has the merit of isolating the conduction physics. 

The initial loop temperature and heat flux profiles are described by the static 

conductive cooling model of Antiochos and Sturrock (1976): 
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with Tb and T0 the base and apex temperatures and where the loop extends from –L to 

L, with s = 0 at the apex. We consider cases where Tb = 10
4
 K and 2L = 2 x 10

9
 cm. 

 

Equations (3) and (6) were solved numerically to give the temperature and non-local 

heat flux throughout the loop as a function of time. Although symmetry was not 

explicitly required about the apex, it was maintained in all cases. Two sample results 

are shown in Figure 1 with initial apex temperatures and densities of 6 x 10
6
 K, 5x10

9
 

cm
-3

 (panels a and b) and 10
7 

K, 10
9
 cm

-3
 (panels c and d). These densities are 

respectively a factor of 20 and 400 lower than that expected in a steady-state 

uniformly heated loop at the same temperature. The mean free paths at the loop apex 

are 50 and 700 km, whereas LT = 1.75L = 1.75 x 10
4
 km giving values of the 

parameter α of 0.003 and 0.04. Figures 1a and 1c show the temperature and Figures 

1b and 1d the heat flux. Results for SH (non-local) conduction are shown using 

dashed (solid) lines. In the heat flux plots, the left (right) axis corresponds to the SH 

(non-local) conduction, required because of the large differences in their values when 

non-local conduction is important. Finally, the sequence of lines in each plot denotes 

different times. Both cases are run until the apex temperature in the non-local model 

has fallen by a factor of e (defined as the non-local cooling time: τNL). The five lines 

on each plot are shown at 0.2τNL, 0.4τNL, ….. τNL, so that one is comparing the 

profiles at the same times. For Fig 1a,b τNL = 579 s., and for Figure 1c,d, τNL = 254 s. 
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The corresponding SH cooling times (i.e. time for the apex temperature to decline by 

e in the SH model) are 487 s and 27 s. respectively. 

 

The first case shows little difference in the cooling times but we see that there are 

differences in the heat flux structure near the loop ends. This is due to the non-local 

conductivity formalism modelling very energetic electrons streaming from the loop 

apex to the footpoints, and is a manifestation of the non-local transport. The second 

case shows clearly the effect of the non-local cooling. One can see the very fast initial 

SH cooling, or alternatively the slow non-local cooling (note the curves for 0.2τNL). 

Note also the different temperature profiles. Non-local conduction leading to 

flattening (i.e. more isothermal), at least at higher temperatures, as well as some 

heating near the base due to the energetic electrons that run ahead of the main 

conduction front. One can also see that the non-local inhibition is important for a 

while, but as the temperature falls, SH cooling takes over, leading to a more rapid 

temperature decay (contrast the results at 0.8τNL and t = τNL). 

 

Figure 2 summarises the results for static cooling. We have solved Equations (3) and 

(6) for a series of 361 cooling loops with a grid of initial apex temperatures 

distributed between 10
6
 and 10

7
 K, and initial apex densities between 10

9
 and 10

10
 cm

-

3
. This parameter range gives initial apex mean free paths in the range 0.7 – 700 km. 

The top four panels show the ratio of the SH to non-local cooling times (τSH/τNL: 

approximately always < 1) where a contour plot has been generated from the data 

points. Four loop lengths (2L) are considered of 10
9
, 2 x 10

9
, 3 x 10

9
 and 4 x 10

9
 cm 

(panels a – d respectively). We see that as T increases and n decreases, the role of 

non-local conduction becomes more important, as would be expected. For short loops, 

the SH conductive cooling time can be in error by up to a factor of five. As the loop 

length increases, the ratio increases, although still differs significantly from unity. For 

a given T and n, the mean free path is obviously independent of loop length, so that 

longer loops will have a smaller ratio of the parameter α (Equation (5)), and so be 

closer to SH. 

 

The starred curve on the left of each panel denotes the combinations of T and n 

expected from a steady-state loop (see Section 3). It is clear that this regime does 
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indeed correspond to SH conduction being an adequate description. Note also that for 

parameters to the left of this curve, radiative cooling will be at least as important as 

conduction. This is because a steady-state loop has approximately equal radiative and 

conductive losses, and moving to the left (decreasing temperature) decreases 

(increases) the radiative (conductive) cooling times. To the right of the starred curve, 

cooling rapidly becomes conduction-dominated. The solitary star on the right denotes 

the initial state of cooling given by the nanoflare model discussed in Section 3 where 

Q = 2.5 x 10
24

 ergs and Ah = 5 x 10
13

 cm
2
. This is always located in a region of T-n 

space where non-local effects modify the ratio considerably. [Note that in panel (a), 

this nanoflare state is located to the right of the right hand axis, and so does not 

appear. The temperatures that correspond to the onset of free-streaming heat 

conduction (e.g. Patsourakos and Klimchuk, 2005; Bradshaw and Cargill, 2006) are 

many times 10
7
 K. Thus, the non-local effects discussed here are important long 

before free-streaming becomes a factor. 

 

The ratio of cooling times does not tell the whole story. For example, the ratio can be 

small, but cooling using either approach can still be sufficiently fast that the lifetime 

of the hot plasma may still be too short to be measurable. Thus, the lower panels of 

Figure 2 show the difference in the cooling times (τNL − τSH in seconds). The notation 

is similar to the upper panels. For short loops there is an interesting pattern. The large 

values of the difference at lower right are due to the fast SH cooling, and significant 

non-local inhibition at high temperature and low density (the most collisionless 

regime).  The longer differences lying in a band extending upwards from the lower 

left occur for longer absolute values of both cooling times (and ratios nearer to unity). 

Here the non-local effect is weaker at any given time, but cumulatively leads to 

significantly longer cooling. As the length is increased, the large differences at lower 

right move away from the parameters studied to even lower densities but the band 

feature is preserved. It is important to note that differences of a hundred seconds or 

more are likely to be significant in assessing the detectability of hot sources (see 

later). 

 

4.2 Evaporative Cooling 
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The second case addresses conductive cooling in an evaporative loop (e.g. Antiochos 

and Sturrock, 1978). For subsonic flows, it can be shown that the loop pressure is 

constant in space and time (Antiochos and Sturrock, 1978). The coronal density then 

increases as the loop cools which leads to (a) longer cooling times and (b) shorter 

mean free paths. Analysis of the energy and mass conservation equation leads to: 
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In the limit of SH conduction, this is a modified diffusion equation. We solve 

Equation (8) using qNL in all cases. 

 

The form of the first equality in Equation (8) also indicates that evaporation increases 

the cooling time. Figure 3 shows the ratio of the cooling times in the same format as 

Figure 2. The overall conclusions are similar, though for the same initial states the 

differences between the two cooling times are smaller than at constant density. This is 

to be expected since as the density increases during constant pressure cooling, the 

mean free path decreases, and the cooling will tend towards SH. 

 

The two cases of constant density (constant pressure) cooling represent extremes: in 

the former (latter) all (none) of the conducted energy is radiated from the lower 

atmosphere. We have performed a simulation using the one dimensional HYDRAD 

hydrodynamic code (see Bradshaw and Mason, 2003 for details) of a loop with initial 

temperature of 8 x 10
6
 K, density of 5 x 10

8
 cm

-3
 and length 2 x 10

9
 cm. This code 

treats each of conduction, radiation and mass flows. Figure 4 shows the temperature at 

the top of the loop for SH (solid line) and non-local (dash-dot line) conduction. It is 

seen that the delay in the cooling in the non-local model is of order 25 secs, 

demonstrating that the delayed cooling is preserved in full hydrodynamical 

calculations. 

 

Although the detailed plasma flows generated are beyond the scope of this paper, this 

Figure shows interesting differences between the two conductivity models as 

demonstrated by the temperature around 80 s. Local conduction drives a gentle 

evaporative upflow that permits a smooth decrease in temperature. On the other hand, 

the non-local case has a transient temperature increase at 80 s. This arises from the 
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interaction of the fastest electrons with the chromosphere, driving an upflow from 

each footpoint, similar to what happens in flares (e.g. Karpen and DeVore, 1987). 

These upflows collide at the loop summit, leading to transient compressive plasma 

heating. 

 

5. Can ionisation states corresponding to nanoflare temperatures be created? 

 

Figure 5 shows the characteristic time-scale for Fe XVIII to form Fe XIX by ionisation, 

as a function of density and temperature. The time-scales are obtained using the 

ionisation rate calculations of Mazzotta et al., (1998). If we look at typical nanoflare 

parameters (near 10
7
 K and 10

9
 cm

-3
), we see that the time-scale is between 10 and 

100 secs. If the initial plasma is in a cooler state than that at which Fe XVIII has its 

peak, then the time to create the Fe XIX state will be longer, though the initial stages 

should be fast for temperatures of order 10
7
. For SH cooling, it is evident that the 

ionisation and cooling times are at best comparable, and in less favourable scenarios, 

the plasma will have cooled long before the relevant states have been established. The 

delays in the cooling of the corona of tens to hundreds of secs due to the non-local 

effects can thus be significant in keeping the corona hot enough for long enough to 

create the required ionisation states.  

 

6. Discussion 

 

In qualitative terms, the effect of the non-local heat flux in an impulsively-heated loop 

is quite easy to assess. The rate of conductive cooling is slowed, the transition to 

radiative cooling occurs at a higher temperature and lower density, and the radiative 

cooling is also slower (see CMA95). What are the consequences for what is (or is not) 

seen in the corona? 

 

It is now becoming clear that hot coronal plasma components may be a key factor in 

identifying the heating process (e.g. Patsourakos and Klimchuk, 2006; Parenti et al., 

2006). The lifetime and intensity of such plasmas are determined almost entirely by 

conductive cooling. Prolonging the lifetime of such a component, as happens for most 

nanoflare scenarios (Figures 2 and 3) will increase the detectability, since more 

photons can be detected over a given integration period, and there is also an increased 
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probability that ionisation equilibrium can occur, so creating ions characteristic of the 

temperature.  

 

However, these results have focussed on a single heating event in the single strand of 

a nanoflare-heated ensemble of strands, and also assume that a strand cools down 

before any reheating occurs. What changes can be expected when multiple nanoflares 

within a coronal volume are considered? The key parameter in assessing this is the 

ratio of the “repetition time” of a nanoflare (τnano) in any particular strand to the total 

(conductive + radiative) cooling time (τcool: Cargill, 1993). When τnano > τcool, each 

strand heats and cools independently, so any signal is just the convolution over many 

hot sources whose evolution is as described in this paper. For the opposite inequality, 

a strand is reheated before it can completely cool. For a given nanoflare energy, this 

leads to lower initial temperatures and higher densities (Cargill, 1994), thus taking the 

conduction closer to classical SH.  

 

As a closing comment, it appears that detectability of nanoflares or other hot, transient 

coronal plasmas could be enhanced by observations with low spatial resolution and 

long integration times. We note that measurement of coronal plasmas over a wide 

temperature range has long been a priority of stellar astronomers (e.g. Sans-Forcada, 

Brickhouse, and Dupree, 2003; Cargill and Klimchuk, 2006), and encourage the solar 

community to also focus on this regime, preferably by studying a continual range of 

Fe lines, as was possible with the Extreme Ultraviolet Explorer (EUVE) mission. 
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Figure Captions 

 

Figure 1. The temperature (1a,c) and heat flux (1b,d) profiles for the cooling of two 

loops at a sequence of different times. The upper: Figures 1a,b (lower: Figures 1c,d) 

panels have initial temperatures and densities of 6 x 10
6
 K, 5x10

9
 cm

-3
 (10

7
 K, 10

9
 cm

-

3
). In all panels, non-local (SH) cooling is represented by solid (dashed) lines. The left 

(right) axis of Figs 1b,d correspond to the SH (non-local) heat flux). Each plot shows 

6 different times: 0, 0.2τNL, 0.4τNL, ….. τNL, where τNL is 579 (1a,b) and 254 (1c,d) s. 

 

Figure 2. The upper four panels (2a-d) show the ratio of the classical (τSH) to non-

local (τNL) cooling times for the case of conductive cooling at constant density. A 

range of temperatures and densities and four loop lengths (2L) are shown with 2L = 

10
9
 cm (2a), 2 x 10

9 
cm (2b), 3 x 10

9
 cm (2c) and 4 x 10

9
 cm (2d). The lower panels 

(2e-h) show the difference in the cooling time (in seconds) for the same four cases. 

On all panels the starred line (black or white as required for clarity) on the left denotes 

the location in (T-n) space of steady-state equilibria, and the star on the right of 

figures 2f-h denotes the T-n pair corresponding to a nanoflare-heated corona. 

 

Figure 3. As Figure 2, except constant pressure conductive cooling is considered.  

 

Figure 4. The apex temperature for SH cooling (solid curve) and for non-local 

cooling (dot-dashed line) as calculated by the HYDRAD model. 

 

Figure 5. The ionisation timescale to go between Fe XVIII and Fe XIX as a function of 

temperature and density. Contours are labelled in seconds to the power ten. 
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