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ABSTRACT

Context. Stochastically occurring flares provide a possible mechanism of ddneating in magnetically active stars such as T Tauri objects
in star-forming regions.

Aims. We investigate the statistics of stellar X-ray light curves from XhM-Newton Extended Survey of the Taurus Molecular Cloud
(XEST).

Methods. To this end, the light curve is modeled as superimposed flares occatrigndom times and with random amplitudes. The flare
shape is estimated non-parametrically from the observations, while tieeaftaplitude distribution is modeled as a truncated power law,
and the flare times are assumed as uniformly distributed. From thesd assdenptions, predictions on the binned counts are derived and
compared with the observations.

Results. From a sample of 22 XEST observations matching the above model pgsomwe find that the majority of cases have flare
amplitude distributions with slopes steeper than two. This favours the rohealf 8ares in coronal heatinfgr 5 targets, of which, however,

4 are foreground or background main-sequence stars

Key words. Methods: statistical — Stars: coronae — Stars: pre-main sequencaysXstars

1. Introduction of constant intensity. The suggestion that a large popriati
of randomly occurring small flares is producing much or all
of the observed high-energy radiation from a corona was ini-
tially made for the solar corona based on observations, (e.g.
Lin et al. 1984, Hudson 1991) and theoretical concepts @rark
988). Observationally, the distribution of the radiatareergy
iSr flare-peak power) released in (hard or soft) X-rays hasbe
ound to obey a power law,

Stellar flares are violent manifestations of structuratahgi-
ties in stellar atmospheres, and often dwarf solar flaresring
of energy output and variability (@el 2004). Observationally,
they are most pronounced in soft X-rays, where the lumigos
may increase by many orders of magnitude during the fla
Stellar flares are believed to be related to magnetic fieluts,
are frequently observed in T Tauri stars and protostarso@yp
flare decay times are hours, and there may be several — obsel;N-_ KE- (1)
able — flares per day). Such objects have been the target of ¢e
XMM-Newton Extended Survey of the Taurus Molecular Clou

(XEST,; Gldel et al. 2006) to which the present series of articl%§gy in the interval E, E + dE], andk is a constant. Ify > 2

is devoted. : . . o :
: _ then the energy integration (for a given time interval) diys
Some stars produce sporadic large flares which are e S the lower integration limiEmn — O, that is, by extrap-
ily recognized as such, but others are apparently in a stag X '

a/heredN is the number of flares per unit time with a total en-

. . L }Sting the power law to dfhciently small flare energiesny

of continuous flaring activity, wh_e ré most flares are too $m nergy release power can be attained. This is not the case for
tc.’ be_resolved by photon counting observafuons. In therlattg < 2. Solar studies have repeatedly resulted imalues of
§|tuat|on, numerous small flares are supenmporsed, ngu“i.G—l.S for ordinary solar flares (Crosby et al. 1993), but some
in fluctuations that cannot be explained by a Poisson Process o recent studies of low-level flaring suggest 2.0 — 2.6
Send offprint requests to: M. Giidel (Krucker & Benz 1998, Parnell & Jupp 2000).
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Ch. des Mailettes 51, 1290 Sauverny, Switzerland. tive stars. The latter show properties that af&alilt to explain
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with steady heating mechanisms but follow naturally fromefla2. Methods

concepts: i) many magnetically active stars show cororeal-el , .
tron temperatures in excess of 10 MK, reminiscent of flari cargle (1998) has proposed a method 1o find changes in

i .
plasma, with an emission measure distribution that can—ner)}ue count rates and thus decompose the observed light curve

rally be explained by the sum of emission measure distobsti g]to Bgyeilan kbIOcl(r?ogf‘sp:fcelyggioc)(()gsst?nc}a?;qr?taga;%cggf
of randomly occurring flares (@lel et al. 2003); ii) measured ayesian block me IS appl !

electron densities in active stars are elevated, ofterhiegc panying article (Stelzgr etal. 2006). . .
values of several times 3cm™3 (Ness et al. 2004); iii) mag- While the Bayesian blocks are successfgl n dgtectm.g
netically active stars are continuous sources of non-takraa abrupt changes in the count rate, the assumption of pieeewis

dio emission, ascribed to gyrosynchrotron emission from a%onstant flux is somewhat artificial and not well adapted to
celerated ele,ctrons (@el 2002) stellar flares, which typically have a rapid rise followed by

a slow decay. In order to investigate the occurrence of flares
|nterpretations of stellar X_ray emission in terms OQOWn to very low |eV€|S, we now Study an alternative model in

stochastic flaring date back to the late eighties but havedouvhich a constant flare shagg) is assumed, and suppose that

renewed interest in particular with more recent satellitses- @ flaring light curve is a superposition of many similar egent

vations that allow for longer or more sensitive observatiofathematically, the flare timetg are assumed to be uniformly

than hitherto possible. A summary of all previous obseovei distributed with ratel [flaregs], and the light curve is modeled

has been given by @lel (2004); we briefly summarize the reby a stationary random process of the form

sults. A new methodology in flare identification was appligd b

Audard et al. (1999, 2000) to magnetically active, nearbinma f(t) = Z agt-t)  [ct/s] @

sequence stars. They found a predominance of relativedyp ste k

power laws includingr > 2. Full forward modeling of a super-where thea, > 0 are flare amplitudes [¢ftare] drawn from

position of stochastic flares was applied to EUV and X-ralytlig some probability densit(ax). By definition, the flare ampli-

curves by Kashyap et al. (2002) andid®! et al. (2003) basedtudesax have units of counts (per flare), and the flare shgpe

on Monte Carlo simulations, and by Arzner &i@el (2004) has unitss™. All a, andt, are assumed to be statistically inde-

based on an analytical formulation. These investigatiams ¢ pendent, and the observed photon arrival times are assumed t

verged toa ~ 2.0 — 2.5 for M dwarfs. If the power-law flare form a non-homogeneous Poisson process with interigf)y

energy distribution extends by about 1-2 orders of magaitu@he flare profile is normalized to onsﬁf(t)dt = 1) and we also

below the actual detection limit in the light curves, thee threquire that

entire emission could be explained by stochastic flares.

f te(t) dt < oo 3)

smaller flares (Gidel 2004), and the latter are harder than o . ition (Eq. 3) is a technicality which will faciligathe

the quiescent emission; this leaves the possibility that & estimation of the flare shape. It is valid in the frequently ob

softest, quiescent emission could be due to a large number ; : :
' ) . served case of approximately exponentially decaying flares
of small, unresolved superimposed flares. We shall, indeed, bp y exp y ying

doot here th kina hvoothesis that qui ¢ emissi The assumptions of independence and linear superposition
adopt here the working nypoIhesis that quiescent emission expressed by Equation (2) not only lead to a simple expressio
could be due to unresolved superimposed flares, and thes

S .~ “for the power spectral density (or two-time function
would produce overall softer emission, as observed during P P y( )
“quiescence”.

Generally, larger flares are found to be harder than

2

N
| | f@P = B ad
Young stellar objects such as T Tauri stars are extremely ac- k=1

tive X-ray sources, showing the same characteristics alsuod Nooo = o( o o 5
in active main-sequence stars. An extension of the stachast — Ew) {/l (@76(w) + A(a >} ’ (4)

flare studies to T Tauri stars is warranted, but the larger disit also admit a closed-form representation of the sirigie-t
tances of these stars and consequently their lower fluxess hgistribution of f (t) in terms of characteristic functions (i.e., the
made such investigations much morgidult. Two studies have gqyrier transforms of probability densities, see Lukacg)9
been undertaken, one by Wolk et al. (2005) on a sample |afparticular, Arzner & Gidel (2004) have shown that given
T Tauri stars in the Orion region observed BYiandra, and the characteristic functiona(s) of the flare amplitudesy.and

one by Stelzer et al. (2006) on a sample of T Tauri stars in g characteristic functiope (s, At) of the bin content (Poisson
Taurus Molecular Cloud; the latter study includes a re@ns'%?rameter]:(t) _ ftumf(t/) dt’ are related by

eration of the sample presented by Wolk et al. The results
these investigations are not fully conclusive, wittvalues of
1.9 + 0.2 and 24 + 0.5 for the Orion and the Taurus sample¢r(S At) = exp(—/lf

ch(L- =20 ©
respectively (Stelzer et al. 2006).

0o

1 This follows from f(t) being the convolution product @{t) and
The present work attempts to extend theoretical and nyi- a5t -t,). The limitin Eq. (4) applies to sums over infinitely many
merical work presented by Arzner &i@el (2004) for main- flares. See Bondesson (1988) for a general introduction and Mitra-
sequence stars to a sample of T Tauri stars in the Taurusregiraev & Benz (2001) for a solar application.
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whereZ(t, At) = ft”m &(t)dt’ is the flare shape convolved with 5
the observational time bin. The derivation of Eq. (5) is dis-
cussed in detail in Arzner & el (2004) and exploits the in-
dependence of flare times and -amplitudes, which allows the
factorization of the characteristic function, and a decosiyp
tion into the possible (Poisson distributed) numbers okflar
occurring during the observation. Notice that in Eq. (4)sit i
tacitly assumed that botfa) and(a?) exist. ‘ ‘ ‘ ‘ ‘ E

Several observational predictions can be derived from 0 20 40 60 80 100 120
Equation (5), such as the distributiét (n) of counts in bins fime [ks] since 21-9-2001 01:52:42 UT
of given durationAt (i.e., the distribution of the values of the 25f ‘ ‘ ‘ ‘ ‘
light curve). The detailed calculations are given in Arz&er
Gudel (2004), and result in

4

energy [keV]

N
o
T
|

w
T
|

2” . .
Pa(n) = (27r)’1fO dse™pe (i — i€® At) (6)

o

counts per time bin

An additive constant backgrourm[ct s7!] is easily included,
as it amounts to replacingg (s, At) by €92 (s, At). An ad-
ditive constant background has the same féect as a qui- of ‘ ‘ ‘ ‘ ! ‘
escent contribution from the target, and cannot be distin- 0 20 40 60 80 100 120
guished by our present approach. However, as outlined in fime [ks] since 21-9-2001 01:52:42
the introduction, our assumption is that there is no separa¢  Fig. 1. Top: photon arrival time versus energy of HD 31305 the (XEST
guiescent contribution to the light curve, but that “quies- observation 26-051). Bottom: energy-integrated light curve. The time
cent” emission is due to small, unresolved, superimposedbin size is 124 seconds.
flares. In Arzner & Gludel (2004), Equation (6) (and a similar
result for the photon waiting time distribution) have begn a
plied to EUVE data of AD Leo. In this article, we apply Eqphotons are detected by two MOS-type CCD arrays and a pn-
(6) to XMM-Newton data, and introduce an important methodype CCD array. The time resolution of these arrays depends
ical refinement. In the original work, the flare shape wasraken their type and also on the operation mode. For the observa-
ad-hoc as a one-sided exponential, with a decay constant diwns considered here, the MOS-type arrays (Turner et QL0
sen by eye. Here we estimate the flare shape empirically ushaye a time resolution of 2.6s whereas the pn array has a time
Equation (4). resolution 0.07s. In order to improve the statistics we hae

It should be pointed out that the application of Eq. (6) re@dded all available MOS and pn data. In order to avoid artifi-
resents a rather drastic form of data reduction, since jepte cial fluctuations, all detectors are required to be simeitarsly
away the time ordering of the observed light curve. The pregperational. Since we are interested in light curves, weicc
ence of the flares manifests only in the deviation of the innall energies between 0.5 and 7.3 keV. This choice of eneiglies
count histograms from pure Poisson distributions. The dvanotivated by instrumental considerations and by the umiftyr
tage is that the method is insensitive to data gaps and ddesafalata treatment.
require the flares to be resolved within the counting stasist From all XEST observations we have selected a set where
Itis, in fact, especially adapted to faint but flaring sostce  the model assumption of Eq. (2) is plausible by inspection of
the light curves and where1000 counts are available (but
pile-up can be neglected), and have determined the maximum-
likelihood parameters of the flare amplitude distributilornthe
3.1 Data rest of this Section, we discuss the detailed procedurdaens

ing as an example the observation HD 31305 (XEST-26-051),

The data used for our investigation are part of XESTId€ which is a A0 V background star, the X-ray emission of which
et al. 2006), a project that investigates X-ray emission ofpiobably comes from an unseen companion. The raw data of
large sample of T Tauri stars and protostars in the Taunkfis observation are presented in Fig. 1. The top panel shows
star-forming region using thXMM-Newton X-ray observa- the photon arrival time versus energy (one dot represergs on
tory (Jansen et al. 2001). The survey comprises Zemint count). The bottom panel shows the energy-integrated,-time
fields across the cloud, and most of them used exposure tibiened counts. The time big are 2"-th fractions of the total
of approximately 30 ks although a few were exposed up tdhserving time, as needed for the Fourier analysis of theepul
~ 130 ks. The survey makes use of the European Phottmape (Sect. 3.2), and are chosen such that the bins contain
Imaging Cameras (EPIC) of the MOS (Turner et al. 2001) andl order 10 counts. Bierent observations usefidirent time
the PN type (Stider et al. 2001). bins. A background estimate has been obtained frdttimes

The XMM-Newton observatory uses grazing incidence mitarger source-free extraction regions, giving a (scaledstant)
rors for X-ray imaging in the range of 0.2 to 10 keV. The X-rapackground rate o = 0.0027 ct s (this value refers to HD

w
T

3. Observations and data reduction
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31305). Since the relative error bfis only about 0.2%, we followed by a slower decay. The integral in Eq. (7) is under-
considetb as exactly known. stood in the principal value sense and can be computed by a
discrete Hilbert transform (Henery 1984).

3.2. Estimation of the flare profile The full procedure of estimating(t) from the observations

In order to estimate the flare profifét) from the observations, is illustrated in Fig. 2. The gray Crosses in the top pa_neﬂerep
ent the modulus of the fast Fourier transform of the lighteu

we work with the power spectrum (or, equivalently, the autGSM X . : )
correlation), thus making use of the assumption of statina Of Fig. 1 (bottom), using 1024 equal time bins of durations.24

: - - The zero frequency signal clearly peaks out, as expectad fro
Consider Eq. (4). The factor in curly brackets, represerttie i : e g
random flare pulses, is constant excepbat 0. On the other Eq. (4). The Poisson noise level is indicated by white dashed

hand, the factol(w)|, representing the flare shape, is contindi—ne‘ The solid curve in Fig. 2 (top) represents our fiIt(_areti-e
ous atw = 0 and satisfie(0)] = 1 (both by virtue of Eq. (3)). mate for|f(w)|. This is then scaled tig(w)|, endowed with the

Therefore £(w)| can be obtained froff (w)| by continuous in- minimal pha;e of Eq. (7), and transformed back i_nto time do-
terpolation tow = 0 and appropriate scaling. This is the basidain to obtain the estimate for the flare shape (Fig. 2 bottom,

idea used here to estimate the flare profile; however, thalacttELaCk line). For co.mparlson, the result of usw_@)) =0is also
implementation requires two additional steps. shown (gray line); it represents the convolution square obo

First, |f(w)| must be estimated from the observed counts autocorrelation.
To this end we consider the power spectriighof the binned When treating the full set of observations (Table 1 below),
light curve, assuming that the bins areffgiently fine to re- e fare shape is estimated individually for each obserwati

solve the flare shape. (In practice, the power spectfunis  pjgerent observations have thus flare shapesftérint decay

computed by a fast Fourier transform and we use a discrete g, within a given observation, the flare shape is assumed t
quency index to indicate the actual numerical implemeotati o constant.

The Fourier normalization convention is thatéquals the to-
tal number of observed countd)| represents a noisy version
of |fi|, involving two kinds of noise. The first type is photon
counting noise. Since the coumsin bins of contenf; satisfy
(ninj) = FiF; + Fidij (see, e.g., Feller 1968 and Reiss 1993),
the power spectral densities of the binned events and ofithe b
contents are related H§i2 = |Fi|2 + N, whereN is the ex- 1000
pected total number of counts. The photon counting noise thu
manifests in a constant additive contribution to the powercs
trum. The second type of noise stems from the finite number of

10000

If(w)!

observed flares, and will be referred to as flare shot noise. As 100 TN PR T ol A T
a consequence the term in curly brackets in Eq. (4) becomes a [

fluctuating function of frequency. For the discrete Foureg- 10 %

resentation, the fluctuations are approximately expoakyti

distributed with variancé(a?) (this was found numerically).

Thus, the flare shot noise is a multiplicative noise in freqye ~0.004 ~0.002 w/%'go[?_lz] 0.00z 0.004
space with a relative amplitude of unity. Both the flare-strat
photon counting noise can be suppressed by filtering. The flar

shot noise, which is multiplicative in the frequency doméasn 1.5x10~4
removed by filtering Inf;|2. The photon counting noise, which
is white in the time domain, is removed by filterig@) once 1.0x1074|

this is obtained from a Fourier back transform (see below). [
Our filters are implemented as Lee filters (Lee 1986) withssize 5.0x10-5
adapted to the expected noise, and the results are testge by e [
for compatibility with the observed light curve. 0F

Secondly, and more fundamentally, the spectrigtow)| L ‘
does not contain the phase information needed to Fourertin -60 —40
I€(w)|€*@) into the flare shapé(t). We shall not address here

the general phase retrieval problem (Klibanov et al. 1996) bF, » Estimation of the f h A b a( |
make the minimal oh motion (Bur | 1974 ig. 2. Estimation of the flare shape of Fig. 1. Top: observed (crosses
ake the al phase assumption (Burge et al. 1974) and filtered (solid line) spectral densities. The Poisson noise Mvel

1 In |$(S)| is indicated by white dashed line. Bottom: flare shape obtained from
d(w) = = f ——"ds, (7) the minimum-phase (black) and zero-phase (gray) assumptions. It is
mJ_

£(t)

o @ the minimum-phase solution which is used in all further analysis.

which is equivalent to requiring(t) = 0 fort < 0. Such causal
flare shapes apply to flares with a rapid (unresolved) risegha
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3.3. Determination of the flare rate and -amplitude 200 [T T T T
distribution I 2.4 2.4
[ 2.2 2.2
Once the flare profile is known, we numerically evaluate . [ 5 .o s 90 &+

Equation (6) for a power-law flare amplitude distributiortiod 18 1.8

form

1.6 1.6

g 100 0.001 0.010 0.100 10% 10° 10* 10° 109
C c A < ak < B € r A [cts/flare] B/A —
P(a) = 1 °% ® ¢ o
0 else e
whereA andB (in units of counts per flare) are lower and up- 50 £ o010 + I
[ : l

per cutdfs, respectively, andis a normalization constant. The
cutafs A and B must in general be applied in order to ensure i 108 10° 10* 10° 10°]
that P(ax) can be normalized and that the first moments ex- O s e
ist, as assumed in Eq. (4). For probabilistic normalizatn 0 > 1 bime; Scoums 20 » 20

lower cutdt is needed iflx > 1 and an upper cutbis needed

if @ < 1. Furthermore, the existence of moments up to secofid. 3. Determination of best-fit parameteks, &, B) of the flare am-
order requires an upper ctitéf @ < 3. In order to be free of plitude distributionP(ax) ~ a* with A < & < B for HD 31305. The
theoretical restrictions o we assume that both lower and upflare amplitudesy and their lower and upper cufe A andB are in

per cutdfs exist, which we parameterize technically Ayand ©Pserved counts per flare.

B/A. We then determine the parameteatsA, B) so that they

maximize the Poisson likelihood of the observed distriuti

of the binned counts. The flare ratés determined by the nor- tive results are illustrated in Fig. 4. The first line showe th
malization constraing(0) = 1, implying thati(a) + b = f(0). same observation as Figs. 1 to 3, and is repeated here in or-
The power law index and dynamical range of the flare amp#ier to clarify the presentation of Monte-Carlo results. Téfe
tudes are limited to 8 < @ < 5 and 16 < B/A < 1(f; this column shows the light curve in the same binning as used in
choice covers the physically expected and observatiodédly Ed. (6). Gray dashed lines indicate the range of binned sount
tinguishable situations. The lower cfit@\ is not constrained used for parameter estimation. Low counts are rejected when
since arbitrarily small flares are possible. The best-fiismh they interfere with data gaps due to increased backgroumel. T
for PA(n) for the data of Figs. 1 and 2 (HD 31305) is showhiddle column shows the observed (black) and best-fit (gray)
in Fig. 3, where the gray histogram represents the data, dngtograms of binned counts. The y-axis represents thesqua
the black histogram represents the best-fit model. Thesns&ot of the counts rather than the counts themselves; by this
represent projections of the likelihood surfaces at (00680, trick, the Poisson error becomes approximately 0.5 foria#,b
0.99) confidence levels, obtained by thresholding the gea)s SO that the agreement between observation and model can be
likelihood ratio of the predicted histograms relative tine t judged by visual inspection. The right column shows the Mont
maximum-likelihood solution. The best-fit solution is medk Carlo samples inA; a)-space (projection). Black dots denote
by crosses, and equafs= 0.0058 count$lare anda = 2.05. samples that are accepted within 68% confidence; gray dots
The (projected) 68% confidence errors of the power law indégpresents samples that are rejected. The best-fit soligtion

is 199 < a < 2.23.1t should be noticed that the choice of marked by large crosses. flrent data sets usefidirent time

68% confidence is ad hoc, and favours small error bars. If binsAt. Note that since we show projected acceptance regions,
we had used 95% confidence levels (between the light grayblack and gray dots may co-exist at a given location.

and medium gray regions in the inlets of Fig. 3), the cor-
responding error of the power law index was found to be
1.93 < a < 2.32. Note from Fig. 3 that the limits af andA are
not constrained by the data but limited by the explored range a benchmark, we have applied the method of Sect. 2 to a
of A. The most likely flare rate, derived from the most likelywon-flaring data simulated from constaf{t). The outcome
(@, A B), is 2 = 0.98 flaregs. We recall that it is the deviationis shown in the last line of Fig. 4. The distribution of binned
of the observed curve in Fig. 3 from a purely Poisson shapeunts follows a Poisson distribution (middle panel), velaer
which reflects the presence of the flares, and is detectedrby the flare shape, estimated by the procedure of Sect. 3.2 is ap-
method. The case of quiescent emission, where the Poissorpimximately 5-peaked (not shown). As can be seen from the
tensity f (t) is constant, can be obtained as a special limit of Efight panel, the spectrum parametefs«) are not well con-

(4) whena — oo (Sect. 3.5). strained by the (simulated) observation. The same holds for
the dynamic rang®8/A. The shape of the acceptance region in
(A, a, B/A)-space (Fig. 4 bottom right shows the 68% region) is
determined by the flare amplitude distribution (Eq. 8) arel th

In order to speed up the parameter space exploration andgtocedure of Sect. 3.2. Since the mean count rate is adjogted
extend the explored parameter range, we use a combinatioa choice oft, the acceptance of models is determined by the
of Monte-Carlo exploration and interactive search for an inhigher order statistics, in particular by the variance &f éx-

tial guess using a graphical user interface. Four reprasemgected bin contents, which becomes noticeable when it dscee

0.001

3.5. Benchmark with non-flaring data

3.4. Monte-Carlo exploration
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Fig. 4. Monte-Carlo exploration of three sample observations. One line of BguoEesponds to one observation. Left column: light curves.
Middle column: observed (black) and best-fit (gray) histograms ofigji curve values. Right column: 68% reduced acceptance regions in
(A, @) space (projections fromA( @, B)-space)a represents the power law slope of the flare amplitude distributionAaegresents the lower
cutof of the flare amplitudes in ¢ftare. Black dots represent points inside the 68% acceptance regiaysdats represent point outside
these regions; large crosses denote the best-fit solutions. Note thattthegorojection ffects, black and gray dots may overlap. The last line
represents a benchmark with uniform (quiescent) data.

the Poisson (counting) noise of individual bins. As a resuthe predicted fluctuations df(t) are within the Poisson noise
models predicting few large flares (large small @) are ex- of the observation; the resulting acceptance regionAin)-
cluded and models predicting many small flares (sidiarge projection is open toward largeand smallA.

a) are accepted. In fact, a constant Poisson interfgilymay
be obtained from Eqgs. (2) and (8) as the limit of infinitely mpan . .
(1 — o0) infinitely small (ax) — 0) flares, such that(ay) 4. Results and Discussion

equals the observed average (source) count rate. The bouwwd-have applied the procedure of Section 3 to a set of 22 XEST
ary of the acceptance region in Fig. 4 (bottom right panel) ibservations chosen to meet the model assumptions of s stati
roughly given by the condition that the variance of the exgec tically homogeneous superposition of random-amplitudesla

bin content(F?) — (F)?, equals the Poisson variange). To The results are listed in Table 1 and illustrated in Fig. 4 iand
summarize, quiescent light curvet)=const) allow only one the Appendix. All Monte Carlo explorations shown in these
parameter to be determined (the average countifappand do  Figures involve about 5000 samples. The first line of Fig.< ha
not constrain the individual parameters ¢, A/B) as long as already been discussed in Sect. 3.
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Table 1. Maximum-likelihood parameters with (projected) 68% confidence intengaiterisks denotes error bars which are so large that they
could not be determined\. is the number of observed counts is their expected background contribution. The parameter&, @) are
defined in Eq. (8)A is in units of countdlare. A is the flare rate [flargs] and is derived fromd, A, B) and the observed average count rate.
The values of this table refer to Figs. 4 and A.1 to A.3. The stellar type is: ypprotostar, type 2 accreting T Tau star (classical T Tauri
star), type 3= non-accreting T Tau star (weak line T Tauri stag note that the classification can be ambiguous in some cases, sérl&

et al. 2006; "MS” refers to main sequence stars that are not recognized nsrobthe Taurus Molecular Cloud. The last column shows the
best-fit reduced chi square; observations with) > 2 represent bad fits; observations wifh, < 1 hint at noisy data where the statistics is not
suficient to discriminate betweenftirent model parameters.

source name type  XEST# Nent Nog A[ctg/flare] a B/A A [flaregs] szed
test - UNIFOR 9996 1000.0 .B-10%] 33: 36-10°, 88-102%,,,2 058
V807 Tau 2 04012 2672 381 AP0 07  58-1017  37-10%%,,s 115
GK Tau 2 04035 2471 2467 .B-102%° 30  12-10°F07 41.10%},,,s 051
L1489 IRS 1 06-059 3027 3034 .2.10'2%% 47+ 15.10  62.1031%%, 116

2MASS J043456982258 MS ~ 08-003 3215 168.9 .I-10°% . 0597  52.100°  61.104%%%, 511

5

2MASS J043513162259 MS  08-014 1199 1630 21020 445, 40.1¢%° 15109289, 208

s«

HD 29050 MS  08-017 1209 663 & 10251 5035, 41-105,, 13-10°3231, 178
HQ Tau 3 08037 6616 2757 .@-10%2" 50;,  19-10%7  98.10%M°17 369
HP Tau 2 08-048 4263 11639 71107 24 71.100°  20.1011%%, 148
HP Tau G2 3 08-051 19521 346 2110t 3.0 40-10 3.1;;11322 167
CoKu LkHa 332 G2 3 10-017 5373  87.0 53110 33 13-10',  46-102%]5,52 154
DN Tau 2 12-040 7464 1491 .®10'*®  30°  90-107°  43-10%,,,. 045
CoKu Tay3 3 12059 18640 619.3 .2.10'3° 29 1610 19),,,. 115
DI Tau 3 15-042 3305 1281.0 210 3.0 21-10'; 21-10235,4s 060
IT Tau 2 18030 15736 3120 .8 1019 29 2010  83-10%,,,,2. 101
Anon 1 3 20005 8041 4733 . 102  1g 50-10%7  13-10135,,. 172
V773 Tau 3 20042 37324 1344 1:10'7° 35  90-10 66,,,1 076
1AXG J041453-2805 MS  20-071 3026 2422 .B10%*  31:  18-10°] 12y, 079
JH 188 MS  22-006 1818 2050  .42° 360 37-10°0  24-10°%17, 233
HD 285845 MS 22024 52074 8647 810430 46y, 94.10')  19.102%1% 304
HL Tau 1 22043 2956 2524 .®102%°  30°  25.10%7 28-101},,. 081
V710 Tau 2 22070 4701 4427 %102 06 24.10°"  24.10%..,,s 385
HD 31305 MS  26-051 7049 4363 QL 103354 2028 64-10°,,.¢ 3782 s 0.85

The second and third lines of Fig. 4 show an exam- chi square being 5.11), and is shown for comparison only.
ple (2MASS J043513H2259; XEST-08-014) of a strongly  In fact, the light curve is not statistically homogeneous
variable but photon-starved light curve, as well as an exam- but shows enhanced activity for timés< 15 ks. Equally
ple where no visible flares are present (CoKu /BaxXEST- bad fits were found in two further investigated observa-
12-059). In both cases, the observed histogram (middle col- tions (XEST-22-097 and XEST-22-100) which are thus not
umn, gray color) can be well reasonably represented by included in Table 1. Among the observations retained in
the model (middle column, black). In the case of 2MASS Table 1, HQ Tau, HD 285845, and V710 Tau have large
J043513162259 we may conclude that > 3. In the case of reduced chi squares as well, which reflect in systematic de-
CoKu Tay3, no such conclusion is possible, and the data are viations between observed and predicted binned count his-
compatible with pure Poisson noise (as apparent from the lig tograms.
curve). Among the remaining Monte-Carlo results (Appendix— HP Tau G2 (XEST-08-051): this is a relatively quiet obser-
Figs. A.1 to A.3) we emphasize the following ones: vation with many data gaps and low background. Although

the power law index is not constrained by the data, we may
— GK Tau (XEST-04-035): Although the flare amplitude dis- visually distinguish two ‘branches’ of solution& > 1
tribution cannot be tightly constrained by the data, goad fit ctgflare ande > 3 or A < 1 ctgflare ande < 3. Thus,

(middle column) are possible. based on the data we can make statements of the form: if
— XEST-08-003:this figure is shown as an example that

cannot be fitted with the present model(the reduced
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the flares yield at least one courA > 1 ctgflare) then the pure Poisson noise example (Fig. 3 bottom) suggests that
a> 3. the observations from GK Tau, CoKu LkHa 332 G2, DN Tau,

— HD 285845 (XEST-22-024): Here, the power law index CoKu Tay3, DI Tau, IT Tau, V773 Tau, XEST- 20-071, HL
and the lower cut® A can be constrained by the data acfau, and V710 Tau are compatible with quiescent emission — a
cording toa > 3.7 andA > 26 ctgflare. result which is also obvious from inspection of the lightwas.

— JH 188 (XEST-22-006): similar to HP Tau G2, in tlatal- What can we conclude from the present study? Inspecting
ues above 3 require lower flare amplitude ¢ig@\ below Table 1 and Figs. 4 — A.3, we find the following:

a few counts per flare. A more detailed analysis shows that . . . .
. : — Most light curves studied here are compatible with a power-
ana value below 3 requires a dynamic ranggA < 10°.

law distribution of the flare amplitudes (counts per flare in
a fixed energy range). This confirms previous studies that
have found such distributions for solar and stellar flares.

— In those cases where a could be constrained, its value ex-
ceeds 2. This is the case for 2MASS J0435131259, HD
29050, HQ Tau, HD 285845, and HD 31395.

As a general trend, one can see from Figs. 4 to A.3 that
Ais correlated with a. This correlation reflects the fact that
the total number of counts (the integral under the power
law distribution) should agree with the observed number
of counts within Poisson errors. Thus, steep power lawsy( No clear distinction of accretors and non-accretors is pos-
large) correspond to large lower cutdfs (A large).

The results of the other observations are summarized in sible. . . . .
— About half of the studied observations are compatible with

Table 1. The targets we are studying in the present work are a constant count rate at the given sensitivity, which may be
predominantly T Tauri stars identified in the Taurus Molecul due to their limited observin gtime of some ZO kiloseco:ds
Cloud (TMC), although two objects are classified as protssta Erom those targets whenean%A could be constrained. the '
and we also include a few favorable X-ray targets found in the those target ’
XEST survey that appear to be foregro | background following implications may be drawn. The observed values
stars. The TMC members have been classified according to thel > 2 suggest t_he dominance of many small fla_res over
; . . . . few large flares in the coronal heating process, if we as-
equivalent width of the H line (an accretion signature) and sume that the corona is heated by flares. Hence. our re-
based on the presence of an infrared excess (a disk sighature y C '
We used the classification as tabulated iid@l et al. (2006), sults support a St ellar analc_)g of the solar micro (or even
i.e.. type 1 objects are protostars, type 2 objects are tiugre nano-) flare heating scenario (Krucker & Benz 1998), al-
- ! though at much higher flare energies than those of solar mi-

T Tauri stars (“classical T Tauri stars”), and type 3 objeuts
. . N . . . croflares However, a clear statement can be made only
non-accreting T Tauri stars (“weak-line T Tauri stars”).eTh : .
for 4 main-sequence stars and one T Tauri star.

classification into accretors and non-accretors is, fa #nii-
cle, motivated by potential ffierences in their magnetic config-  This present study complements a XEST investigation of
urations. In Table 1Ny is the total number of counts presenindividually detected flares by Stelzer et al. (2006), bisus

in the observation; this includes an estimated backgroond cdifferent approach because we are, in the present work, pre-
tribution Npg. Note thatA values below one count per flaredominantly concerned with stochastic flaring and therefore
imply that the smallest postulated flares cannot be individwith flare events that may not be detected individually in the
ally observed. The dynamic rangBgA cover usually between light curves. Our conclusions are, however, compatibla thie

2 and 4 orders of magnitude. The (derived) flare ratese findings by Stelzer et al. (2006): They reporteg 2.4+0.5 for
mostly in the order of one flare per kilosecond. In order ® TMC sample of T Tauri stars that showed detectable flares.
decide on whether confidence limits can be given on paraiihe larger samples that can be accessed by our method is com-
eters, we use the criterion that there should be at I§®&ic promised by the weaker constraints in the statistical tesul
rejected solutions (dots) outside the accepted paranmatar i We also re-emphasize that a significant conclusion amhas

val in a Monte-Carlo simulation dlyc samples. Otherwise, been obtained for only one T Tauri star.

we conclude that the confidence boundary is outside the ex- This result is analogous to findings from nearby active stars
plored parameter range, or that the parameter cannot belbowhere a dominance af values in the range of 2—3 has been
at all. In cases where the above criterion is not fulfillechfco found (Audard et al. 2000, Kashyap et al. 2002id@l et al.
dence limits are not given in Table 1 but the presence of larg@03, Arzner & Gidel 2004). Although this points at impor-
error bars is marked by asterisks. Inspection of Figs. AA % tant contributions of stochastic flares to coronal heatthig,

and of Table 1 shows that from all observationsand A can hypothesis cannot be fully proven using this methodology be
only be constrained in a few cases. For HD 31305, both upause our analysis requires the power-law distributiorhef t
per and lower limits can be given, ands tightly constrained flare occurrence rate to continue to flares that cannot beidhdi
between 1.9 and 2.5. The reduced chi square (1.03) indicate#ly detected in the light curves. The analogy of our finding
that the fit is acceptable. For XEST-08-014, only a lowertdimwith previously reported results for magnetically activars

on a can be giveng > 2.9. A similar finding holds for HD suggests that X-ray sources in T Tauri stars, at least asfar a
29050, wherer > 3.8, and HQ Tau, where > 3.5, although the CCD detectors used here can record their X-ray emission,
in these cases the goodness-of-fit is questionable. A midieh sare compatible with a coronal model in which small flares play
result is possible for HD 285845, whete> 3.5 can firmly be an important role.

established. In all other casesis unconstrained, or only con-  We conclude with a few methodological remarks. In this
strained in combination witlh or A/B. The comparison with work, we have assumed that the flare shape is constant. The
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dependence of the decay time on the flare size has been disGuidel, M. 2004, A&A Rev., 12, 71

cussed in QGidel et al. 2003. Observations suggest that the Gudel, M., Briggs, K. R., Arzner, K., et al. 2006, A&A, this volume
decay timer varies with the total number N of counts ac- Henery, R., J., 1984, J. Phys. A: Math Gen., 17, 3415

cording to 7 o« N?, where 8 is no more than 0.25 (our cur- Hudson, H. S.1991, Solar Phys., 133, 357

rent assumption of constant flare shapes amounts to set-Jansen. ., Lumb, D., Altieri, B., etal. 2001, A&A, 365, L1

ting 8 = 0, an assumption also supported by @del et al. Kas;'i’i‘g' V., Drake, J. J.,@el, M., & Audard, M. 2002, ApJ, 580,
.2003)' Thesg authors fou_nd thab_lncreases with Increas- Klibanov, M. V., Sacks, P. E., & Tikhonravov, A. V. 1995, Inverse
ing B. They interpreted this as being due to a larger time Problems, 11, 1

occupation by relatively large count rates. The light curve yycker, s. & Benz, A. O. 1998, ApJ, 501, L213

appears “softer”, requiring a higher a. As a consequence, |ee, J.-S., 1986, Optical Engineering, 25, 636
also for our work, o can only increase if we allow larger Lin, R. P., Schwartz, R. A., Kane, S. R., Pelling, R. M., & Hurley, K.
flares to decay less rapidly. 1984, ApJ, 283, 421
For parametric flare amplitude distributions with few pa-ukacs, E. 1970, Characteristic Functions, Londonfitsri
rameters, the parameters could also be estimated by formififfa-Kraev, U. & Benz, A. O. 2001, A&A, 373, 318 _
intermediate statistics such asa) (average count rate) andNess, J.-U., @del, M., Schmitt, J. H. M. M., Audard, M., & Telleschi,
A(@?) (variance of the light curve), and then functionally re- arlférzgoﬁ ’ﬁgé“i;fg;o 474
!ate these _statlstl_cs to_the model parameters. Such anaaqj_rpr amell, C. E. & Jupp, P. E. 2000, ApJ, 529, 554
is less optimal since it does not use the full shape of single-. . . .
. A . . eiss, R.-D., 1993, A course on Point processes, Springer Jeries
time distributions such aBs(n) and Ps(x). Moreover, the in- Statistics, Springer
termediate statistics might not befscient and the computa- Scargle J. D. 1998, ApJ, 504, 405
tion of parameter errors is not as straightforward as froen tRielzer, B., Flaccomio, E., Briggs, K. R., et al. 2006, A&A, this vol-
Poisson likelihood. Since the evaluation of Eq. (6) is cotapu  ume
tionally not demanding, we argue that it should be used rattgrider, L., Briel, U., Dennerl, K., et al. 2001, A&A, 365, L18
than some intermediate statistics in order to fully explbé Turner, M. J. L., Abbey, A, Arnaud, M., et al. 2001, A&A, 36521
observed single-time statistics. Wolk, S. J., Harnden, F. R. Jr., Flaccomio, E. et al. 2005, ApJ8, 16
423
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Appendix A: A gallery of Monte-Carlo results

Figures A.1to A.3 provide an overview of all observationsdis
in this study. These graphics represent the database ft& Tab
The arrangement of the graphics as identical to Fig. 4.
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Fig. A.1. Continuation of Fig. 4.
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Fig. A.2. Continuation of Fig. A.1.
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Fig. A.3. Continuation of Fig. A.2.
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