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1. INTRODUCTION 

The central place in the theory of turbulence belongs
to the concept of a turbulence spectrum representing
the energy distribution over scales. Determining the
turbulence spectrum is a difficult problem that still
remains unsolved. Important results in this field were
obtained by Kolmogorov [1] and Obukhov [2], which
showed an automodel character of the spectrum of
developed hydrodynamic turbulence. 

In the 1970s, the ideas of Kolmogorov and Obukhov
were fruitfully developed and applied, mostly due to
the effort of Zakharov, in the theory of weak wave tur-
bulence (see monograph [3] and the first original papers
[4–6]). The wave turbulence has proved to be, in a cer-
tain sense, somewhat simpler than the hydrodynamic
turbulence. The presence of a wave dispersion results in
that there exists a wave intensity region where the inter-
action between waves can be considered as weak. If the
initial phase distribution of the waves is random, the
weak nonlinear interaction provides for a small correla-
tion between phases of the interacting waves. For this
reason, the waves can be described in terms of the pair
correlation functions with the Fourier images coincid-
ing (to within a factor) with the number of waves 

 

n

 

k

 

(occupation number) possessing a given wavevector 

 

k

 

.
In turn, the occupation numbers 

 

n

 

k

 

 obey the kinetic
wave equations. In this theory, the Kolmogorov spectra
appear in the form of stationary scale-invariant solu-
tions to the kinetic equations, corresponding to zeros of
the collisional term. These spectra, in contrast to the
thermodynamically equilibrium ones, refer to solutions
of the flux type realizing a constant flux of some inte-
gral of motion (energy, number of particles, etc.) over
scales. It is important to note that the concept of the

interval of inertia (a region where the pumping and
damping effects can be ignored), which is formulated
as an assumption (a hypothesis of the locality of inter-
action) in the case of a developed hydrodynamic turbu-
lence, is explicitly established as the locality of spectra
for the weak wave turbulence. 

Most of the investigations devoted to the Kolmog-
orov spectra of weak turbulence refer to isotropic media
(for a complete bibliography, see [3]). The effect of
anisotropy, for example, of the magnetic field in a
plasma, was studied to a smaller extent. The first exam-
ple of determining the Kolmogorov spectra in anisotro-
pic media for a weak turbulence of magnetized ion-
sound waves was reported by the author in 1972 [7]. It
was found that the collisional term in the kinetic wave
equations is invariant with respect to stretching in the
two independent directions (along and across the mag-
netic field), which allowed the anisotropic Kolmogorov
spectra to be constructed with a power dependence on
both longitudinal (

 

k

 

z

 

) and transverse (

 

k

 

⊥

 

) components
of the wavevector. This, in turn, made it possible to
determine (with the aid of generalized Zakharov trans-
formations) the Kolmogorov indices and find the exact
angular dependence of the Kolmogorov spectra. Later,
the ideas of that study were used in determining the tur-
bulence spectra of the drift waves and the Rossby waves
(see, e.g., [8, 9]). 

This paper is devoted to the study of a weak turbu-
lence of the magnetohydrodynamic (MHD) waves in a
strongly magnetized plasma in the case when the
plasma (thermal) pressure 

 

nT

 

 is small as compared to
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the magnetic field pressure 

 

H

 

2

 

/8

 

π

 

: 

Under these conditions, the turbulence spectra are
determined (unlike the cases studied previously [4, 7])
by solving three interrelated kinetic equations for the
Alfvén waves and the fast and slow magnetoacoustic
waves. 

For 

 

β

 

 

 

�

 

 1, the main nonlinear interaction of MHD
waves is the scattering of fast magnetoacoustic and Alfvén
waves on slow magnetoacoustic waves (Section 2). In
these processes (involving the decay of one wave into
two, as well as the reverse process of merging), Since
the fast magnetoacoustic and Alfvén waves act as high-
frequency (HF) with respect to the slow magnetoacous-
tic waves. In every scattering event, a change in the fre-
quency of the former waves (referred to below as the

 

A

 

-waves) is relatively small (due to the small 

 

β

 

 value),
which makes this process analogous to the Man-
del’shtam–Brillouin scattering of electromagnetic
waves on acoustic phonons. As a result of this time
scale separation, whereby the waves are divided into
HF and low-frequency (LF) components, the wave-
decay interaction retains, in addition to the energy, an
adiabatic invariant—the total number of HF waves.
This, however, does not exhaust the analogy with the
Mandel’shtam–Brillouin scattering. It is established
that the matrix element of this interaction is maximum
for a maximum value of the longitudinal momentum
component transferred from 

 

A-

 

waves to slow magne-
toacoustic waves. This result can be derived, in partic-
ular, from an expression derived by Galeev and Orae-
vskii [10] for the increment of the decay instability of a
monochromatic Alfvén wave. It should be recalled that
the matrix element for the Mandel’shtam–Brillouin
scattering is proportional to the square root of the trans-
mitted momentum, which accounts for the maximum
backscattering of electromagnetic waves. In view of
this behavior of the 

 

A-

 

wave scattering amplitude, it is
naturally assumed that a stationary angular distribution
of these waves must be strongly anisotropic and con-
centrated along the magnetic field direction in the

 

k

 

-space. Under these assumptions, the kinetic equations
acquire additional symmetry and become invariant with
respect to stretching in the two independent directions
(along and across the magnetic field), which allows the
transformations developed previously [7] to be used in
tis case as well. 

Owing to these two features of the kinetic equations
in the transparency range, it was possible to find two
scale-invariant (with respect to longitudinal and trans-
verse wavevectors) Kolmogorov spectra corresponding
to a constant energy flux directed toward the shortwave
region of scales (forward cascade) and a constant flux
of the number of 

 

A-

 

waves toward the region of small 

 

k

 

(reverse cascade). This study is based on the results
reported long ago in the form of a preprint in Russian

β 8πnT

H2
------------- � 1.=

 

[11] and remained, for this reason, unavailable abroad.
Moreover, it turned out that the work was also little
known in Russia: despite an almost three-decade his-
tory, the results are still not repeated. Recently, how-
ever, the question of MHD turbulence spectra was stud-
ied in the other limiting case (

 

β

 

 

 

�

 

 1) [12]. This limit
significantly differs from that considered below. First, a
plasma with 

 

β

 

 

 

�

 

 1 can be treated as incompressible liq-
uid. Second, this limit introduces no significant differ-
ence between the Alfvén waves and slow magnetoa-
coustic waves: the waves of both types exhibit the same
dispersion law and differ only by polarization. Such a
degeneracy significantly changes the character of non-
linear interactions. Nevertheless, this case also admits
two types of the Kolmogorov spectra featuring depen-
dence on the wavenumber analogous to that reported
below. However, a physical explanation of the two
spectra existing in the case of 

 

β

 

 

 

�

 

 1 is different from
the interpretation given below for 

 

β

 

 

 

�

 

 1. 

The material is arranged as follows. Section 2 pro-
vides for a canonical description of the ideal MHD
wave turbulence following the original work of
Zakharov and the author [13] and the recent review
[14]. Using the Hamiltonian approach, Section 3
derives averaged equations describing the interaction of

 

A-

 

waves with slow magnetoacoustic waves. It is shown
that the 

 

A-

 

waves represent an HF force acting upon the
slow magnetoacoustic waves. Since the potential of this
force is negative (in contrast to the potential of interac-
tion between the Langmuir waves and the ion-sound
waves), the plasma is drawn into the regions of 

 

A-

 

wave
localization to form the density “humps.” Stability of a
monochromatic 

 

A-

 

wave is also studied in Section 3.
Section 4 describes the Kolmogorov spectra of a weak
MHD turbulence. 

2. VARIATION PRINCIPLE 
AND NORMAL VARIABLES 

Let us consider the ideal MHD equations for a baro-
tropic flow in a plasma, the internal energy 

 

ε

 

 of which
can be considered as dependent only on the plasma den-
sity 

 

ρ

 

: 

(1)

(2)

(3)

Here, 

 

v

 

 is the plasma flow velocity, and 

 

w

 

 is the
enthalpy related to the pressure 

 

p

 

 = 

 

p

 

(

 

ρ

 

) and the internal
energy 

 

ε

 

 by the relationships 

ρ∂
t∂

------ divρv+ 0,=

v∂
t∂

----- v ∇⋅( )v+ –∇ w
1

4πρ
---------- rotH H×[ ] ,+=

H∂
t∂

------- rot v H×[ ] .=

dw
dp
ρ

------, w
∂
ρ∂

------ε ρ( ).= =
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A variational principle for this system of equations
can be formulated as follows. First, it can be seen from
Eqs. (1)–(3) that the vector 

 

H

 

/

 

ρ 

 

moves with the “liquid
current” line; in other words, each field line moves with
the particles occurring on this line, which corresponds
to a well known concept of the “frozen-in” magnetic
field (see, e.g., [16]). This circumstance allows the
magnetic field 

 

H

 

 and the plasma density 

 

ρ

 

] to be con-
sidered as generalized coordinates. 

To formulate the variational principle, we will use a
known expression for the Lagrangian of the electro-
magnetic field containing particles of a liquid [17]. We
will write an expression for the Lagrangian 

 

L

 

 with
neglect of a contribution due to the electric field relative
to that due to the magnetic field, since 

 

E

 

 ~ (

 

v

 

/

 

c

 

)

 

H

 

 

 

�

 

 

 

H

 

.
Taking into account relationships expressed by Eqs. (1)
and (3) and the fact that div

 

H

 

 = 0, we can write 

where 

 

S

 

, 

 

Φ

 

, and 

 

ψ

 

 are the Lagrange multipliers. Now
we can use the so determined Lagrangian to introduce
the functional of action 

the variation of which with respect to variables 

 

v

 

, 

 

ρ

 

, and

 

H

 

 leads to the following set of equations: 

(4)

(5)

(6)

The first equations suggests the change of variables,
whereby the velocity 

 

v

 

 is expressed in terms of the new
variables 

 

S

 

 and 

 

Φ

 

. It must be emphasized that this
change is not single-valued, since we may a vector 

 

S

 

0

 

 to

 

S 

 

and a scalar Φ0 to Φ such that 

The two other equations, (5) and (6), represent the Ber-
noulli equation for the potential Φ and the equation of
motion for the new vector S with an unknown potential
ψ. The latter potential is set by specifying the calibra-
tion of vector S. For example, the Coulomb calibration
(divS = 0) determined ψ to within an arbitrary solution
ψ0 of the Laplace equation ∆ψ0 = 0: 

L
ρv2

2
-------- ε ρ( )– H2

8π
------– S H∂

t∂
------- rot v H×[ ]– 

 ⋅+=

+ Φ ρ∂
t∂

------ divρv+ 
  ψdivH.+

I L td r,d∫=

ρv H rotS× ρ∇Φ ,+=

Φ∂
t∂

------- v ∇⋅( )Φ v
2

2
------– w ρ( )+ + 0,=

S∂
t∂

------ H
4π
------ v rotS×– ∇ψ+ + 0.=

H rotS0 ρ∇Φ 0+× 0.=

ψ 1
∇
----div v rotS×[ ] ψ 0.+=

In particular, if v  0, H  H0, and ρ  ρ0 for
r  ∞, the term ψ0 is conveniently selected so that
S  0 for r  ∞. Then 

Now we have to check that system (4)–(6) does not
contradict to the set of MHD equations. Substituting (4)
into the equation of motion (2) and making simple
transformations, we obtain 

By virtue of Eqs. (5) and (6), this equation turns into
identity. Thus, we have proved that the new system of
Eqs. (1), (3), (5), and (6) is equivalent to the set of
MHD equations. Indeed, any solution of this system
generates, by virtue of (4), a solution to the MHD equa-
tions. If we assume uniqueness of the Cauchy problem
for systems (1)–(4) and (1), (3), (5) and (6), the inverse
statement is also valid: for any solution to Eqs. (1)–(4)
we can find a certain class of solutions to system (1),
(3), (5), and (6). Indeed, this is achieved by construct-
ing all possible sets of S and Φ satisfying Eq. (4) for a
given set of v, H, ρ at a given time instant t0 and taking
these S and Φ values as the initial conditions for system
(1), (3), (5), and (6). 

Once the Lagrange function is known, we can define
the generalized momenta and construct a system
Hamiltonian: 

which coincides in magnitude with the total energy.
The equations of motion (1), (3), (5), and (6) represent
the Hamilton equations 

(7)

where the variables (ρ, Φ and (H, S) represent the pairs
of canonically conjugated values. 

The change of variables defined by Eq. (4) and the
canonical description (7) were originally introduced for
the magnetic hydrodynamics in [13]. The transforma-
tion (4) is an analog for the Clebsch representation in
the ideal hydrodynamics; accordingly, the variables H
and S in Eq. (4) play the role of the Clebsch variables

ψ0

H0 r⋅
4π

-------------.–=

∇ Φ∂
t∂

------- v V⋅( )Φ v2

2
-----– w ρ( )+ + 

 

+
H
ρ
---- rot S∂

t∂
----- H

4π
------ v rotS×–+

 
 
 

× 0.=

� S Ht Φρt L–+⋅( ) rd∫=

=  ρv2

2
-------- ε ρ( ) H2

8π
------ ψdivH–+ +

 
 
 

r,d∫

ρ∂
t∂

------
δ�
δΦ
--------,

Φ∂
t∂

-------
δ�
δρ
--------,–= =

H∂
t∂

-------
δ�
δS
--------,

S∂
t∂

------
δ�
δH
--------,–= =
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(for the latter, see [17, 18] and a recent review [14]).
Later, the same substitution was employed by Frenkel
et al. in [18], where the velocity vector and the mag-
netic field were expressed through the scalar Clebsch
variables; using simple transformations, this reduces to
Eq. (4). 

The MHD flows described by Eq (4), as well as the
flows in the ideal liquid parametrized by the Clebsch
variables, represent a partial flow type. For such MHD
flows, the topological invariant of the magnetic field
line and vorticity entanglement 

is identically equal to zero. 

Vladimirov and Moffat [20] suggested an analog of
the Weber transform for the ideal MHD flows: 

(8)

where a = a(r, t) are the Lagrange markers of liquid par-
ticles (this is an inverse transformation with respect to
r = r(a, t) determining the trajectory of a particle with
the marker a) and u0(a) is a new Lagrange invariant. 

The Weber transform (8) is a transformation of the
general type containing the substitution (4) in a partic-
ular case of u0 = 0, which was not taken into account in
[20]. The equations of motion for the potentials Φ and
S have the same form as Eqs. (5) and (6). If Φ = 0 and
S = 0 at t = 0, then u0(a) is the initial velocity. It should
be noted that it is the first term in (8) that ensures a non-
zero value of the topological invariant I (this term is
nonlinear if (8) is expanded in powers of small ampli-
tude). Recently, Ruban [21] (see also [22]) elucidated a
physical meaning of the new vector field S. According
to this, the quantity @@@curlS can be expressed
through the displacement d between electron and ion
(considered as liquid particles) at a point r at the time
instant t (the initial coordinates are assumed to coin-
cide): 

@@@

Here M and e are the ion mass and charge, respectively,
and ρ0(a) is the initial distribution of the plasma den-
sity. 

Introduction of the canonical variables allows us to
classify and study all nonlinear processes in a conven-
tional manner, using the perturbation theory with
respect to small wave amplitudes. For this purpose, it is
necessary to expand the velocity and internal energy in
Eq. (8) in powers of the canonical variables. If the
plasma is placed into a homogeneous external magnetic
field H0, the approximation linear in the wave ampli-
tude must retain the terms linear in Φ and S and ignore

I v H⋅( ) rd∫=

v u0k a( )∇ ak ∇Φ 1
ρ
---H rotS.×+ +=

rotS
e

Mc
--------d

ρ r t,( )
ρ0 a( )
---------------.=

the first (nonlinear) term in (8). As a result, the velocity
expansion can be written as 

(9)

where the first-order term is 

Three independent pairs (divH = divS= 0) of the
canonically conjugated quantities correspond to the
waves of three types. In the linear approximation, these
waves do not interact with each other. The dispersion
and polarization laws can be determined from an anal-
ysis of the quadratic (in powers of the canonical vari-
ables) Hamiltonian �0. The three-wave interaction cor-
responds to a cubic term, the magnitude of which is
determined by a quadratic (in the wave amplitude) cor-
rection to the velocity: 

which takes into account only the “wave” degrees of
freedom and neglects the first term in (8). Here, h and
ρ1 are the deviations of the magnetic field strength and
the plasma density from the corresponding equilibrium
values H0 and ρ0. As a result, the Hamiltonian of the
medium can be also written as an expansion in powers
of the wave amplitude 

(10)

with the quadratic Hamiltonian 

and the cubic Hamiltonian 

In these expressions, the squared sound velocity  and
the dimensionless coefficient q appeared as a result of
expansion of the internal energy ε in powers of ρ1: 

Now let us accomplish the Fourier transform with
respect to coordinates and pass to the new variables
aj(k) (j = 1, 2, 3), which yields 

v v0 v1 …+ +=

v0
1
ρ0
-----H0 rotS× ∇Φ .+=

v1

ρ1

ρ2
-----H0 rotS× 1

ρ0
-----h rotS.×+=

� �0 �3 …,+ +=

�0
ρ0v0

2

2
---------- h2

8π
------ cs

2 ρ1
2

2ρ0
--------+ +

 
 
 

r,d∫=

�3 ρ0 v0 v1⋅( )
ρ1

2
-----v 0

2 qcs
2 ρ1

3

2ρ0
2

--------+ +
 
 
 

r.d∫=

cs
2

∆ε ρ( )
ρ0cs

2

2
----------

ρ1

ρ0
----- 

 
2

q
ρ1

ρ0
----- 

 
3

…+ +
 
 
 

.=

h k( ) e1 k( ) 2πω1 a1 k( ) a1* k–( )+( )=

+ e2 k( ) λ l 2πωl al k( ) a1* k–( )+( ),
l 2 3,=

∑
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Here 

are the dispersion laws for the Alfvén waves (j = 1) and
the fast (j = 2) and slow (j = 3) magnetoacoustic waves;
the corresponding unit polarization vectors are 

(n0 = H0/H0 is the unit vector of the average magnetic
field); 

is the Alfvén velocity; and 

The change of variables ak(j) represents a canonical U–
V transform diagonalizing the Hamiltonian �0: 

The amplitudes ak(j) play the role of normal variables,
for which the equations of motion acquire the canonical
form 

S k( ) ie1 k( ) 1

8πω1

----------------- a1 k( ) a1* k–( )–( )–=

– ie2 k( ) λ l
1

8πωl

---------------- al k( ) al* k–( )–( ),
l 2 3,=

∑

ρ1 k( )
ρ0ωl

2cs
2

----------- 
  1/2

µl ak l( ) a k–* l( )+( ),
l 2 3,=

∑=

Φk i
cs

2

2ρ0ωl

-------------- 
 

1/2

µl alk al* k–( )–( ).
l 2 3,=

∑–=

ω1 k( ) k VA⋅ ,=

ω2 3, k( ) 1
2
--- k2V A

2 k2cs
2 2 k VA⋅( )kcs+ +  =

± k2V A
2 k2cs

2 2 k VA⋅( )kcs–+

e1 k( )
k n0×[ ] k n0⋅( )
k n0× k n0⋅

--------------------------------------, e2 k( )
k k n0×[ ]×

k k n0×
-----------------------------,= =

VA

H0

4πρ0 )1/2
--------------------=

λ2 µ3– 1
ω2

2 k2cs
2–

ω2
2 k2cs

2–
----------------------–

 
 
  1/2

,–= =

λ3 µ2 1
ω2

2 k2cs
2–

ω3
2 k2cs

2–
----------------------–

 
 
  1/2–

.= =

�0 ωj k( )a j k( )al* k( ) k.d∫
j

∑=

a j k( )∂
t∂

--------------- i
δ�

δa j* k( )
-----------------.–=

In the linear approximation, the quantities ak(j) obey
the following equations: 

which imply that the amplitude modulus |ai(k)| does not
change with the time t, while the phase grows linearly
with t. 

In order to find an expression for the interaction
Hamiltonian in terms of the variables aj(k), it is neces-
sary to substitute transform (11) into expansion (10). As
a result, the Hamiltonian of the wave interaction has the
form of an integro-power series with respect to aj(k). In
the lowest order with respect to the wave amplitude, the
principal nonlinear process is the three-wave resonance
interaction corresponding to the Hamiltonian 

(12)

This Hamiltonian is obtained by substituting transform
(11) into the cubic Hamiltonian �3 and separating the
corresponding resonance terms. The remaining terms in
�3 are small and can be excluded with the aid of a
canonical transformation (for more detail, see [14]).

Note that calculation of the matrix elements  in
this scheme is a purely algebraic procedure involving
Fourier transform in the integrals, substitution of (11),
and the symmetrization with respect to variables ak(i)
[for example, with respect to (k1, m) and (k2, n) in
Eq. (12). 

3. AVERAGED EQUATIONS 

Expressions for the dispersion laws and the matrix
elements of interaction can be significantly simplified
in the case of a plasma with small β = 8πnT/H2 (repre-
senting the ratio of the thermal plasma pressure nT to
the magnetic field pressure H2/8π). The condition β �
1 implies that VA � cs In this limit, the fast magnetoa-
coustic waves possess an isotropic dispersion law ω2 =
kVA and their phase (and group) velocity coincides with
the group velocity of the Alfvén waves. In this linear
approximation, the velocity of plasma in the Alfvén
waves and the fast magnetoacoustic waves is deter-
mined by the following formula: 

The potential part of the plasma velocity ∇Φ  is a small
quantity with respect to the parameter β. In contrast, the
main contribution to the velocity of slow magnetoa-
coustic waves is due to the potential part. For this rea-

a j k( )∂
t∂

--------------- iωj k( )a j k( )+ 0,=

�int
1
2
--- Vkk1k2

lmn al* k( )am k1( )an k2( ) c.c.+[ ]
lmn

∑∫=

× δk k1– k2– dkdk1dk2.

Vkk1k2

ije

vHF
1
ρ0
-----H0 rotS.×=
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son, this velocity is directed along the magnetic field
H0, 

(13)

and the dispersion of the slow magnetoacoustic waves
becomes strongly anisotropic: 

(14)

The transverse velocity components in these waves
[H0 × rotS]/ρ0 are compensated by the term ∇ ⊥ Φ. 

If the plasma is collisionless and strongly noniso-
thermal (Te � Ti), the slow magnetoacoustic waves rep-
resent the magnetized ion-sound waves (considered in
more detail in [7]). In this case, the sound velocity in
Eq. (14) can be expressed as 

As for a nonlinear interaction of the MHD waves,
the principal nonlinear mechanism is the resonance
scattering of fast magnetoacoustic and Alfvén waves on
the slow magnetoacoustic waves. This is clearly seen
from a comparison of the calculated matrix elements
Vlmn in the Hamiltonian (12). In this process, the former
waves (called the A-waves) appear as high-frequency
(HF) with respect to the latter (simply referred to below
as the acoustic waves, or S-waves). This conclusion fol-
lows from an analysis of the resonance conditions for
this decay process: 

(15)

It is quite easy to see qualitatively how this interaction
proceeds in the system studied. As an A-wave packet
propagates in the plasma, the average characteristics
(plasma density and velocity) slowly vary under the
action of these waves. Owing to this, the average
Alfvén velocity differs from a local value by the quan-
tity 

where ρ1s is the low-frequency (LF) density variation.
As a result, frequencies of the A-wave acquire an incre-
ment ∆ωρ ~ k∆VA. Due to a slow motion with the drift
velocity vD, the A-wave frequency changes by ∆ωD ~
kvD (Doppler effect). The ratio of the two frequencies
(∆ωD and ∆ωρ) is a small quantity with respect to the
parameter cs/VA. Therefore, a principal interaction is
the scattering on the LF density fluctuations. Note that
the LF characteristics of the plasma change under the
HF force action of the A-waves. 

An expression for the HF force is most simply
derived by averaging the Hamiltonian over the HF
oscillations. Upon this averaging, the Hamiltonian
acquires the following form: 

(16)

vs n0
Φ∂
z∂

-------,=

ω3 Ωs≡ ks cs.=

cs Te/M.=

ωA k( ) ωA k1( ) Ωs k2( ), k+ k1 k2.+= =

∆V A V Aρ1s/2ρ0,–=

� �0 �int,+=

where 

(the angle brackets denote the averaging over high fre-
quencies). The first integral in �0corresponds to the A-
waves, while the second represents the acoustic oscilla-
tions of the magnetized plasma. Variation of the inter-
action Hamiltonian with respect to ρ1s yields the fol-
lowing expression for the HF interaction potential: 

(17)

According to this, the equation of motion for the poten-
tial Φs is as follows: 

(18)

It is important to note that the HF potential (17) is neg-
ative, which implies that the HF force acting in the
region of localization of the A-waves leads to the
appearance of the density “humps” (instead of the
“dips” observed for the interaction of ion-sound waves
with the Langmuir waves [23]). 

The equations of motion for the slow wave compo-
nent are closed by the equation of continuity for ρ1s

According to (13), this equation can be written as 

(19)

Using Eq. (18) and (19), we obtain 

(20)

In order to derive equations for the A-waves, it is
necessary to perform averaging of the interaction
Hamiltonian �int. This is achieved by retaining terms of
the type aλ (λ = 1, 2 is the HF wave number): 

where 
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As a result, the A-wave equations acquire the following
form: 

(21)

A collisionless isothermal (Te ≈ Ti) plasma features
no slow magnetoacoustic oscillations as a result of the
strong Landau damping on the ions. Accordingly, the
A-wave decay interaction [15] changes to the induced
scattering of A-waves on the ions. In this case, Eqs. (20)
have to be replaced by a system of the kinetic drift
equation [24] for a slow variation of the ion distribution
function fi (cf. [25]), 

(22)

and the condition of quasineutrality for the slow
motions (Ωk = kzcS � ), 

(23)

where f0 is the equilibrium ion distribution function and
 is the LF electrostatic potential. The equations of

motion for the A-waves retain the form of Eq. (21) and
the plasma density is linearly expressed via the HF
potential in terms of Green’s function for the system of
Eqs. (22) and (23): 

(24)

Here, ρ1s(κ, Ω) and UκΩ are the Fourier images of the
LF density and HF potential, respectively, and �e, i are
the partial permittivities of electrons and ions: 

(  = Te/4πn0e2 is the squared Debye radius). In a
strongly nonisothermal plasma (Te � Ti), Green’s func-
tion (24) converts into 

which coincides with the expression for the function
determined by Eq. (20). 

The system of equations (22)–(24) completely
describes the interaction of A-waves in a strongly mag-
netized plasma with an arbitrary ratio of the electron

n2
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and ion temperatures. However, because of the Landau
damping on ions, the Hamiltonian H0 + Hint is no longer
conserved. 

4. INSTABILITY OF A MONOCHROMATIC WAVE 

Now we proceed to analysis of the equations derived
in the preceding section. First, let us consider the
behavior of a narrow A-wave packet. A qualitative pat-
tern of this process can be outlined by studying the sta-
bility of a monochromatic A-wave. For simplicity, we
will restrict the consideration to the stability of an
Alfvén wave in a hydrodynamic limit. For a collision-
less plasma, this implies that a phase velocity of Ω/kz of
beats in the A-wave exceeds the thermal ion velocity
vTi. Under these conditions, we may neglect the Landau
damping on ions for the slow acoustic oscillations and
use Eqs. (20) or (24). It should be born in mind that the
acoustic waves in a strongly nonisothermal plasma rep-
resent intrinsic oscillations, whereas the sound gener-
ated in an isothermal plasma (Te ≈ Ti) represents
induced oscillations in the plasma density. However,
under the condition Ω/kz � vTi, the hydrodynamic
description is applicable in both cases. 

It is convenient to express ρ1s through the normal
variables a3(k) ≡ bk: 

Equations for the new variables b(k) are obtained by
variation of the total Hamiltonian H0 + Hint: 

(25)

A monochromatic Alfvén wave corresponds to the fol-
lowing equation of Eqs. (21) and (25): 

Here, the Alfvén wave amplitude is selected so that the
value W = |A|2 would coincide with the energy density
of the oscillations. 

Upon linearizing Eqs. (22)–(24) relative to the exact
solution and taking perturbations in the form of 

we obtain the following dispersion relationship for Ω: 

(26)
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Now we will present the results of investigation of
the dispersion relationship (26) in various special cases
depending on the oscillation energy density W and the
ratio of electron and ion temperatures in the plasma. 

For Te � Ti and sufficiently small oscillation ampli-
tudes, the A-wave exhibits decay instability with the
ion-sound excitation [10]. For this instability, the fre-
quency Ω can be expressed through the matrix element
of the decay interaction 

(27)

and the energy density W as 

(28)

From this expression, it follows that the instability
takes place in the vicinity of the resonance surface 

(29)

with a maximum increment 

(30)

The increment width with respect to the frequency is on
the order of the maximum increment value (30). 

Since the matrix element is proportional to the
square root of the slow sound frequency, the maximum
increment on the resonance surface (29) is reached for
the maximum value of |κz |. Upon decay into the Alfvén
wave and the slow acoustic wave, 

which implies that the secondary Alfvén wave propa-
gates in the direction opposite to that of the primary
(exciting) Alfvén wave. The character of the decay
instability is typical of the Mandel’shtam–Brillouin
scattering, the matrix element for which is proportional
to the square root of the momentum of light transmitted
to the acoustic waves as a result of scattering. This
accounts for the maximum backscattering of light. 

Now we can readily investigate the decay instability
in all other channels of the decay process A  A + S.
In all these cases, the increments are on the same order
of magnitude as the increment determined by formula
(30): 

This instability takes place for W/nT < β1/2. As the W/nT
ratio increases, the decay instability is modified. For

W/nT > β1/2, we may neglect  in comparison to Ω2 in
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Ωs
2

relationship (26). Then, the unstable wavevectors are
lying on the surface 

This instability is referred to as the modified decay
instability [15, 26]. In the case of interaction between
the Alfvén waves and the slow acoustic waves, this
instability has an increment reaching maximum at κz =
2k0z: 

(31)

Since this value is independent of the temperature, the
same instability may take place for W/nT > 1 as well (up
to W/nT ~ 1/β, when the main assumption of adiabati-
cally, Γ ~ ω0, fails to be valid). 

In the other channels, the behavior of instability
with increasing parameter W/nT exhibits the same pat-
tern: for W/nT > β1/2, the increment reaches maximum
at κ ~ k0 and coincides in the order of magnitude with
the value given by formula (31). 

As can be readily seen, a decay instability with the
increment (30) for an arbitrary channel A  A + S
belongs to instability of the convective type. According
to relationship (28), the group velocities of the excited
waves are significantly different from the group veloc-
ity of the primary (exciting) wave. Therefore, for the
wave packet with a length L, the instability will be sig-
nificant only provided L is sufficiently large so that the
gain G would exceed the Coulomb logarithm Λ: 

For smaller L values, the decay instability will be not
manifested since the perturbation amplitude acquires
only a small increment during the time required for the
perturbation to travel through the entire packet length.
In this case, the wave packet dynamics is determined by
slower processes. Among these, the most important are
related to the unstable perturbations propagating
together with the wave packet. Should it be a decay
instability, this instability must be absolute (in the coor-
dinate system moving with the wave packet). This is
one of the possible factors for a collapse of the fast
magnetoacoustic waves producing a special effect on
the structure of collisionless shock waves in a plasma
[27, 28]. The collapse of fast magnetoacoustic waves
arises a result of a three-weave interaction involving
only the fast magnetoacoustic waves. 

5. THE KOLMOGOROV SPECTRA 

In the preceding section, we have considered the
instability of a wave packet narrow in the k-space. Upon
the decay of a monochromatic wave obeying the reso-
nance conditions (29) (i.e., reaching the maximum
increment given by formula (30)), the sum of phases of

ω1 k0( ) ωλ k0 κ–( ).=
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-------ω0
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ρ0V A
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  1/3

.≈
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the excited waves (φA + φs) is strictly related to the
pumping wave phase (φ0): 

The phase difference in the pair of excited waves with
a fixed wavevector κ is arbitrary. As can be readily
checked, the above phase correlation is lost on deviat-
ing from the resonance conditions (29). Both these fac-
tors introduce an element of stochasticity into the sys-
tem of interacting triads related to the pumping wave.
Thus, each triad is characterized by a single random
phase. In the next stage (secondary cascade), new ran-
dom phases are added and the memory of a coherent
pumping wave is lost. Upon numerous repeats of this
process, the system must pass to a turbulent state in
which the wave phases can be considered random.
Therefore, the randomization time must be equal to
several times the reciprocal increment give by formula
(30). This scenario of transition to a turbulent state
seems to be quite realistic. A series of numerical exper-
iments were aimed at the verification of this hypothesis
(see, e.g., [29, 30]. 

Based on the above considerations, it is clear that a
regime of developed turbulence can be expected to pos-
sess a wide spectrum of waves. This spectrum can be
statistically described in terms of correlation functions.
For the waves of small intensity, is sufficient to restrict
the consideration to pair correlation functions obeying
the kinetic equations. This regime is referred to as
weakly turbulent. 

In the case of a weak MHD turbulence (β � 1), we
obtain three pair correlation functions determined by
the formulas 

Here, the coefficients  and nk having the sense of
occupation numbers obey the following system of
equations: 

(32)

(33)

where ω ≡ ω(k), ω1 ≡ ω(k1), etc. In these equations (and
below) we omitted the summation with respect to λ,
which can be restored by substituting 

φ0 π/2+ φA φs.+=

aλ k( )aλ1
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*〈 〉 nkδk k1– ,= =

Nk
λ
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× δk k1– k2– δω ω1– Ω2– dk1dk2
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× δk1 k– k2– δω1 ω– Ω2– dk1dk2.

dk1 dk1, Nk Nk
λ ,

n

∑

etc. 
Equations (32) and (33) assume that the nonlinear

wave interaction is weak. In this particular case, the
most significant condition is 

where τ is the characteristic nonlinear time determined
from the kinetic equations (32) and (33). In order to
estimate τ, it is necessary to take into account that, in
every wave decay event and the reverse (wave merging)
process, the A-wave frequencies change by a small
increment ∆ωA = Ωs � ωA so that the A-wave energy is
redistributed over the spectrum in a diffusion manner.
Taking his into account, we obtain the following esti-
mate for τ: 

Note that this τ value is significantly greater than the
characteristic time of randomization determined as the
reciprocal increment Γ–1 determined by formula (30).
Finally, the criterion can be written in the following
form: 

Now let us include the sources of turbulence and
damping into Eqs. (32) and (33). For this purpose, we
introduce the terms Γknk and γkλNkλ into the left-hand
parts of these equations, respectively. It will be
assumed that the domains of pumping (Γk , γkλ > 0) and
damping (Γk , γkλ  < 0) are separated in the k-space by an
intermediate region (interval of inertia) in which ht tur-
bulence dynamics is determined only by the wave inter-
action. If we can neglect the pumping and damping
effects in the interval of inertia (which has to be
proved), the nk and Nkλ distributions would be indepen-
dent of the particular form of γk and Γk. 

It should be recalled that determination of the turbu-
lence spectrum (describing the distribution of pulsa-
tions over scales) in the theory of hydrodynamic turbu-
lence is based on the two Kolmogorov hypotheses [1].
According to the first hypothesis concerning the auto-
model character of the turbulence spectrum, the spec-
trum in the interval of inertia is determined by a single
quantity P representing a constant energy flux in the
spectrum. The second hypothesis stipulates that the
interaction of pulsations with different k values has a
local character. 

Applying these hypotheses to our situation, the tur-
bulence spectra can be determined proceeding from the
dimensionality considerations. In this case, the kinetic
equations (32) and (33) reflect conservation laws—for
the energy and the number of HF waves. Each of these

ωk ωkλ , Vkk1k2
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laws must correspond to a Kolmogorov spectrum of its
own. Indeed, a constant flux of the number of HF waves
( ) 

corresponds to the spectrum 

(34)

while the constant energy flux 

corresponds to 

(35)

Based on the conservation of the total number of HF
waves and the energy in the interval of inertia, one may
readily infer that the flux of the particle number N is
directed toward small k, whereas the energy flux Pε is
directed toward large k. The rough approximation of the
turbulence spectra given by formulas (34) and (35) may
only provide for a correct description of the effect of
wavenumber and the fluxes, but ignore the diffusion
character of the wave decay process. It should be also
recalled that the above conclusions are based on the
hypothesis of a local character of the wave interaction. 

The spectra (34) and (35) fail to describe fine details
of the distribution functions (such as the angular depen-
dence). Therefore, these functions are determined to
within an arbitrary function of the angles. The angular
dependence can be described by solving the exact equa-
tions (32) and (33). The solutions can be obtained, in
particular, for the interaction of Alfvén waves with
acoustic waves (N2 ≡ 0). For this purpose, Eqs. (32) and
(33) can be conveniently rewritten as 

(36)

(37)

where 

As can be readily checked, Eqs. (36) and (37) possess
thermodynamically equilibrium solutions 

representing the Rayleigh–Jeans distributions for
which the collisional term is zero. 

Nk
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ṅk Uk2 kk1
Tk2 kk1

k1d k2LSd∫–=
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In order to determine the nonequilibrium distribu-
tions, note that the function U (having the sense of the
decay probability) possesses the following properties:
U is a bihomogeneous function of variables kα and k⊥ ,
the degree of homogeneity being +1 for all kz and –2 for
k⊥ . In addition, U is invariant with respect to rotation
relative to the z axis coinciding with the direction of the
magnetic field H0. 

For these reasons, it is natural to seek for solutions
in the form of 

(38)

Consider stationary solutions to Eq. (37): 

(39)

Let us map the integration domain (determined by the
conservation laws) of the second integral (39) onto that
of the first integral. This is conveniently performed by
introducing the complex quantity ζ = kx + iky. Using this
value, the conservation laws determining the integra-
tion domain of the second integral can be written as: 

This domain is mapped onto that of the first integral
(39) by the following conformal mapping with respect
to variables kz and ζ 

(40)

Here, each separate transformation is inversion: relative
to the point kz for the z-components of the wave vector
and relative to the circumference of radius |k⊥ | for the
transverse components. As a result, the vector k trans-
forms into k1, k1 into k, and k2 into k2. Simultaneously,
the z-components are stretched by the factor |kz/kz1| and
the transverse components, by the factor |k⊥ /k1⊥ |; this is
complemented by rotation about the z axis through the
angle arg(ζ/ζ1). 

As a result (with an allowance for the properties of
U and T values), the integrand in the second integral
(39) converts into the integrand of the first integrand
multiplied by a power factor: 
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From this we may infer that, besides thermodynami-
cally equilibrium solutions (for which T turns zero),
there exist nonequilibrium solutions 

(41)

which correspond to the solutions obtained previously
proceeding from the dimensionality considerations for
the constant particle number flux PN. A relationship
between the coefficients A and B in (41) is determined
from the stationary equation (32) (∂/∂t= 0). From this
we readily obtain an estimate csA ~ VAB, which implies
that the energies of the acoustic and Alfvén waves in the
stationary case are on the same order of magnitude. 

Note that the set of all mappings of the type (40)
forms a group G, which is a direct product 

G = G(1) × G(2).

of groups G(1) and G(2) acting in one- and two-dimen-
sional spaces, respectively. For power-type spectra,
mappings of this type lead to factorization of the colli-
sional term. The one-dimensional transformations (in
the frequency space) for isotropic spectra were deter-
mined by Zakharov [5, 6, 23]. Generalizations of these
transformations to the two- and tree-dimensional cases
were formulated by Kats and Kontorovich [31]. Map-
pings (40) represent a partial case of the quasiconfor-
mal mapping. 

In order to determine the second nonequilibrium
solution (35), we introduce a quantity 

representing the energy density in the k-space. Accord-
ing to (36) and (37), εk obeys the equation 

(42)

Let us find the stationary solutions to this equation in
the same form (38) as above. To this end, we also map
the integration domain of the second and third integrals
(42) onto that of the first integral. For the second inte-
gral, the mapping coincides with (40); for the third inte-
gral, the required mapping is 

(43)

nk Akz
2– k ⊥

2– , Nk Bkz
2– k ⊥

2– ,= =

εk ωk Nk Ωknk+=

εk∂
t∂

------- ωkUk k1k2
Tk k1k2

ωkUk1 kk2
Tk1 kk2

–{∫=

– ΩkUk2 k1kTk2 k1k } dk1dk2.

kz kz''
kz

kz''
-----, ζ ζ "

ζ
ζ"
-----,= =

kz1
kz'

kz

kz''
-----, ζ1 ζ '

ζ
ζ"
-----,= =

kz2
kz

kz

kz''
-----, ζ2 ζ ζ

ζ"
-----.= =

Substituting (40) and (43) into the stationary equa-
tion (42), we obtain 

This equation indicates that the expression in braces
turns zero for α = −5/2 and β = –2, so that the required
solutions have the following form: 

(44)

These solutions correspond to the spectra with a con-
stant energy flux Pε. As above, a relationship between
the coefficients A and B is determined from the station-
ary equations (32). These equations lead to the same
estimate: 

The Kolmogorov type solutions obtained above
refer only to the channel of interaction between the
Alfvén waves and slow magnetoacoustic waves, which
markedly reduces the significance of these results. It
should be recalled that processes involving the fast
magnetoacoustic waves are on the same order of mag-
nitude and, hence, cannot be ignored. However, this
channel can be successfully included into the above
scheme without need in significant improvements. As
was noted in the preceding section, a maximum scatter-
ing of the A-waves (i.e., of the Alfvén waves and fast
magnetoacoustic waves) takes place for the maximum
x-projection of the momentum transferred to the slow
acoustic waves. It is naturally assumed that this behav-
ior of the A-wave scattering amplitude would lead to
strongly anisotropic distributions of the waves concen-
trated in the k-space within a narrow-angle cone in the
magnetic field direction: kz � k⊥ . Under these condi-
tions, we may assume that the fast sound frequency
coincides with that of the Alfvén waves: 

Another important circumstance is that the matrix ele-
ment of the interaction between A-weaves and the slow
magnetoacoustic waves is diagonal with respect to the
polarization λ: 

Thus, in the case of an almost longitudinal (i.e.,
extended in the magnetic field direction) distribution,
we observe no difference between the Alfvén waves
and fast magnetoacoustic waves. Moreover, there is
even no energy exchange between these waves. This
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implies that (in the given angular range) the Kolmog-
orov spectra for the fast magnetoacoustic waves will
exhibit the same shape as the spectra (41) and (44)
obtained above. In these expressions, we have to

replace Nk and B by  and Bλ and determine the coef-
ficient A as 

The Kolmogorov spectra (41) and (44) possess a
physical meaning provided that the condition of local
turbulence is fulfilled, according to which the contribu-
tion to the wave interaction due to the regions of pump-
ing and damping must be small. This condition reduces
to the requirement of convergence of the integrals in
Eqs. (36) and (37). 

The convergence of integrals with respect to kzin the
kinetic equations is ensured by the presence of two
δ-functions of kz. The integrals over transverse
wavevectors exhibit logarithmic divergence. In our
opinion, the logarithmic divergence is not as dangerous
as the power-type behavior, since it falls on the bound-
ary of locality. The appearance of this divergence is
related to the aforementioned bihomogeneity of the
probability U. If the medium is isotropic and the matrix
elements of V and the frequencies possess the same
degree of homogeneity as that in the MHD case of β �
1 (this situation takes place for the Mandel’shtam–Bril-
louin scattering), the condition of locality would be sat-
isfied (see [34]). The condition of bihomogeneity for
the interaction of Alfvén waves and slow magnetoa-
coustic waves is violated in the case of a nearly trans-
verse wave propagation: 

ad for the interaction of fast and slow magnetoacoustic
waves, in the region of angles 

For this reason, the integrals in the kinetic equations
should be truncated at smaller angles (�β1/2). The loga-
rithmic divergence can be eliminated by introducing
powers for logarithms of the transverse momenta k⊥  in
the spectra (41) and (44). However, this procedure does
not lead to determining these powers (while ensuring
the convergence of integrals). Finally, it should be
noted that both spectra (41) and (44) are characterized
by the same dependence on the transverse momenta: 

which coincides with the degree of homogeneity δ(k⊥ ).
This implies that, besides the anisotropic Kolmogorov
spectra (41) and (44), there may exist singular Kolmog-
orov spectra of the type 

Nk
λ

A β 1/2–

Bλ
2∑

Bλ∑
-------------.∼

k ⊥ /kz β 1/2– ,∼

k ⊥ /kz β1/2.∼

nk Nk ∝ k ⊥
2– ,,

nk Akz
2– δ k ⊥( ), Nk Bkz

2– δ k ⊥( )==

and 

A rigorous answer to the question as to which station-
ary spectra are in fact realized can be obtained from the
investigation of stability of the obtained solutions or
(on a qualitative level) from the results of numerical
modeling. Both approaches require special consider-
ation. 
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