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Compressible dynamics of magnetic field lines for incompressible
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It is demonstrated that the deformation of magnetic field lines in incompressible magneto-
hydrodynamic flows results from a compressible mapping associated with the transverse motion of
fluid particles. Appearance of zeros for the Jacobian of this mapping corresponds to the breaking of
magnetic field lines and the local blowup of the magnetic field intensity. The occurrence of such
events is found to be unlikely in two dimensions but possible in three dimensiori2008
American Institute of Physics[DOI: 10.1063/1.1669392

I. INTRODUCTION pletely characterized by the mapping defined by the
. . .__transition from the usual Eulerian to the Lagrangian descrip-
An important property of ideal magnetohydrodynamics,. .

. P tion. A zero of the Jacobian corresponds to the emergence of
(MHD) is the frozenness of the magnetic field in the plasma; ~_. . . o )
. : . . i ._a singularity for the spatial derivatives of the velocity and
fluid particles remain pasted on their magnetic lines, which . ) .
. . ; density of the fluid. Due to the compressible character of
are driven by the transverse velocity component. This propVLR the oh f breaki 150 b ble
erty enables one to provide a global description of the dy-" — " € phenomenon ot breéaxing aiso becomes possioie Tor

namics of the magnetic field lines and to conjecture the ap\_/ortex lines in ideal incompressible fluids. Vortex-line break-
pearance of a new kind of singularities for three-dimensional™d Was first studied _for three-d|men5|onal mtegrai_ale hydro-
th HamiltonianH = [|Q|dr, where Q is the

ideal MHD flows. These events are associated with the |Ocaqiyn§1m|css wi : _
blowup of the magnetic field intensity as the result of two Vorticity.” This model and the Euler equation are both incom-

magnetic field lines getting into contact. This magnetic fieldPressible and have the same symplectic operator defining the
line frozen state is indeed the starting point for the developP’0iSson structure. Breaking of vortex lines is associated with
ment of a mixed Lagrangian—Eulerian description of idealthe touching of two vortex lines and results in an infinite
MHD flows, named magnetic line representatidfLR) and  Vorticity. Recent numerical simulatiohshave suggested the
first formulated in Ref. 1. The idea originates from the vortexPossibility of such a scenario for the 3D Euler equation, but
line representatiofVLR) of hydrodynamic flows that in-  further investigations are required to reach a definite conclu-
volves a two-dimensional Lagrangian marker labeling eactgion. In ideal MHD, we can expect the same behavior to hold
vortex line, together with a parametrization of these lines. Irfor the magnetic field which is a frozen-in quantity. In two
three dimensiong3D), this representation enables one todimensions(2D), however, the fact that vorticity is perpen-
partially integrate the Euler equations with respect to a condicular to the flow plane while the magnetic field lies in it
tinuous infinity of integrals of motion called the Cauchy in- puts a limit to the analogy, making magnetic field line break-
variants. A main peculiarity of the transformation associatedng a priori possible in two dimensions, while singularities
with the vortex line dynamics is its compressible charactemare excluded in 2D Euler flows. It will nevertheless be ar-
which, as recently pointed out by one of the authbis, gued in this paper that magnetic field blowup is unlikely in
amenable to a simple interpretation. The Euler equations ca2D MHD.

be rewritten as the equations of motion for a chargeth- In Sec. II, we recall the Cauchy formula for MHD flows,
pressiblefluid moving under the action of effective self- which plays a central role in the derivation of the Weber-type
consistent electric and magnetic fields satisfying Maxwelliransformation discussed in Sec. Ill. This transformation is
equations. The new velocity coincides with the velocity com-obtained by extending ideas of Ref. 3 to ideal incompressible
ponent transverse to vorticity, which, due to the frozen stateqHD flows. We in particular indicate how the MHD equa-
property, identifies with the vortex line velocity. It is well tions can be partially integrated. Section IV addresses the
known that the appearance of singularities in compressiblgyo-dimensional case where two conservation laws are es-
flows is connected with the emergence of shocks, corregplished. In Sec. V, we discuss the possibility of magnetic
sponding to the formation of f_olds in the_classical cgtastroﬁne breaking as a local blowup of the magnetic field, a pro-
phe theory. In the gas-dynamic case, this process is coMyess different from the gradient singularity associated with
current sheets formatiofRef. 8 and references thergim
dElectronic mail: kuznetso@itp.ac.ru brief conclusion is provided by Sec. VI.
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Il. CAUCHY FORMULA IN MHD I1l. WEBER-TYPE TRANSFORMATION
As is well known, the magnetic field in ideal incom- Equation (10) is the basis of the magnetic line
pressible MHD obeys representatioh Another important formula for MLR follows

he=curl(vxh), divv=0, 1) from the velocity equation

that formally coincides with the equation governing the vor- 9v+(v-V)v=—Vp-+curl hxh, (1D

ticity ) in Euler hydrodynamics. Since only the transversewhere we normalized the magnetic field by the facfdrrp
velocity v, to the local magnetic field is relevant in this (wherep is the density so thath has the dimension of a

equation, we introduce new Lagrangian trajectories velocity.
r=r(at) ) We also decompose the velocity=v, +v, into trans-
. Y verse and tangential components and substitute in(Eyg,
defined by which is rewritten as
dr . = mhd
anl(r.t), 3) v, + (v, -V)v, =E+v, XH+F™C (12
where we introduced new effective “electric” and “mag-
ri—o=2a (4)  netic” fields
Because the magnetic field is a frozen-in quantity, &j. vf v,
simultaneously is the equation of motion for magnetic field ~E=—V| P+ o o (13
lines.
It is easily established that the Jacoby matdkelement H=rot v,. (14
Jij=0dx;/9a;) obeys In Eq. (12), the forceF™=j x h, involves the renormalized
d. . current
—J=Ju, ©) _
dt j=curlh—(v-h)/h2curl v. (15)
where the matriXJ has elements);;=duv j/dx;. One then As seen from(13) and (14), the new auxiliary electric

obtains the equations for the Jacobidn detJ and for the  and magnetic fields can be expressed in terms of scalar and
inverse matrix J-1 with elements da;lox; [where a  vector potentialsp=p+ (v§/2) andA=v_, so that the two
=a(r,t) is the inverse of the mapping defined(®)], in the  Maxwell equations

form
oH
d _ divH=0, Ez—curl E
aJ=dIVVJ_J, (6)
are automatically satisfied. In this case, the vector potential
and A has the gauge
%:]‘1=—Uj_l. @) divA=—divv, ,
which is equivalent to the incompressibility condition &iv
Since diw, is generically nonzero, the mappif®) is com-  =0.
pressible and the Jacobidncan vanish. This observation is The two other Maxwell equations define auxiliary charge
central in the discussion of the possibility of magnetic fielddensity and current, which follow from relatior{¢3) and
blowup presented in Sec. V. (14).
By means of Eqs(6) and(7), Eq. (1) is transformed into New terms in the right-hand side of Ed.2) also have a
Ja. mechanical interpretation. The Lorentz foreexH plays
Dt<Jhi—J =0, (8)  the role of a Coriolis force. The potentigl has a direct
2 connection with the Bernoulli formula. The ter#v . results

where D,=d,+ (v, - V) identifies with the material deriva- from the noninertial character of the coordinate system.

tive d/dt used in(3). Integration of this equation leads to a N Ed. (12), we make the change of variable defined by
“new” vector Lagrangian invariant mapping (2). As a result, the equations of motion are ex-
pressed in a quasi-Hamiltonian form, analogous to (26
04,
|j(a)EJhi&_)J: 9) of Ref. 3
I
oh dh
that coincides with the initial magnetic fielg(a) and is the DiP=——-+F" Dir=-5, (16)
analog of the Cauchy invariants for ideal hydrodynamics.
The magnetic fieldh is then given by where the Hamiltoniah is given by the standard expression
ho(a)- Vor(at 1 V2
h(ri):%_ (10) hZE(P_A)Z_F(PEp_’_E’
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in terms of the generalized momentisv, + A (that iden- The vectorW is determined from Eq(21), which is
tifies with v), and thus coincides with the Bernoulli “invari- rewritten as
ant” for a nonmagnetic fluid. The first equation of the system

(16) contains an addition terf™"® and therefore we qualify DW= wgo(a,t) _ Ecurla ( Gho(a) , (24)
(16) as quasi-Hamiltonian. b J J
Introducing a new vector where§ is the MLR metric tensor defined by
IX; IXi X
u=Pi—, =1 L
K gy 998~ 52, da,’
depending ort anda, one easily obtains frorfil6) that this  andb=Jh is given by Eq.(10).
vector obeys As a result, the system formed by Eg4) for the vector
P b2 2 Ix W, Egs. (3)-(4) defining the mapping, Eq$10) and (23
Diuy=—7/| —p+ R _T) ;“hd_'_ (17 defining the magnetic field and the vorticity, together with
day 2 2 day Egs.(10), (23) and the relation between velocity and vortic-
Using (10) and the identity ity
X IX; da, Q=curlv, div,v=0, (25
— — =€ —, 18 ) o i )
Eaﬁyﬁa[; Ja,, ik IXk (18 provides a closed description of the dynamics of a magnetic
one has line in incompressible MHOto be compared with Ref.)1

These equations are solved with respect to two Lagrangian
F-’“hdﬁzh (8)X S invariantsho(a) andQq(a). It is possible to shoWthat con-
T osa 0 ' servation of these invariants in MHD is a consequence of
relabeling symmetry, as it is the case for Euler equatsae,
e.g., the reviews in Refs. 9 and)10
S=(j-V)a The magnetic line representation involving the local
change of variableg=r(at), breaks down at singular
points where the Jacobian is zero or infinity and the normal

where

Equation(17) is thus rewritten as

vf i velocity is not defined.
Diu=Ve| —p+ 5 — 5| +ho(a) XS. (19 Let us consider the null point=r(t) defined by
Integrating in time then leads to the Weber-type transfor- ~ h(r(t),t)=0. (26)
mation Differentiating this equation with respect to time, we get
u=ug(a)+ V,®@ +hg(a) X W, (20 ah
where the potentia® satisfies a Bernoulli-type equation EHr(t)'V)h:O’
v? 02 with F(t)=v(r(t),t), which shows that the null points are
Di®=-p+ PR advected by the flow. The velocityat these points is defined
by inverting the curl operator if25).
and the vectokV obeys Null points are topological singularities for the tangent
DW=S. (21)  Vvector field 7(r). Their classification depends on the space

o . ) dimensionD. Topological constraints that can be considered
If initially ®[;_o=0 and W|;—o=0, the integration 55 aqditional conditions for the MLR system can be written
‘constant” up(a) coincides with the initial velocitwo(a). 4 integrals of the vector fielé(r) and its derivatives over
This vectorug(a) is thus a new Lagrangian invariant. the boundary of simply connected regiofiis 3D) or along

To get a closed description we eliminate the presgure ¢josed contoursin 2D) enclosing the null points. IiD =2,
by applying the curl operatdwith respect taa variableg on  jne pas

Eq. (20)
curl, u=curl, ug(a)+curlhy(a)xW]. (22 jg(V<p~dr)=27-rm, (27
This equation can also be rewritten as whereg is the angle between the vectoand thex axis and
(Qo(a),t)-V)r(at) m is an integer often called topological charge. It is equal to
Q(r,t)= 3 : (23)  the total number of turns of the vectar while passing
o around the closed contour encircling the null point. For in-
Here, Qo(a,t) is given by stance, forX points orO points,m=*+1.
Qq(at)=Q(a)+curl ho(a) X W] In D=3, the topological charge is defined as the degree

of the mappingS2—S?, given by
whereQ(a) is the initial vorticity. Whenrhy(a) =0, Eq.(23)
(rjeduce; to the Cauchy formula for vorticity in ideal hydro- €apy (T-[057X0,7])dS,=4mm, (28)
ynamics. N
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where the integration is performed over the boundaryof
a regionV containing null points.

Conditions (25)—(28) complete the MLR equations in
the general case when the Jacobian has localized zeros.
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can then be taken as a Lagrangian marker of the magnetic
lines. Solving Eq(34) locally in the formy=y(x, ¢,t) pro-
vides the desired mapping that repla¢s

This change of variables, being a mixed Lagrangian—

The above representation that involves simultaneous udeulerian one, realizes a transformation towavilinear sys-

of Lagrangian variables in Eq§3), (24), (10), (23) and Eu-

tem of coordinates movable with magnetic lines. In order to

lerian ones in(25), makes the numerical integration very implement the transformation from variablex,y,t) to
cumbersome. It is therefore of interest to look for a representx, ¢,t) in Egs.(33) and(11), we use

tation formulated in the sole physical space.
Let us consider the inverse of the mappiag a(r,t).

Using Eqg.(3), one has
da+ (v, -V)a=0. (29

From (18), Eq. (10) for the magnetic field is rewritten as

h= 3 eijhai(@[Va;X Vay]. (30)
Formula(23) for the vorticity inr variable becomes

Q(r,t)=curl(V,Va), (31
where

V=vgy(a)+hg(a)XW.
Similarly, Eq.(21) for the vectorW transforms into

AW+ (v, - VIW=—(j-V)a, (32)

with initial condition W|,—,=0. Here, the generalized cur-
rentj is given by(15).

These equations are completed by relati@f) and the
definition of the normal velocitylzﬁ v, where the projec-
tor IT is defined by means of the unit tangent vector
=h/h asll,z= 6,5~ 7,75. They provide a closed system

for ideal MHD flows, where all the spatial derivatives are

taken with respect to variables.

IV. CONSERVATION LAWS IN TWO DIMENSIONS

Jf 1

—=—[fy,— ¥l (35
oy,

J 1

v y_w[fxyl//_fi//yx]y (36)
o1,

AN 3
Y, (37)

where derivatives are taken relatively to,¥,t) in the left-
hand sides of the above equations andxta/(t) in the right-
hand sides.

Equation(34) for the magnetic potential then transforms
into an equation for the magnetic link

Yituyxyx=vy. (38)

This equation is a kinematic condition. As the equation of
motion (3), the dynamics ofy is prescribed by the velocity
component normal to the magnetic field ling,
=v, \/1+yX2, where v, =(v-n) and n= (1/\/1+yx2)
(—VYx,1). In terms of the new variables, the magnetic field is
given by

hxzi, hyzﬁ,

Yy Yy

which are equivalent to the Cauchy formula0) for the
magnetic field in 2D. The derivativg, in the denominators
holds for the Jacobiad. The equation for the quantity,,
can be found by differentiating38) with respect toy and

The magnetic line representation significantly simplifiesa|o|o|ying the incompressibility condition in the form
in two dimensions where the magnetic field lies on the same

plane as the flow. It is convenient to introduce, instead of the

initial position a, the scalar magnetic potentigldefined by

9 Y
_Wa y_ 51

hy
and a Cartesian coordinaye

By fixing #, we select a magnetic line given by

dx 3 dy
aplay — aplox

The differencey, — ¢, is equal to the flux of magnetic field
between two lines with different values ¢f

In 2D, ¢ is a Lagrangian invariant, since it follows from
the integration of the induction equatidh) that

b

— Hvv) y=0. (33
The potential
=Py, (34)

vy Juy &vy_

EY.ﬂ—wyxﬂLw—O- (39

This results in a continuity equation fgr,

Yyt 5x(vxy¢)=0, (40)

so thaty,, has the meaning of a layer density.
Another useful relation can be obtained from the equa-
tions for the velocity components, andv, that now read

Y
ﬁtvx+vx‘9xvx:_&xp+(0¢p_l)ﬁr (41

‘?tvy+vx‘9xvy:_((9¢/p_j) (42)

ﬁy

wherej =curl h is the current directed along tlzedirection.

It is then convenient to introduce

U=v,tYy,

wherey, obeys the equation
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IYx T UxOxYxF YxdxUx=dx0y wherea>0, y;; is a positive definitégenerically nondegen-
erated matrix andAa=a—a,. This assumes that the mag-
netic field does not vanish at the collapse point and in par-
ticular that the three vectors/da; (i=1,2,3) lie in the same

derived from(38). The functionU coincides up to the factor
1/\/1+yx2 with the velocity component tangent to the mag-

netic fieldv .= (1/y1+yy) U. One easily gets plane, with none of them vanishing. In this case, B®) is
U+, (v U)=—d,(p—v2/2), (43  rewritten as

that can be viewed as a differential form of the Kelvin theo- b

rem. o = 0+ v;AaAa;’ “7
Combination of Egs.(40) and (42) implies thatw

=vyy, obeys whereb=(hy(a) - Va)r|t0,a0- This corresponds to a blowup of
FW+ 3 (0,W) ==y p+]. (44)  the magnetic fieldh(ap) like 1/(to—t).

The MHD equations conserve the eneggiven by the
sum of the kinetic &=/ (v¥/2)dr and magnetic &,
= [ (h?/2)dr energies, where both have to remain finite as

To find the analog of23) in the 2D case, it is convenient to
make the change of variablgs=y(X,,t) in the vorticity

equation tty.
0+ (v-V)Q=VjX V. (45) _ _Let us estimate the_ contribution to the m_agnet_ic energy
Substituting relation€35)—(37) into (45) and using Eq(38), ?At%matmg from the neighborhood of a possible singularity
we get
oo b2
¢9tQ+Ux(9xQx=y—XJ. €h%j?dr (48)
Y

Equations(40) and (43) provide conservation laws for By changing variables from to a, the contribution to this
2D incompressible MHD. They remain valid in the hydrody- integral arising from a ball centered & and of radiusR
namic limit, providedy is replaced by vorticity or by any ~ 72 wherer=t,—t, is rewritten as
other Lagrangian invariant.

Er~b

? f ————x(tp— )PP (49
V. POSSIBILITY OF MAGNETIC LINE BREAKING aT+ vija;a,

An important property of the magnetic line representa-  The retained size of the ball is the largest compatible
tion concerns the compressibility of the mapping defined bywith the asymptotics. The contribution due to rest of the
(2), which permits magnetic line breaking. At the breakingdomain being most likely finite, we conclude that a magnetic
point, the magnetic field, according (b0), becomes infinite  field blowup in not excluded in 3D for the assumed expan-
due to the vanishing of the Jacobian. As it follows from Refs.sion of the Jacobian. The same conclusion holds if the Jaco-
3, 5-7, the possibility of vortex line breaking depends on thebian vanishes like tg—1)" at the singularity point, with a
space dimension. For two-dimensional flows described byall radius modified accordingly. At a point where the matrix
the Euler equations, vorticity is perpendicular to the flowyis degenerated with, for example, one eigenvalydeing
plane, and therefore diy =0. As the consequence, the cor- zero, the Jacobian locally becomes
responding mapping is incompressible and the Jacobian re-
mains constant. J=a(to—t)+¥;ai af +paj, (50)

For 2D incompressible MHD, the situation is different o
since the magnetic field lies in the flow plane. The veIocityWhereaL_ holds for the projection of the vectar transverse
can therefore be decomposed into transverse and longituding the direction of the eigenvector associated with the zero
components relative tthe magnetic field directiorin such a ~ €19énvalue. The contribution ofsthe S'nglﬂf”ty to the mag-
case diw, #0 and the breaking of magnetic lines is ot Netic energy then scales lik€,~(to—t)™", a behavior
priori excluded. Its actual occurrence is nevertheless depenthich again does not contradict the possible existence of a
dent on space dimension. singularity. _ _ ,

Let us thus assume that a breaking of magnetic lines In D=2, the conclusion can be different. Since the con-

occurs. Denote by=1(a)>0 the positive roots of the equa- tribution of the selected ball to the magnetic energy (_1095 not
tion tend to zero as—ty, a small extension of this domain to a

ball of size R can lead to a logarithmic divergencg;,
J(a,t)=0, ~B2log (yR?ar) —=. The divergence becomes more dra-

L , . s
and find the minimal valué,= min, t(a), which defines the matic in the case of a degenerate matgixfor which &,

first instant of time when the Jacobian vanishes.d=et, be ~(to—t)_ "% This observation leads us to conjecture that a

. . . U blowup of the magnetic field is probably excluded in two
the Lagrangian coordinate of the point where this minimum. . ; ; .
. . ; . ) . dimensions but not necessary in three dimensions. Note that
is attained. We first consider that near the singular point, a

. the conservations lawg0) and(43) for the two-dimensional
t—tg, the Jacobian behaves as . . :
problem derived in Sec. Ill, could possibly be useful for a
J=a(ty—t)+ v;;AqAq;, (46) rigorous proof of the absence of magnetic blowup.
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VI. CONCLUSION and correspond to an initial velocity field whose component

The mechanism for a finite-time singularity addressed ipfransverse to the local magnetic field has a significant diver-

this paper corresponds to the breaking of magnetic field line§€Nce-
resulting in a catastrophic growth of the local amplitude of
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