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It is demonstrated that the deformation of magnetic field lines in incompressible magneto-
hydrodynamic flows results from a compressible mapping associated with the transverse motion of
fluid particles. Appearance of zeros for the Jacobian of this mapping corresponds to the breaking of
magnetic field lines and the local blowup of the magnetic field intensity. The occurrence of such
events is found to be unlikely in two dimensions but possible in three dimensions. ©2004
American Institute of Physics.@DOI: 10.1063/1.1669392#

I. INTRODUCTION

An important property of ideal magnetohydrodynamics
~MHD! is the frozenness of the magnetic field in the plasma:
fluid particles remain pasted on their magnetic lines, which
are driven by the transverse velocity component. This prop-
erty enables one to provide a global description of the dy-
namics of the magnetic field lines and to conjecture the ap-
pearance of a new kind of singularities for three-dimensional
ideal MHD flows. These events are associated with the local
blowup of the magnetic field intensity as the result of two
magnetic field lines getting into contact. This magnetic field
line frozen state is indeed the starting point for the develop-
ment of a mixed Lagrangian–Eulerian description of ideal
MHD flows, named magnetic line representation~MLR! and
first formulated in Ref. 1. The idea originates from the vortex
line representation~VLR! of hydrodynamic flows2 that in-
volves a two-dimensional Lagrangian marker labeling each
vortex line, together with a parametrization of these lines. In
three dimensions~3D!, this representation enables one to
partially integrate the Euler equations with respect to a con-
tinuous infinity of integrals of motion called the Cauchy in-
variants. A main peculiarity of the transformation associated
with the vortex line dynamics is its compressible character
which, as recently pointed out by one of the authors,3 is
amenable to a simple interpretation. The Euler equations can
be rewritten as the equations of motion for a chargedcom-
pressiblefluid moving under the action of effective self-
consistent electric and magnetic fields satisfying Maxwell
equations. The new velocity coincides with the velocity com-
ponent transverse to vorticity, which, due to the frozen state
property, identifies with the vortex line velocity. It is well
known that the appearance of singularities in compressible
flows is connected with the emergence of shocks, corre-
sponding to the formation of folds in the classical catastro-
phe theory.4 In the gas-dynamic case, this process is com-

pletely characterized by the mapping defined by the
transition from the usual Eulerian to the Lagrangian descrip-
tion. A zero of the Jacobian corresponds to the emergence of
a singularity for the spatial derivatives of the velocity and
density of the fluid. Due to the compressible character of
VLR, the phenomenon of breaking also becomes possible for
vortex lines in ideal incompressible fluids. Vortex-line break-
ing was first studied for three-dimensional integrable hydro-
dynamics with HamiltonianH5* uVudr , where V is the
vorticity.5 This model and the Euler equation are both incom-
pressible and have the same symplectic operator defining the
Poisson structure. Breaking of vortex lines is associated with
the touching of two vortex lines and results in an infinite
vorticity. Recent numerical simulations6,7 have suggested the
possibility of such a scenario for the 3D Euler equation, but
further investigations are required to reach a definite conclu-
sion. In ideal MHD, we can expect the same behavior to hold
for the magnetic field which is a frozen-in quantity. In two
dimensions~2D!, however, the fact that vorticity is perpen-
dicular to the flow plane while the magnetic field lies in it
puts a limit to the analogy, making magnetic field line break-
ing a priori possible in two dimensions, while singularities
are excluded in 2D Euler flows. It will nevertheless be ar-
gued in this paper that magnetic field blowup is unlikely in
2D MHD.

In Sec. II, we recall the Cauchy formula for MHD flows,
which plays a central role in the derivation of the Weber-type
transformation discussed in Sec. III. This transformation is
obtained by extending ideas of Ref. 3 to ideal incompressible
MHD flows. We in particular indicate how the MHD equa-
tions can be partially integrated. Section IV addresses the
two-dimensional case where two conservation laws are es-
tablished. In Sec. V, we discuss the possibility of magnetic
line breaking as a local blowup of the magnetic field, a pro-
cess different from the gradient singularity associated with
current sheets formation~Ref. 8 and references therein!. A
brief conclusion is provided by Sec. VI.a!Electronic mail: kuznetso@itp.ac.ru
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II. CAUCHY FORMULA IN MHD

As is well known, the magnetic fieldh in ideal incom-
pressible MHD obeys

ht5curl~v3h!, div v50, ~1!

that formally coincides with the equation governing the vor-
ticity V in Euler hydrodynamics. Since only the transverse
velocity v' to the local magnetic field is relevant in this
equation, we introduce new Lagrangian trajectories

r5r ~a,t !, ~2!

defined by

dr

dt
5v'~r ,t !, ~3!

r u t505a. ~4!

Because the magnetic field is a frozen-in quantity, Eq.~3!
simultaneously is the equation of motion for magnetic field
lines.

It is easily established that the Jacoby matrix~of element
Ĵi j 5]xj /]ai) obeys

d

dt
Ĵ5 ĴU, ~5!

where the matrixU has elementsUi j 5]v' j /]xi . One then
obtains the equations for the JacobianJ5detĴ and for the
inverse matrix Ĵ21 with elements ]aj /]xi @where a
5a(r ,t) is the inverse of the mapping defined in~2!#, in the
form

d

dt
J5div v'J, ~6!

and

d

dt
Ĵ2152UĴ21. ~7!

Since divv' is generically nonzero, the mapping~2! is com-
pressible and the JacobianJ can vanish. This observation is
central in the discussion of the possibility of magnetic field
blowup presented in Sec. V.

By means of Eqs.~6! and~7!, Eq. ~1! is transformed into

DtS Jhi

]aj

]xi
D50, ~8!

where Dt5] t1(v'•¹) identifies with the material deriva-
tive d/dt used in~3!. Integration of this equation leads to a
‘‘new’’ vector Lagrangian invariant

I j~a![Jhi

]aj

]xi
, ~9!

that coincides with the initial magnetic fieldh0(a) and is the
analog of the Cauchy invariants for ideal hydrodynamics.
The magnetic fieldh is then given by

h~r ,t !5
~h0~a!•¹a!r ~a,t !

J
. ~10!

III. WEBER-TYPE TRANSFORMATION

Equation ~10! is the basis of the magnetic line
representation.1 Another important formula for MLR follows
from the velocity equation

] tv1~v•¹!v52¹p1curl h3h, ~11!

where we normalized the magnetic field by the factorA4pr
~where r is the density! so thath has the dimension of a
velocity.

We also decompose the velocityv5v'1vt into trans-
verse and tangential components and substitute in Eq.~11!,
which is rewritten as

] tv'1~v'•¹!v'5E1v'3H1Fmhd, ~12!

where we introduced new effective ‘‘electric’’ and ‘‘mag-
netic’’ fields

E52¹S p1
vt

2

2 D 2
]vt

]t
, ~13!

H5rot vt . ~14!

In Eq. ~12!, the forceFmhd5 j3h, involves the renormalized
current

j5curlh2~v"h!/h2curl v. ~15!

As seen from~13! and ~14!, the new auxiliary electric
and magnetic fields can be expressed in terms of scalar and
vector potentialsw5p1 (vt

2/2) andA5vt , so that the two
Maxwell equations

div H50,
]H

]t
52curl E

are automatically satisfied. In this case, the vector potential
A has the gauge

div A52div v' ,

which is equivalent to the incompressibility condition divv
50.

The two other Maxwell equations define auxiliary charge
density and current, which follow from relations~13! and
~14!.

New terms in the right-hand side of Eq.~12! also have a
mechanical interpretation. The Lorentz forcev'3H plays
the role of a Coriolis force. The potentialw has a direct
connection with the Bernoulli formula. The term] tvt results
from the noninertial character of the coordinate system.

In Eq. ~12!, we make the change of variable defined by
mapping ~2!. As a result, the equations of motion are ex-
pressed in a quasi-Hamiltonian form, analogous to Eq.~20!
of Ref. 3

DtP52
]h

]r
1Fmhd, Dtr5

]h

]P
, ~16!

where the Hamiltonianh is given by the standard expression

h5
1

2
~P2A!21w[p1

v2

2
,
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in terms of the generalized momentumP5v'1A ~that iden-
tifies with v!, and thus coincides with the Bernoulli ‘‘invari-
ant’’ for a nonmagnetic fluid. The first equation of the system
~16! contains an addition termFmhd and therefore we qualify
~16! as quasi-Hamiltonian.

Introducing a new vector

uk5Pi

]xi

]ak
,

depending ont anda, one easily obtains from~16! that this
vector obeys

Dtuk5
]

]ak
S 2p1

v'
2

2
2

vt
2

2 D 1Fi
mhd]xi

]ak
. ~17!

Using ~10! and the identity

eabg

]xi

]ab

]xj

]ag
5e i jkJ

]aa

]xk
, ~18!

one has

Fi
mhd]xi

]a
5h0~a!3S,

where

S5~ j•¹r !a.

Equation~17! is thus rewritten as

Dtu5¹aS 2p1
v'

2

2
2

vt
2

2 D 1h0~a!3S. ~19!

Integrating in time then leads to the Weber-type transfor-
mation

u5u0~a!1¹aF1h0~a!3W, ~20!

where the potentialF satisfies a Bernoulli-type equation

DtF52p1
v'

2

2
2

vt
2

2
,

and the vectorW obeys

DtW5S. ~21!

If initially Fu t5050 and Wu t5050, the integration
‘‘constant’’ u0(a) coincides with the initial velocityv0(a).
This vectoru0(a) is thus a new Lagrangian invariant.

To get a closed description we eliminate the pressurep
by applying the curl operator~with respect toa variables! on
Eq. ~20!

curla u5curla u0~a!1curla@h0~a!3W#. ~22!

This equation can also be rewritten as

V~r ,t !5
~V0~a!,t !•¹a)r ~a,t !

J
. ~23!

Here,V0(a,t) is given by

V0~a,t !5V0~a!1curla@h0~a!3W#,

whereV0(a) is the initial vorticity. Whenh0(a)50, Eq.~23!
reduces to the Cauchy formula for vorticity in ideal hydro-
dynamics.

The vectorW is determined from Eq.~21!, which is
rewritten as

DtW5
~v"b!

b2 V0~a,t !2
1

J
curla S ĝh0~a!

J D , ~24!

whereĝ is the MLR metric tensor defined by

gab5
]xi

]aa
•

]xi

]ab
,

andb5Jh is given by Eq.~10!.
As a result, the system formed by Eq.~24! for the vector

W, Eqs. ~3!–~4! defining the mapping, Eqs.~10! and ~23!
defining the magnetic field and the vorticity, together with
Eqs.~10!, ~23! and the relation between velocity and vortic-
ity

V5curlrv, divr v50, ~25!

provides a closed description of the dynamics of a magnetic
line in incompressible MHD~to be compared with Ref. 1!.
These equations are solved with respect to two Lagrangian
invariantsh0(a) andV0(a). It is possible to show1 that con-
servation of these invariants in MHD is a consequence of
relabeling symmetry, as it is the case for Euler equation~see,
e.g., the reviews in Refs. 9 and 10!.

The magnetic line representation involving the local
change of variablesr5r (a,t), breaks down at singular
points where the Jacobian is zero or infinity and the normal
velocity is not defined.

Let us consider the null pointr5r (t) defined by

h~r ~ t !,t !50. ~26!

Differentiating this equation with respect to time, we get

]h

]t
1~ ṙ ~ t !•¹!h50,

with ṙ (t)5v(r (t),t), which shows that the null points are
advected by the flow. The velocityv at these points is defined
by inverting the curl operator in~25!.

Null points are topological singularities for the tangent
vector fieldt„r ). Their classification depends on the space
dimensionD. Topological constraints that can be considered
as additional conditions for the MLR system can be written
as integrals of the vector fieldt(r ) and its derivatives over
the boundary of simply connected regions~in 3D! or along
closed contours~in 2D! enclosing the null points. InD52,
one has

R ~¹w•dr !52pm, ~27!

wherew is the angle between the vectort and thex axis and
m is an integer often called topological charge. It is equal to
the total number of turns of the vectort while passing
around the closed contour encircling the null point. For in-
stance, forX points orO points,m561.

In D53, the topological charge is defined as the degree
of the mappingS 2→S 2, given by

E
]V

eabg ~t•@]bt3]gt#!dSa54pm, ~28!
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where the integration is performed over the boundary]V of
a regionV containing null points.

Conditions ~25!–~28! complete the MLR equations in
the general case when the Jacobian has localized zeros.

The above representation that involves simultaneous use
of Lagrangian variables in Eqs.~3!, ~24!, ~10!, ~23! and Eu-
lerian ones in~25!, makes the numerical integration very
cumbersome. It is therefore of interest to look for a represen-
tation formulated in the sole physical space.

Let us consider the inverse of the mappinga5a(r ,t).
Using Eq.~3!, one has

] ta1~v'•¹!a50. ~29!

From ~18!, Eq. ~10! for the magnetic field is rewritten as

h5 1
2 e i jkh0i~a!@¹aj3¹ak#. ~30!

Formula~23! for the vorticity in r variable becomes

V~r ,t !5curl~Vi¹ai !, ~31!

where

V5v0~a!1h0~a!3W.

Similarly, Eq. ~21! for the vectorW transforms into

] tW1~v'•¹!W52~ j•¹!a, ~32!

with initial condition Wu t5050. Here, the generalized cur-
rent j is given by~15!.

These equations are completed by relation~25! and the
definition of the normal velocityv'5P̂ v, where the projec-
tor P̂ is defined by means of the unit tangent vectort
5h/h as Pab5dab2tatb . They provide a closed system
for ideal MHD flows, where all the spatial derivatives are
taken with respect tor variables.

IV. CONSERVATION LAWS IN TWO DIMENSIONS

The magnetic line representation significantly simplifies
in two dimensions where the magnetic field lies on the same
plane as the flow. It is convenient to introduce, instead of the
initial position a, the scalar magnetic potentialc defined by

hx5
]c

]y
, hy52

]c

]x
,

and a Cartesian coordinatey.
By fixing c, we select a magnetic line given by

dx

]c/]y
52

dy

]c/]x
.

The differencec12c2 is equal to the flux of magnetic field
between two lines with different values ofc.

In 2D, c is a Lagrangian invariant, since it follows from
the integration of the induction equation~1! that

]c

]t
1~v•¹! c50. ~33!

The potential

c5c~x,y,t !, ~34!

can then be taken as a Lagrangian marker of the magnetic
lines. Solving Eq.~34! locally in the formy5y(x,c,t) pro-
vides the desired mapping that replaces~2!.

This change of variables, being a mixed Lagrangian–
Eulerian one, realizes a transformation to acurvilinear sys-
tem of coordinates movable with magnetic lines. In order to
implement the transformation from variables (x,y,t) to
(x,c,t) in Eqs.~33! and ~11!, we use

] f

]t
5

1

yc
@ f tyc2 f cyt#, ~35!

] f

]x
5

1

yc
@ f xyc2 f cyx#, ~36!

] f

]y
5

f c

yc
, ~37!

where derivatives are taken relatively to (x,y,t) in the left-
hand sides of the above equations and to (x,c,t) in the right-
hand sides.

Equation~34! for the magnetic potential then transforms
into an equation for the magnetic linec

yt1vxyx5vy . ~38!

This equation is a kinematic condition. As the equation of
motion ~3!, the dynamics ofy is prescribed by the velocity
component normal to the magnetic field lineyt

5v'A11yx
2, where v'5(v"n) and n5 (1/A11yx

2)
(2yx ,1). In terms of the new variables, the magnetic field is
given by

hx5
1

yc
, hy5

yx

yc
,

which are equivalent to the Cauchy formula~10! for the
magnetic field in 2D. The derivativeyc in the denominators
holds for the JacobianJ. The equation for the quantityyc

can be found by differentiating~38! with respect toc and
applying the incompressibility condition in the form

]vx

]x
yc2

]vx

]c
yx1

]vy

]c
50. ~39!

This results in a continuity equation foryc

] tyc1]x~vxyc!50, ~40!

so thatyc has the meaning of a layer density.
Another useful relation can be obtained from the equa-

tions for the velocity componentsvx andvy that now read

] tvx1vx]xvx52]xp1~]cp2 j !
yx

yc
, ~41!

] tvy1vx]xvy52~]cp2 j !
1

yc
, ~42!

where j 5curl h is the current directed along thez direction.
It is then convenient to introduce

U5vx1yxvy ,

whereyx obeys the equation
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] tyx1vx]xyx1yx]xvx5]xvy ,

derived from~38!. The functionU coincides up to the factor
1/A11yx

2 with the velocity component tangent to the mag-
netic fieldvt5(1/A11yx

2) U. One easily gets

] tU1]x~vxU !52]x~p2v2/2!, ~43!

that can be viewed as a differential form of the Kelvin theo-
rem.

Combination of Eqs.~40! and ~42! implies that w
5vyyc obeys

] tw1]x~vxw!52]cp1 j . ~44!

To find the analog of~23! in the 2D case, it is convenient to
make the change of variablesy5y(x,c,t) in the vorticity
equation

] tV1~v•¹!V5¹ j 3¹c. ~45!

Substituting relations~35!–~37! into ~45! and using Eq.~38!,
we get

] tV1vx]xVx5
]xj

yc
.

Equations~40! and ~43! provide conservation laws for
2D incompressible MHD. They remain valid in the hydrody-
namic limit, providedc is replaced by vorticity or by any
other Lagrangian invariant.

V. POSSIBILITY OF MAGNETIC LINE BREAKING

An important property of the magnetic line representa-
tion concerns the compressibility of the mapping defined by
~2!, which permits magnetic line breaking. At the breaking
point, the magnetic field, according to~10!, becomes infinite
due to the vanishing of the Jacobian. As it follows from Refs.
3, 5–7, the possibility of vortex line breaking depends on the
space dimension. For two-dimensional flows described by
the Euler equations, vorticity is perpendicular to the flow
plane, and therefore divv'50. As the consequence, the cor-
responding mapping is incompressible and the Jacobian re-
mains constant.

For 2D incompressible MHD, the situation is different
since the magnetic field lies in the flow plane. The velocity
can therefore be decomposed into transverse and longitudinal
components relative tothe magnetic field direction. In such a
case divv'Þ0 and the breaking of magnetic lines is nota
priori excluded. Its actual occurrence is nevertheless depen-
dent on space dimension.

Let us thus assume that a breaking of magnetic lines
occurs. Denote byt5 t̃ (a).0 the positive roots of the equa-
tion

J~a,t !50,

and find the minimal valuet05mina t̃(a), which defines the
first instant of time when the Jacobian vanishes. Leta5a0 be
the Lagrangian coordinate of the point where this minimum
is attained. We first consider that near the singular point, as
t→t0 , the Jacobian behaves as

J5a~ t02t !1g i j DaiDaj , ~46!

wherea.0, g i j is a positive definite~generically nondegen-
erated! matrix andDa5a2a0 . This assumes that the mag-
netic field does not vanish at the collapse point and in par-
ticular that the three vectors]r /]ai ( i 51,2,3) lie in the same
plane, with none of them vanishing. In this case, Eq.~10! is
rewritten as

h5
b

a~ t02t !1g i j DaiDaj
, ~47!

whereb5(h0(a)•¹a)r u t0 ,a0
. This corresponds to a blowup of

the magnetic fieldh(a0) like 1/(t02t).
The MHD equations conserve the energyE given by the

sum of the kinetic Ek5* (v2/2) dr and magnetic Eh

5* (h2/2) dr energies, where both have to remain finite as
t→t0 .

Let us estimate the contribution to the magnetic energy
originating from the neighborhood of a possible singularity
~47!

E h'E b2

J2 dr . ~48!

By changing variables fromr to a, the contribution to this
integral arising from a ball centered ina0 and of radiusR
;t1/2 wheret5t02t, is rewritten as

E h
s'b2E da

at1g i j aiaj
}~ t02t !(D22)/2. ~49!

The retained size of the ball is the largest compatible
with the asymptotics. The contribution due to rest of the
domain being most likely finite, we conclude that a magnetic
field blowup in not excluded in 3D for the assumed expan-
sion of the Jacobian. The same conclusion holds if the Jaco-
bian vanishes like (t02t)n at the singularity point, with a
ball radius modified accordingly. At a point where the matrix
g is degenerated with, for example, one eigenvaluel1 being
zero, the Jacobian locally becomes

J5a~ t02t !1g̃ i j ai
'aj

'1ba1
4 , ~50!

wherea' holds for the projection of the vectora, transverse
to the direction of the eigenvector associated with the zero
eigenvalue. The contribution of the singularity to the mag-
netic energy then scales likeE h

s;(t02t)1/4, a behavior
which again does not contradict the possible existence of a
singularity.

In D52, the conclusion can be different. Since the con-
tribution of the selected ball to the magnetic energy does not
tend to zero ast→t0 , a small extension of this domain to a
ball of size R can lead to a logarithmic divergenceE h

s

;B2 log (gR2/at)→`. The divergence becomes more dra-
matic in the case of a degenerate matrixg, for which E h

s

;(t02t)21/4. This observation leads us to conjecture that a
blowup of the magnetic field is probably excluded in two
dimensions but not necessary in three dimensions. Note that
the conservations laws~40! and~43! for the two-dimensional
problem derived in Sec. III, could possibly be useful for a
rigorous proof of the absence of magnetic blowup.
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VI. CONCLUSION

The mechanism for a finite-time singularity addressed in
this paper corresponds to the breaking of magnetic field lines
resulting in a catastrophic growth of the local amplitude of
the magnetic field. It is worth noticing that this process does
not contradict the necessary condition for blowup in MHD11

that represents the analog of the Beale–Kato–Majda
inequality.12 According to Ref. 11, the velocity and magnetic
field retain their smoothness on a time interval@0,T# as long
as the time integral of the supremum of the vorticityuV(t)u`
and currentu j (t)u` obeys

E
0

T

~ uV~ t !u`1u j ~ t !u`!dt,`.

Hence, a finite-time singularity of any kind must be accom-
panied by the blowup ofV and¹h. However, this criterion
does not exclude a blowup of the magnetic field amplitude as
well. Constraints are nevertheless provided by regularity
theorems; one result for example states that the solution re-
mains globally smooth if the initial magnetic field has a
mean component sufficiently large compared to the fluctua-
tions, assumed to be localized.13 This property is a conse-
quence of the fact that only counterpropagating Alfve´n wave
packets interact nonlinearly.

A specific conclusion of this paper is that blowup of the
magnetic field amplitude resulting from the breaking of mag-
netic field lines is unlikely in two space dimensions. Never-
theless, the present formalism cannot capture the behavior
near a neutralX point where numerical evidence and self-
similar reductions indicate that the current amplifies expo-
nentially in time.14,15

Furthermore, recent direct numerical simulations of 3D
MHD indicate the formation of quasi-two-dimensional cur-
rent sheets that result in a depletion of the nonlinearity
strength,16 a mechanism that could prevent singularities. In
order to validate the scenario of magnetic field intensity
blowup discussed in this paper, it is thus of interest to look
for initial conditions that do not lead to bidimensionalization

and correspond to an initial velocity field whose component
transverse to the local magnetic field has a significant diver-
gence.
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