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Nonlinear structures in the form of magnetic holes anti-correlated with the plasma
density and propagating very slowly in directions almost transverse to the ambient
field. They are observed in the magnetosheath and result from the growth of mirror
modes that are unstable in regions with a high β and a strong proton temperature
anisotropy.

Figure 1: From Leckband et al. (1995), Adv. Space Res. 15, 345.



Mirror bubbles with broad troughs and steep walls. Density is anti-correlated
Quasi-perpendicular propagation

Figure 2:
Left: from Treumann et al. (2004), NPG 11, 647.;

Right: from Stasiewicz (2004), GRL 31, L21804.



Filaments

Figure 3: From Alexandrova et al. (2004), JGR 109, A05207.



Cluster spacecrafts allow one to determine k-spectra and clearly identify modes.
For the first time a turbulent spectra of nonlinearly interacting mirror modes has
been identified (Sahraoui et al. 2005).

Figure 4: Sahraoui et al. (2003) JGR 108, A9, SMP1,1-18.



Magnetosheath displays a wide spectrum of low frequency modes (Alfvén, slow
and fast magnetosonic, mirror).

Size of perturbuations can be smaller than the ion gyroradius.

The plasma is warm and collisionless.

Landau damping and finite Larmor radius corrections play an important role.

The origin of coherent solitonic structures (magnetic holes and shocklets) is still
debated (Tsurutani et al. 2004). The spectra are also unexplained.

One needs simulation of this medium with a large range of scales.



Which tool?

• Description of intermediate-scale dynamics by usual MHD is questionable.

• Numerical integration of Vlasov-Maxwell or gyrokinetic equations often beyond
the capabilities of present day computers.

• Need for a reduced description that retains most of the aspects of a
fluid model but includes realistic approximations of the
pressure tensor and wave-particle resonances.

Should remain simple enough to allow 3D numerical simulations of turbulent
regime.

? Gyrofluids: hydrodynamic moments obtained from gyrokinetic equations.
Capture high order FLR corrections but need a specific closure and are written in
a local reference frame.

? Landau fluids [Hammett and co-authors (1990s)]: monofluid taking into
account wave-particle resonances in a way consistent with linear kinetic theory.



Landau fluids for dispersive MHD: outline of the method

• Goal: Extend Landau-fluid model, to reproduce the weakly nonlinear dynamics
of dispersive MHD (magnetosonic and Alfvén) waves whatever their direction of
propagation, in particular of kinetic Alfvén waves (KAW) with kρL ≤ 1, by retaining
FLR corrections and a generalized Ohm’s law in addition to Landau damping.

• Starting point: Vlasov-Maxwell (VM) equations.

• Small parameter: ratio between the ion Larmor radius and the typical (smallest)
wavelength. Field amplitudes also supposed to be small.

• Main problem: Exact hydrodynamic equations are obtained by taking moments
of VM equations. The hierarchy must however be closed and the main work resides
in a proper determination of the pressure tensor.

• Assumptions: Homogeneous equilibrium state with bi-Maxwellian distribution
functions.



Basic tensors

τ = b̂⊗ b̂ n = I− τ where b̂ = b/B0

Pressure tensor p = P + Π sum of a gyrotropic pressure P = p⊥n + p‖τ
(with 2p⊥ = p : n and p‖ = p : τ ) and of a gyroviscosity tensor Π that satisfies
Π : n = 0 and Π : τ = 0.

Similar decomposition of the heat flux tensor q = S + σ with the conditions
σijknjk = 0 and σijkτjk = 0. The tensor σ can be neglected.
We thus characterize q by the parallel and transverse heat flux vectors S‖ and S⊥

with components S
‖
i = qijkτjk and 2S⊥i = qijknjk.

Since me/mi ¿ 1: only non-gyrotropic corrections due to ions are retained.

Weakly nonlinear regime: nongyrotropic contributions Π, S⊥⊥ and S
‖
⊥ retained at

the linear level only.



Equations for the gyrotropic pressure components,

∂tp⊥ +∇ · (u p⊥) + p⊥∇ · u− p⊥bb · ∇u ·bb+
1

2
(tr∇ · q−bb · (∇ · q) ·bb)

+
1

2
(tr (Π · ∇u)

S − (Π · ∇u)
S

: τ + Π :
dτ

dt
) = 0

∂tp‖ +∇ · (u p‖) + 2p‖bb · ∇u ·bb+bb · (∇ · q) ·bb+ (Π · ∇u)
S

: τ −Π :
dτ

dt
= 0.

Total energy is conserved whatever the form of Π and the closure relations.



In the case where the distribution function is close to a Maxwellian, the fourth
order moment is conveniently written in the form

ρrijkl = PijPlk + PikPjl + PilPjk + PijΠlk + PikΠjl + PilΠjk

+ΠijPlk + ΠikPjl + ΠilPjk + ρr̃ijkl.

with a gyrotropic form for the tensor r̃:
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Nonlinear equations for the longitudinal components of parallel and

transverse heat flux vectors (retaining only lowest order nonlinearities)
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Fourth order moment closure

Turn to kinetic theory. Compute various hydrodynamic quantities

using linearly perturbed distribution function, at second order in ω/Ω.
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A similar method leads to a dynamical equation for r̃‖⊥
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r̃⊥⊥ negligible in the large scale limit.



Validation

• For parallel Alfvén waves,
Leading order (proton) gyroviscous tensor is sufficient
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Only the longitudinal components S⊥z and S
‖
z of the transverse and

parallel heat transfer vectors are relevant.

The long-wave reductive perturbative expansion performed on the

resulting Landau-fluid model reproduces the KDNLS equation derived

from Vlasov-Maxwell, up to the replacement of the plasma response

functions by the corresponding two- or four-pole approximants.

Consequence: modulational type instabilities (including

filamentation) of Alfvén waves and their weakly nonlinear

developments are correctly reproduced.



DECAY INSTABILITY:

Forward Alfvén wave → forward acoustic wave + backward Alfvén wave with a

wavenumber smaller than that of the pump.

An algebraic inverse cascade develops: excitation is transfered
to larger and larger scales while the direction of
propagation of the wave switches alternatively at each
step of the process.

Each step is associated with a parallel ion temperature increase.
Electrons remain cold. Results are in good agreement with Vasquez (1995).

Figure 5: Ion temperature evolution for a run with a right-handed wave with amplitude b0 = 0.5, in a

plasma with β = 0.45 and Te = 0.



Decay instability can persist at high values of β.

Taking Rp =
vA

ΩpL0
= 0.1 (ratio of proton inertial length scale to reference lenght scale),

b0 = 0.5 and β = 5, a decay instability is visible at early time whereas fluid theory
predicts a modulational instability.
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Figure 6: Spectral density for the complex quantity b+ = bx + iby in the linear phase of the decay

instability at t = 2000 (left) and in the nonlinear phase at t = 3700 (right) for the run with a right-hand

polarized wave with amplitude b0 = 0.5, in a plasma with β = 5, Rp = 0.1 and Ti/Te = 1.5.



Mirror modes

Although particle trapping certainly plays a role in the saturation of the mirror
instability, it is of interest to focus on the role of hydrodynamic nonlinearities that
may be at the origin of the observed turbulent spectra.

In the quasi-hydrodynamic approach, the maximum growth rate is proportional to
k⊥, whereas kinetic theory predicts the quenching of the instability for perpendicular
scales of the order of the ion Larmor radius (Pokhotelov et al. 2004, JGR 109,
A09213).

Figure 7: Growth rate of the mirror instability, maximized over the propagation angle, as

a function of transverse wavenumber, from above reference.



We here present a Landau fluid model that extends MHD equations by including
finite Larmor radius (FLR) corrections which is capable to accurately reproduce
the dynamics of mirror modes, including at scales close to the ion Larmor radius.

Fluid model
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together with Maxwell’s equations. The ion pressure tensor is rewritten as the sum
pp = p⊥p(I−bb⊗bb) + p‖pbb⊗bb+ Π of the gyrotropic and gyroviscous contributions,
while the electron pressure is taken gyrotropic.

One then needs to rewrite the pressure tensor, as obtained by kinetic theory, in
terms of fluid quantities, thus eliminating the dependence on the plasma response
function.



In order to have a description that is consistent with the linear kinetic theory, we
are here led to prescribe, assuming a regime close to isothermality,
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with similar equations for the other quantities.



Modelization of the gyroviscous stress

We write
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Let us now turn to Πz = (Πxz, Πyz, Πzz) where Πzz = 0.

This vector was neglected by Smolyakov et al. (1995) and Cheng and Johnson
(1999), but turns out not to be globally negligible. Writing

Πz = −∇⊥C +∇⊥ × (Dẑ),

simplified expressions for C and D can be derived from kinetic theory
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Comparison with kinetic theory
Linearization of the fluid model leads to a dispersion relation whose solutions can be compared to those of the kinetic

theory.

Dispersion relation of KAWs
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Figure 8: Comparison of the normalized frequencies <(ω)/kzvA of kinetic Alfvén waves as a function

of b for β⊥p = 0.001, τ = 100 and isotropic equilibrium temperatures, obtained by numerical resolution
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(diamonds). The cross symbols refer to the predictions of the fluid model.



COMPARISON WITH THE LINEAR THEORY OF MIRROR MODES

Close to threshold
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Figure 9: Growth rates γ/Ω as a function of k⊥rp =
√

2b for τ = 0, Ap = 0.7,

β⊥ p = 1.5, θ = 0.1 obtained from kinetic theory (diamonds) and the fluid model

(circles). Crosses correspond to an extended version of the model.



Further away from threshold
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Figure 10: Growth rates γ/Ω as a function of k⊥rp =
√

2b for τ = 1, Ap = 1.5,

Ae = 0.1, β⊥ p = 1.5, θ = 0.2 obtained from kinetic theory (diamonds) and the fluid

model (circles). Crosses correspond to a linear model where all terms are kept in the FLR corrections and

a fourth pole approximation is used for the plasma response function in the first term of Πyz.



Alfvén wave filamentation
Self-focusing instability

In the context of Hall-MHD
Whatever their polarization, monochromatic Alfvén waves are unstable relatively
to transverse modulation

• β > ω
kva

≈ 1 for small k: the instability is absolute
i.e. develops in time.

possibly affected by kinetic effects

• β < ω
kva

≈ 1 for small k: the instability is convective
i.e. develops along the direction of propagation.



Figure 11: Formation of magnetic filaments.



What happens at later time?

The dynamics at longer times was addressed using a finite difference scheme with
adaptive mesh refinement to reproduce a strong filamentation regime (Dreher et al.,
Phys. Plasmas, 12, 052319 (2005)).

Figure 12: Isosurface of |b⊥| at 75% of the maximum value and its transverse section at x = 0 for

t = 653.3 (a), t = 665.5 (b), and t = 667.6 (c)

Strong distortion of the early-time cylindrical filaments: flattening and twisting of
the structures.



Figure 13: (a) Streamlines together with transverse cut for the longitudinal velocity; (b) Isosurface

|b⊥| = 0.35 with plasma velocity arrows in a transverse plane at t = 665.5. Color code in both panels

refers to ux.

Transition from nonlinear waves to a hydrodynamic regime, characterized by
intense current sheets and a strong acceleration of the plasma.



Filamentation in collisionless plasmas

Derive an envelope equation from the Landau fluid:

Define slow transverse variables Y = εη and Z = εζ and slow time T = ε2τ ;

Consider a circularly polarized quasi-monochromatic Alfvén wave train, slowly modulated in the

transverse directions: b⊥ = (by, bz); by + ibz = εψ(Y, Z, T )ei(kξ−ωτ).

The wave envelope obeys a nonlinear Schrödinger equation with dissipation

i∂Tψ + (χ+ iν)∆⊥ψ + |ψ|2ψ = 0

In collisionless plasmas, filamentation can take place for β significantly smaller
than the critical value β = 1 provided by Hall-MHD.

The range of existence of the instability is in general enlarged as the ratio of
electron to ion temperatures and/or the electron anisotropy are increased.
• When T⊥ = T‖ for both ions and electrons with Ti = Te: No filamentation instability

• When T⊥ = T‖ for both ions and electrons with Ti ¿ Te, instability condition of the fluid

theory is recovered.



Perspectives

• Benchmark the model by comparison with Vlasov-Maxwell, gyrokinetic, PIC
and/or hybrid simulations.

• For mirror modes: develop a more refined model by closing at a higher order in
the fluid hierarchy to get rid of close to isothermality assumption.

• Explore the nonlinear stage of parametric and mirror instabilities and in particular
the formation of coherent structures and turbulent cascades.

• Simulation of 2D and 3D dispersive Alfvén and mirror wave turbulence

• Explore the possible description of nonlinear Landau damping.
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