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Abstract. A fluid model retaining finite Larmor radius effects and Landau damping
is constructed to describe the dynamics of mirror modes in a homogeneous plasma per-
meated by a strong magnetic field. In order to deal with a model as simple as possible,
the fluid hierarchy is closed at the level of the pressure tensor, under the assumption of
small deviation from isothermality. Capturing the arrest of the instability at small scales,
this model accurately reproduces predictions of the kinetic theory for the mirror insta-
bility, including in the regime of warm electrons for which new results are presented. The
dispersion relation of kinetic Alfvén waves is also recovered. This model should provide
an efficient tool for numerical simulations of the structures and the turbulence that de-
velop in the nonlinear regime.

1. Introduction

The presence of mirror modes has been reported in
various space plasma environments, such as the solar
wind and the magnetospheres of solar system planets,
in regions with a high β (ratio of thermal to magnetic
pressions) and a strong anisotropy of the proton temper-
ature (dominant in the transverse direction). We refer
to Treumann et al. [2004] and Pokhotelov et al. [2004]
for extended references to observational investigations.
The multispacescraft observations of the Cluster mission
have provided an unambigous detection of mirror modes
in the magnetosheath by permitting a distinction be-
tween spatial and temporal variations. These extremely
low-frequency waves are associated with strong depres-
sions of the magnetic field (magnetic holes) that are anti-
correlated with the plasma density and propagate very
slowly in directions almost perpendicular to the ambient
field (see e.g. Lacombe et al. [1992], Leckband et al.
[1995], Schwartz et al. [1996], Stasiewicz [2004]). Re-
cent analysis by Sahraoui et al. [2004, 2005] of turbulent
magnetic spectra observed in the magnetosheath indi-
cate that their low frequency part is dominated by mirror
modes with wave vectors quasi-perpendicular to the am-
bient magnetic field, the magnetic energy appearing to be
injected at a spatial scale associated with the maximum
growth rate of the mirror instability. This leads to the
picture of a large mirror structure almost stationary in
the plasma frame, acting as a pumping source for a non-
linear energy cascade extending up to a few ion Larmor
radii.

As noted by Treumann et al. [2004], there exists so
far no reliable nonlinear theory for the formation and
evolution of the mirror modes in high temperature plas-
mas. An interesting phenomenological description of the
mirror instability is given by Southwood and Kivelson
[1993] and comparisons with hybrid simulations are pre-
sented by McKean et al. [1992,1993]. Simple satu-
rated solutions based on the conservation of the energy
and magnetic moment of the particles are discussed by
Kivelson and Southwood [1996] and Pantellini [1998]. An
analogy between mirror instability and superconductiv-
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ity is presented by Treumann et al. [2004] who predict
a scaling law for the variation of the critical magnetic
field with the temperature anisotropy. We also men-
tion that Stasiewicz [2004, 2005] interprets the magne-
tosheath structures usually considered as mirror modes,
as trains of slow-mode magnetosonic solitons defined as
exact solutions of Hall-MHD equations with anisotropic
pressure and negligible gyroviscosity. The relevance of
such a description for the terrestrial magnetosphere can
however be questioned, due to the small-scale character
of the structures and the high values of the plasma β that
strengthen the importance of kinetic effects.

Although particle trapping certainly plays a role in
the saturation of the mirror instability (Galland Kiver-
son and Southwood [1996],( Pantellini [1998]), it is of
interest to first focus on the role of hydrodynamic non-
linearities that may be at the origin of the observed tur-
bulent spectra. Nevertheless, a specific property of the
mirror modes that makes their description difficult using
fluid models, originates from the increase of the maximal
instability growth rate with the transverse wave number
up to a scale comparable with the ion Larmor radius. As
a consequence, in spite of the accurate estimates of the
large-scale instability growth rate obtained by Snyder et
al. [1997] and Bugnon et al. [2005] using fluid models
with Landau damping (Landau fluids), numerical inte-
grations in the nonlinear regime are hardly feasible in
the presence of the mirror instability because the small-
est scales retained by the spatial discretization turn out
to be the most unstable. Improved Landau fluid models
including small-scale finite Larmor radius (FLR) correc-
tions are thus necessary to capture the quenching of the
instability at these scales. The main goal of this paper is
to develop such a model, where nongyrotropic contribu-
tions are evaluated in the framework of the linear kinetic
theory and included in a convenient way within a Landau
fluid description. Such an approach involving nonlinear
fluid equations together with the evaluation of suitable
quantities using the linear kinetic theory, was used by
Smolyakov et al. [1995] and Cheng and Johnson [1999].
The present model, that allows for an accurate descrip-
tion of quasi-transverse dynamics, appears to be as sim-
ple as possible in the sense that the fluid hierarchy is
closed at the level of the pressure tensor. Even though
it allows for adiabatic behavior, it is best suited for the
simulation of quasi-isothermal dynamics since only lin-
earized temperature fluctuations are taken into account.

In order to validate the model, comparisons with the
full kinetic theory are performed at the level of the lin-
ear mirror instability. This instability was extensively
investigated by Pokhotelov and coworkers. We neverthe-
less revisit it here, with two main goals: (i) we evaluate
the accuracy of various approximations used in the liter-
ature, concerning the plasma response function and the
truncation of the kinetic formulas to the dominant or-
der in the direction parameter kz/k⊥; (ii) we investigate
the effect of warm electrons, a regime that was considered
by Pokhotelov et al. [2000] in the context of a large-scale
analysis only. Detailed comparisons are in particular per-
formed with Pokhotelov et al. [2004] who studied the
stability of modes with wavelengths extending to and be-
yond the ion Larmor radius in the case of cold electrons.
For a closer contact with the fluid theory, we perform
the linear stability analysis without introducing the di-
electric tensor, as usually done, but rather directly deal
with Maxwell equations supplemented by the expressions
for the kinetic expressions for the densities and velocities
of the ions and electrons.

Because of their very low frequency ω, mirror modes
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are conveniently analyzed in the framework of a pertur-
bative expansion of the particle distribution functions in
terms of the small parameter ω/Ω, where Ω denotes the
ion gyrofrequency. All the contributions arising beyond
the leading order have in fact an unequal influence on
the instability growth rate, which leads us to select those
terms which are to be retained in the Landau fluid de-
scription.

In addition to the computation of the mirror instability
growth rate for perturbations with arbitrary transverse
scale, the present model accurately reproduces the kinetic
Alfvén wave dispersion relation and the phase velocity of
oblique magnetosonic waves. Capturing the full disper-
sion relation of magnetosonic and Alfvén waves whose
propagation direction makes an intermediate angle with
the magnetic field would require a higher order closure
and, as a consequence, a more refined matching of the
fluid and kinetic theories.

The outline of the paper is as follow. In Section 2,
we use the linearized Vlasov-Maxwell system to compute
the dispersion relation of low frequency modes with a
direction quasi-perpendicular to the ambient field, in a
form valid for small transverse scales and hot electrons,
a regime that was not previously addressed in the liter-
ature. Section 3 presents an analysis of this dispersion
relation, including comparisons with previous work and
investigations of yet unexplored regimes. Section 4 is de-
voted to the derivation of the fluid model together with
its validation by comparison with the results of Section
3. Section 5 is a brief conclusion.

2. Low Frequency Linear Kinetic Theory

Consider a spatially homogeneous uniformly magne-
tized plasma with a bi-Maxwellian distribution function
at equilibrium

f (0)
r =

1

(2π)3/2
m

3/2
r

T
(0)
⊥r T

(0)1/2

‖r
exp

{
−

(
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2T
(0)
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(0)
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⊥
)}

for the particles of species r with charge qr, mass mr,
and average number density nr, in the absence of net
charges or currents. The Vlasov equation for each species
is linearized about f

(0)
r , writing fr = f

(0)
r + f

(1)
r , with

B = B0ẑ + b(1) and E = E(1). To simplify the writ-
ing, the superscript (1) will be removed in the writing of
the individual components of the electric and magnetic
fields. The Vlasov equation is supplemented by Maxwell
equations that express the electric and magnetic fields E
and B in terms of the current j =

∑
r
qrnr

∫
vfrd

3v and
the total charge ν =

∑
r
qrnr

∫
frd

3v, in the usual form
∂tB = −c∇× E, c∇×B = 4πj + ∂tE and ∇ · E = 4πν.

It is usual to introduce the scalar potentials Φ and Ψ
together with the vector potential A in the form E⊥ =
−∇⊥Φ−(1/c)∂tA⊥, Ez = −∂zΨ andB = B0+∇×A with
∇ · A = 0. It follows that Az = (ckz/ω)(Φ−Ψ), where,
since there is no ambiguity, we use the same notation for
a field and its Fourier transform.

Assuming a plasma made of protons (subscript p) and
electrons (subscript e) with charge qp = −qe = e, one
rewrites the Ampère-Maxwell equation in the non dimen-
sional form

c2A
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b
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)
eΦ
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(0)
⊥p

=
np
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− ne
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⊥p k

2
⊥/(mpΩ

2), where Ω = eB0/(mpc) denotes
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the proton gyrofrequency, and cA = B0/
√

4πmpn(0) is
the Alfvén speed. Assuming cA ¿ c implies local electric
neutrality np = ne. Under this assumption, one can also
neglect the displacement current and get

k2(Φ−Ψ) = −4π

c2
ω

kz
jz. (2)

One also has

k2bz = i
4π

c
~k⊥ ×~j⊥, (3)

where the ion and electron densities and velocities needed
to express the current j are to be computed using the
kinetic theory. The transverse magnetic field components
are given by

bx = −kxkz
k2
⊥
bz + i

c

ω
kykz

(
1 +

k2
z

k2
⊥

)
(Φ−Ψ) (4)

by = −kykz
k2
⊥
bz − i

c

ω
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(
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k2
z

k2
⊥

)
(Φ−Ψ). (5)

It is convenient to express the velocity v in a cylin-
drical coordinate system by defining the azimuthal angle
φ = tan−1(vy/vx) and writing v = (v⊥ cosφ, v⊥ sinφ, v‖)
and ∇v = (cosφ∂v⊥ − (sinφ/v⊥)∂φ sinφ , ∂v⊥ +
(cosφ/v⊥)∂φ , ∂v‖). Restricting ourselves to the case
of linear perturbations in the form of plane waves of
wavevector k = (kx = k⊥ cosψ, ky = k⊥ sinψ, kz),

such that E(1) = Ê(1) exp(i(k · x − ωt)) + c.c., b(1) =

b̂(1) exp(i(k · x − ωt)) + c.c. and f
(1)
r = f̂

(1)
r exp(i(k · x −

ωt))+c.c., and using Faraday-Maxwell equation to write

b̂(1) = (c/ω)(k × Ê(1)), one has (dropping the hats)
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mrc
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− qr
mr

[(
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ω
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r

]
. (6)

For a bi-Maxwellian distribution, following Akhiezer et
al. [1975], we get for protons

f (1)
p = −ef (0)
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lΩ + kzv‖ − ω

{[
1

T
(0)
⊥p

+
kzv‖
ω

( 1

T
(0)

‖p
− 1

T
(0)
⊥p

)]
×

[
lΩ

(
1 +

k2
z

k2
⊥

)
Jl(λp)Φ− k2

z

k2
⊥
lΩJl(λp)Ψ− ωv⊥

k⊥c
J ′l (λp)bz

]

+
[kzv‖
T

(0)

‖p
− lΩkzv‖

ω

(
1
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}
, (7)

where λp = k⊥v⊥/Ω and Jl is the Bessel function of
order l. A similar equation is obtained for the electrons,
by replacing mp by me and e by −e (including in the
gyrotropic frequency). We thus concentrate the analysis
on the ions and, in order to simplify the writing, now
suppress the subscript p.

Non dimensional velocities and potentials are intro-

duced by writing v⊥ = ṽ⊥

√
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√
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defines the parameters α = (k⊥/Ω)

√
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(0)
⊥ /m, and
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√
m/2T

(0)

‖ . The quantity ζ0 will
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simply be denoted by ζ. The computation of the hy-
drodynamic moments for the protons (number density
np = n
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3v, velocity up =
∫
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3v/
∫
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3v ) then
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are here non negative integers)
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)
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We use the notation

Xγ(ζ l) = ζYγ−1(ζ l) +
(
T

(0)
⊥
T

(0)

‖
− 1

)
Yγ(ζ l),

where Yγ(ζ l) is the analytic continuation on the real

axis of the function defined by
1√
π

∫ +∞
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e−x
2
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for Im ζ > 0. Introducing the plasma dispersion

function Z(ζ) =
1√
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P

∫ +∞
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e−x
2
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dx+ i

√
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2
and the

plasma response function R(ζ) = 1 + ζZ(ζ), one has
Y0(ζ l) = R(ζ l) and Y1(ζ l) = ζ lR(ζ l).

In order to evaluate the velocities and density fluc-
tuations needed to derive the dispersion relation, we
compute the first moments of f (1) as expansions in
powers of the ratio ω/Ω, assuming ω/Ω ¿ 1 and

(kz/Ω)

√
2T

(0)
⊥ /m ¿ 1, with no condition on the mag-

nitude of (k⊥/Ω)

√
2T

(0)
⊥ /m. It is convenient in the sum

involved in the right hand side of Eq. (8) to distinguish
the contribution of l = 0 that leads to a singular term,
from the contributions of l 6= 0. Asymptotic expressions
for Xj(ζl) and Yj(ζl) for l 6= 0 are needed for 0 ≤ j ≤ 1
and are given in the Appendix, together with a few inte-
grals involving Bessel functions.

One obtains for the perturbations of the number den-
sity of the protons
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+2

√
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, (9)

where the quantities Cls(b) and Dl
s(b) are defined as inte-

grals of Bessel functions in the Appendix.
For the electrons, when neglecting contributions of or-

der me/mp, one simply has
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The ion parallel velocity is given by
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For the electrons, we have

uze = −T
(0)
⊥e
T

(0)

‖e

ω

kz
R(ζe)

[
bz
B0

−R(ζe)
eΨ

T
(0)
⊥e

]

+
kz
ω

T
(0)
⊥e − T

(0)

‖e
mp

b
e

T
(0)
⊥p

(
1 +

k2
z

k2
⊥

)
(Φ−Ψ). (12)

The transverse hydrodynamic velocity of each particle
species r is conveniently decomposed into compressible
and solenoidal parts by writing

u⊥r = −∇⊥χc r +∇⊥ × (χs r ẑ). (13)

One has for the ions
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and
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As discussed below, the terms involving D2
1(b) will in

fact not be retained when constructing the Landau fluid
model.

Similarly, one has for the electrons

χs e = − 1

Ω

T
(0)
⊥e
mp

[
2
(
T

(0)
⊥e
T

(0)

‖e
R(ζe)− 1

)
bz
B0

−R(ζe)
eΨ

T
(0)

‖e
+

e

T
(0)
⊥e

(
Φ +

k2
z

k2
⊥

(Φ−Ψ)
)]

−
T

(0)
⊥e − T

(0)

‖e
mp

k2
z

k2
⊥Ω

bz
B0

(16)

and
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k2
⊥
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3. Linear Dynamics of Quasi-Perpendicular
Modes

Substituting the expressions for the density and for
the parallel and perpendicular velocities provided by the
kinetic theory into Eqs. (1)-(3) leads to a system of equa-
tions easily solved using a symbolic calculator. The code
has been validated by checking the dispersion relations
of several waves in various regimes.

3.1. Dispersion Relation of Kinetic Alfvén Waves

We have recovered the well-known dispersion rela-

tion ω2 = k2
zv

2
A

(
1 + (

3

4
+
T

(0)
e

T
(0)
p

)b
)

of kinetic Alfvén waves

(KAWs) in the regime b¿ 1 and for isotropic equilibrium

temperatures such that τ ≡ T
(0)

‖e /T
(0)

‖p À 1. The resolu-
tion was performed using the fourth pole approximation
of the plasma response function R. Better agreement
is found when β⊥p ≡ 8πp

(0)
⊥ p/B

2
0 ¿ 1 and τ À 1, ex-

cluding however extreme values. An example is shown
in Fig. 1 that displays <(ω)/kzvA as a function of b for
β⊥p = 0.001, τ = 100 and Ap = Ae = 0 (where the

anisotropy factor is defined by Ar = T
(0)
⊥ r/T

(0)

‖ r − 1), for
both the numerical resolution of the dispersion relation
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(circles) and the above analytic formula (diamonds). We
check the excellent agreement at large scales where the
formula is asymptotically exact.

3.2. Mirror Mode Instability

The kinetic theory involving various expansions and
approximations, it is of interest to compare the mirror
instability growth rate as given by the above analysis
with results from previous papers in order to point out
the main sources of imprecision. Using the dispersion
relation obtained with Eqs. (1)-(3), we display in Fig.
2 the mirror mode growth rate vth,p=(ω)/k⊥ as a func-
tion of θ = kz/k⊥ for the case where Ap = 1, Ae = 0.2,
τ = 1 and β⊥p = 2, using the full function R (circles)
and its one-pole approximation (crosses), together with
the growth rate given by formula (23) from Pokhotelov et
al. [2000] that is based on the “quasi-hydrodynamic ap-
proximation” for the large scale dynamics (diamonds).
A significant deviation takes place between the three
curves when the growth rate increases. However, ne-
glecting terms proportional to θ2 (excepted the term

4i cosψ
T

(0)
⊥p − T

(0)

‖p
mp

k2
z

k⊥Ω
C3

1 (b)
bz
B0

appearing in uyp which

provides a significant contribution) but keeping the full
function R, leads to a growth rate whose values all fall
within the circle symbols corresponding to the full cal-
culation. We conclude from these observations that the
description is most sensitive to the level of approximation
of the plasma response function.

We now address the behavior of the instability growth
rate as a function of the parameter b that measures the ra-
tio of the transverse scale of the perturbation to the pro-
ton Larmor radius rp. The main result of Pokhotelov et
al. [2004] concerns the increase of the instability thresh-
old at small wavelength and its disappearance for scales
smaller than a fraction of the Larmor radius in the case
of cold electrons. In order to simplify the fluid modeling,
it is of interest to reconsider this case and in particular
to investigate here as well the role of the terms propor-
tional to θ2. Figure 3 displays γmax/Ω, where γmax is
the growth rate maximized over the angle of propaga-
tion, as a function of k⊥rp =

√
2b for Ap = β⊥p = 1.5

and Te = 0. These parameters are those of Fig. 1 of
Pokhotelov et al. [2004]. In Fig. 3, diamonds and circles
correspond to the growth rate calculated from the kinetic
dispersion relation with and without terms in θ2 respec-
tively, as mentioned for the previous case. It is clear from
this picture that these terms can be omitted whatever the
value of θ and b. Crosses correspond to the growth rate
calculated using a series expansion of the dispersion re-
lation truncated at order ζ3. These values are closer to
those given by Pokhotelov et al. [2004] using a low order
approximation of the function R. For this case again, it
appears that the results are most sensitive to the degree
of approximation of the plasma dispersion function. An-
other remark concerns the value of θ at which the growth
rate is maximum. We find for (kz/k⊥)max values of the
order of a few tenths that are thus, up to the precision of
our graph (not shown), exactly 10 times larger than those
displayed in Fig. 3 of Pokhotelov et al. [2004] where a
typo is suspected. The magnitude of the angle associated
with the maximum growth rate is of importance since the
expansion used in the calculation of the perturbed distri-
bution function is based on the assumption of small θ.
The above remark on the irrelevance of the terms pro-
portional to θ2 nevertheless ensures the validity of the
present calculations.

The case of warm electrons is more delicate. As men-
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tioned by Pokhotelov et al. [2000], in the limit b = 0
the instability growth rate is very sensitive to the elec-
tron temperature anisotropy. The behavior of this in-
stability at small wavelength can in fact hardly be esti-
mated using the present formalism, as the growth rate
rapidly reaches values which fall outside the range of the
small frequency approximation. We display in Fig. 4 the
growth rate (maximized over the propagation angles) for
two electron temperature anisotropies, namely Ae = 1
(diamonds) and Ae = 1.005 (circles) when Ap = 1.5,
τ = 1 and β⊥p = 1.5. As seen on this graph, the value of
k⊥rp at which the instability disappears is increased by
more than an order of magnitude compared to the case
Ae = 0. This degree of anisotropy appears in fact to be
at the limit of validity of the the present ordering.

4. A Fluid Model for Mirror Modes

The idea of the model is to supplement the usual MHD
equations with information about the small transverse
scales, as provided by the linear kinetic theory, with the
aim to arrest the mirror instability at small scale. Dif-
ferent models can be constructed with various levels of
complexity. In this paper, we restrict ourselves to the
simple framework where the fluid hierarchy is closed at
the level of the pressure tensor.

4.1. The Fluid Hierarchy

One defines as usual the proton density ρp = mpnp,
and neglects terms proportional to me/mp. The proton
and electron velocities are related by ue = up − j/(en).
The ion pressure tensor is rewritten as the sum pp =

p⊥p(I− b̂⊗ b̂) + p‖pb̂⊗ b̂+ Π of the gyrotropic and gyro-
viscous contributions, while the electron pressure is taken
gyrotropic and characterized by the parallel and trans-
verse pressures p‖e and p⊥e. One has the usual equations

∂tρp +∇ · (ρpup) = 0 (18)

∂tup + up · ∇up +
1

ρp
∇ · pp

− e

mp
(E +

1

c
up ×B) = 0 (19)

E = −1

c

(
up − j

ne

)
×B − 1

ne
∇ · pe, (20)

together with the Faraday-Maxwell equation for the mag-
netic field.

The above hierarchy is to be closed by prescribing the
pressure tensors. At the level of the linear kinetic the-
ory, all the hydrodynamic quantities and in particular the
components of the pressure tensor, are given in terms of
bz, Φ and Ψ (see Section 4.2). Nevertheless, such ex-
pressions that involve the plasma response function (and
thus nonlocal operators in the time variable) cannot be
conveniently substituted into the fluid equations. In ad-
dition, assuming a purely linear description of the pres-
sure tensor would be insufficient to accurately reproduce
the nonlinear effects at the origin of the formation of co-
herent structures and of the development of a turbulent
regime.

Note that Eq. (20) neglects electron inertia. This
point was questioned in Pokhotelov et al. [2000], espe-
cially when the electrons are hot. His statement is based
on the fact that when substituting the kinetic expres-
sion for the pressure within the equation for the electron
longitudinal velocity in order to get the potential Ψ, a
cancelation takes place, which requires to retain the ac-
celeration term in spite of its smallness. The resulting
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expression for Ψ provided by Eq. (21) of Pokotelov [2000]
can in fact be reproduced by substituting the kinetic ex-
pression of j within Eq. (2) (where the l.h.s. turns out to
be negligible at large scale). This suggests that Eq. (20)
can be kept as it is when used in a fluid description. In
fact, comparison with the kinetic theory shows that the
resulting error is in fact subdominant compared to that
made when using a simple approximation of the plasma
response function.

4.2. Kinetic Description of the Pressure Tensors

We hereafter show that one can express the linearized
temperature fluctuations (directly related to the gy-
rotropic pressure disturbances) together with the gy-
roviscosity stress tensor in terms of fluid quantities.
The analysis makes use of the kinetic description of
the pressure tensor. In the linear approximation the
elements of the pressure tensor perturbations reduce
to p

(1)
ij = n(0)m

∫
vivjf

(1)d3v. Furthermore, b̂x =

bx/B0, b̂y = by/B0 and b̂z = 1. One has p
(1)
⊥ =

n(0)m
∫

(v2
⊥/2)f (1)d3v and p

(1)

‖ = n(0)m
∫
v2
‖f

(1)d3v,
from which one easily derives the parallel and trans-
verse temperature perturbations T

(1)

‖ /T
(0)

‖ = p
(1)

‖ /p
(0)

‖ −
ρ(1)/ρ(0) and T

(1)
⊥ /T

(0)
⊥ = p

(1)
⊥ /p

(0)
⊥ − ρ(1)/ρ(0). It fol-

lows that Πxx = −Πyy = n(0)m
∫

(v2
⊥/2)f (1) cos 2φd3v,

Πzz = 0, Πxy = n(0)m
∫

(v2
⊥/2)f (1) sin 2φd3v, Πxz =

n(0)m
∫
v‖v⊥f

(1) cosφd3v + (p
(0)
⊥ − p

(0)

‖ )̂bx and Πyz =

n(0)m
∫
v‖v⊥f

(1) sinφd3v + (p
(0)
⊥ − p

(0)

‖ )̂by. Some tech-
nical details concerning te asymptotic calculation of the
above quantities are given in the Appendix. We concen-
trate here on the resulting estimates.
4.2.1. Parallel and Transverse Temperatures

One gets for the parallel and transverse temperatures
of the ions

T
(1)

‖p

T
(0)

‖p
=

(
1−R(ζp) + 2ζ2

pR(ζp)
)T (0)

⊥p

T
(0)

‖p
×

[(
Γ1(b)− Γ0(b)

)
bz
B0

− Γ0(b)
eΨ

T
(0)
⊥p

]
(21)

and

T
(1)
⊥p

T
(0)
⊥p

=
(T (0)

⊥p

T
(0)

‖p
R(ζp)− 1

)
×

(
− 2bΓ1(b) + 2bΓ0(b)− Γ0(b)

)
bz
B0

−
(
bΓ1(b)− bΓ0(b)

)
R(ζp)

eΨ

T
(0)

‖p

+
(
bΓ1(b)− bΓ0(b)

)
e

T
(0)
⊥p

(
Φ +

k2
z

k2
⊥

(Φ−Ψ)
)
. (22)

Analogous expressions are obtained for the electrons,
with the Γ-functions then taken in the b = 0 limit.
4.2.2. Gyroviscous Stress

The kinetic theory gives

Πxx

p
(0)
⊥p

= − cos 2ψ
(
bΓ0(b)− Γ1(b)− bΓ1(b)

)
×

[
2
(T (0)

⊥p

T
(0)

‖p
R(ζp)− 1

)
bz
B0

+R(ζp)
eΨ

T
(0)

‖p
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− e

T
(0)
⊥p

(
Φ +

k2
z

k2
⊥

(Φ−Ψ)
)]

− cos 2ψΓ1(b)
(T (0)

⊥p

T
(0)

‖p
R(ζp)− 1

)
bz
B0

+ i sin 2ψ
kz
Ω

kz
ω
×

e

T
(0)
⊥p

[(
Γ0(b)− Γ1(b)

)
− 1

b

(
1− Γ0(b)

)]
×

[T (0)
⊥p − T

(0)

‖p
mp

(
1 +

k2
z

k2
⊥

)
(Φ−Ψ)

−ω
2

k2
z

(
Φ +

k2
z

k2
⊥

(Φ−Ψ)
)]

−i sin 2ψ
ω

Ω

[
1

b

(
Γ0(b)− 1− Γ1(b)

)

+2
(
Γ0(b)− Γ1(b)

)]
bz
B0

. (23)

One also has

Πxz

p
(0)

‖p
= i sinψ

T
(0)
⊥
T

(0)

‖

k⊥
Ω

ω

kz

(
Γ0(b)− Γ1(b)

)
×

R(ζ)
(
2
T

(0)
⊥
T

(0)

‖

bz
B0

+
eΨ

T
(0)

‖

)
+ cosψ

kz
k⊥

(
T

(0)
⊥
T

(0)

‖
− 1

)
×

[(
Γ0(b)− Γ1(b)− 1

)
bz
B0

−
(
1− Γ0(b)

)
eΨ

T
(0)
⊥

]

−
[

cosψ
(
T

(0)
⊥
T

(0)

‖
− 2

)
kz
k⊥

(
1− Γ0(b)

)

+i sinψ
T

(0)
⊥ − T

(0)

‖
m

T
(0)
⊥
T

(0)

‖

kzk⊥
ωΩ

×
(
Γ0(b)− Γ1(b)− 1

)](
1 +

k2
z

k2
⊥

)
e

T
(0)
⊥

(Φ−Ψ)

+4iC3
1 (b) sinψ

(
T

(0)
⊥
T

(0)

‖
− 2

)
kzω

k⊥Ω

bz
B0

. (24)

The elements Πxy and Πyz are deduced from Πxx and Πxx

respectively, by replacing sin 2ψ by − cos 2ψ and cos 2ψ
by sin 2ψ. Furthermore, the contributions involving Φ −
Ψ are conveniently expressed in terms of the transverse
magnetic field components, using Eqs. (4) and (5).

4.3. Modeling Parallel and Transverse Temperatures

The MHD description of plasmas often involves the
double adiabatic law of Chew, Goldberg and Law [1956],
that relates the fluctuations of the gyrotropic pressure
components to those of the density and of the magnetic
field intensity through specific power law dependencies.
The relevance of such a functional dependency with dif-
ferent exponents was recently stressed by Stasiewicz
[2005] who suggested empirical fittings on the basis of
the analysis of observational data provided by the Clus-
ter spacecraft mission, for a broad range of values of the
plasma β. A semi-phenomenological approach based on
the use of complex polytropic indices calculated as func-
tion of the mode properties is presented by Belmont et
al. [1992]. The analysis is based on the fluid hierarchy
for the lowest order moments, supplemented by the ki-
netic expression of the polytropic indices provided by the
kinetic theory as derived by Belmont and Mazelle [1992].

In this section, we derive evolution equations for the
temperature fluctuations that easily couple with the hy-
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drodynamic equations, while they also accurately repro-
duce the linear kinetic theory. For this purpose, we are
led to prescribe

T‖r = T
(0)

‖r (1 + α‖r) (25)

T⊥r = T
(0)
⊥r

( |B|
B0

)−Ar

(1 + α⊥r). (26)

Using the expression for the parallel temperatures, one
has for the ions

α‖p =
T

(0)
⊥p

T
(0)

‖p

(
1−R(ζp) + 2ζ2

pR(ζp)
)
×

[(
Γ1(b)− Γ0(b)

)
bz
B0

− Γ0(b)
eΨ

T
(0)
⊥p

]
(27)

and for the electrons

α‖e = −T
(0)
⊥e
T

(0)

‖e

(
1−R(ζe) + 2ζ2

eR(ζe)
)(

bz
B0

+
eΨ

T
(0)
⊥e

)
.

(28)

This model that only retains linearized temperature fluc-
tuations is mostly adapted to the quasi-isothermal dy-
namics, a regime consistent with the ultra low frequencies
of the linear mirror modes. Furthermore, as observed by
Sahraoui et al. [2005], nonlinear mirror structures prove
to be stationary at all scales in the plasma frame.

The plasma response function can easily be eliminated
from the above formulas by introducing the hydrody-
namic velocities of each species along the ambient field.
This gives

α‖p =
1−R(ζp) + 2ζ2

pR(ζp)

sgn(kz)ζpR(ζp)

√
mp

2T
(0)

‖p

[
uzp +

T
(0)
⊥p − T

(0)

‖p
mp

1− Γ0(b)

b

1

v2
A

jz
en(0)

]
(29)

α‖e =
1−R(ζe) + 2ζ2

eR(ζe)

sgn(kz)ζeR(ζe)

√
me

2T
(0)

‖e

[
uze −

T
(0)
⊥e − T

(0)

‖e
mp

1

v2
A

jz
en(0)

]
. (30)

If for the sake of simplicity, one restricts oneself to a two-
pole approximation of the plasma response function, one
gets

α‖p = −i√π kz
|kz|

√
mp

2T
(0)

‖p

[
uzp +

T
(0)
⊥p − T

(0)

‖p
mp

1− Γ0(b)

b

1

v2
A

jz
en(0)

]

α‖e = −i√π kz
|kz|

√
me

2T
(0)

‖e

[
uze −

T
(0)
⊥p − T‖e(0)

mp

1

v2
A

jz
en(0)

]

that remain finite as ζp or ζe become infinite. One
easily checks that reproducing the proper decay of
the Landau damping in this adiabatic limit [associ-
ated with the imaginary part of the ratio involv-
ing the R function in Eqs. (29) and (30)] actually
requires the use of at least the three-pole approxi-
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mant R3(ζ) =
2− i

√
πζ

2− 3i
√
πζ − 4ζ2 + 2i

√
πζ3

, which yields

1−R(ζ) + 2ζ2
i R(ζ)

ζR(ζ)
≈ 2i

√
π

−2 + i
√
πζ

. Substituting in Eqs.

(29) and (30) and returning to the physical space for the
time and longitudinal coordinate variables, we are led to
prescribe α‖p and α‖e as the solutions of the dynamical
equations

(∂t − 2√
π

√
2T

(0)

‖p
mp

Hz∂z)α‖p

+2∂z

[
uzp +

T
(0)
⊥p − T

(0)

‖p
mp

1− Γ0(b)

b

1

v2
A

jz
en(0)

]
= 0 (31)

(∂t − 2√
π

√
2T

(0)

‖e
me

Hz∂z)α‖e

+2∂z

[
uze −

T
(0)
⊥e − T‖e(0)

mp

1

v2
A

jz
en(0)

]
= 0. (32)

Turning to the transverse quantities, we write

α⊥p = b
(
Γ0(b)− Γ1(b)

)[
2
(T (0)

⊥p

T
(0)

‖i
R(ζp)− 1

)
bz
B0

+R(ζp)
eΨ

T
(0)

‖i
− e

T
(0)
⊥i

(
Φ +

k2
z

k2
⊥

(Φ−Ψ)
)]

+
[
Ap − Γ0(b)

(T (0)
⊥p

T
(0)

‖p
R(ζp)− 1

)]
bz
B0

. (33)

By comparison with the kinetic expression for χs p, we
are led to prescribe

α⊥p + Γ0(b)
T

(0)
⊥p

T
(0)

‖p
R(ζp)

bz
B0

=
k2
⊥
Ω
χs p +Kp

bz
B0

(34)

with

Kp =
(
4C3

1 (b)
T⊥p − T‖p

mp

k2
z

Ω2
+Ap + Γ0(b)

)
.

When dealing with α⊥p it is sufficient to replace the
plasma response function by its one pole approximation
R1(ζp) = 1/(1 − i

√
πζp). This leads to the dynamical

equation

[
∂t − 1√

π

√
2T

(0)

‖p
mp

Hz∂z

](
α⊥p − k2

⊥
Ω
χs p −Kp

bz
B0

)

− 1√
π

√
2T

(0)

‖p
mp

Γ0(b)
T

(0)
⊥p

T
(0)

‖p
Hz∂z

bz
B0

= 0. (35)

Note that −k2
⊥χsp identifies with the longitudinal vortic-

ity ωzp = ẑ · (∇× up) of the proton flow.
The equivalent equation for the electrons is simply

[
∂t − 1√

π

√
2T

(0)

‖e
me

Hz∂z

](
α⊥e − (Ae + 1)

bz
B0

)

− 1√
π

√
2T

(0)

‖e
me

T
(0)
⊥e
T

(0)

‖e
Hz∂z

bz
B0

= 0. (36)
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In the above equation, ∂tbz is expressed using the Fara-
day equation and the generalized Ohm’s law. The above
closure equations were derived by a linear analysis. In or-
der to restore Galilean invariance, it may nevertheless be
suitable to replace the partial time derivatives ∂t acting
on the α’s by the convective derivative ∂t + u · ∇.

As already noted, this model takes into account tem-
perature fluctuations at the linear level only. As a con-
sequence, although it allows for adiabatic behavior, it is
best suited for the simulation of quasi-isothermal dynam-
ics.

4.4. Modeling the Gyroviscous Stress

It is convenient to write

1

p
(0)
⊥p
∇⊥ ·Π⊥ = −∇⊥A+∇⊥ × (Bẑ). (37)

The quantities A and B are expressed by means of Eq.
(23). At this level, we check that, to leading order in
k2
z/k

2
⊥, A and B reduce to the quantities −δpc and −δps

of Cheng and Johnson [1999], when assuming a zero drift
frequency.

Using Eq. (14) in the simplified form where subdom-
inant terms are neglected, together with Eq. (22) that
gives

(T (0)
⊥p

T
(0)

‖p
R(ζp)− 1

)
bz
B0

=
1

Γ0(b)
×

(
k2
⊥
Ω
χsp + 4

T
(0)
⊥p − T

(0)

‖p
mp

k2
z

Ω2
C3

1 (b)
bz
B0

− T
(1)
⊥p

T
(0)
⊥p

)
, (38)

we finally obtain

A =
(
1− Γ1(b)

b[Γ0(b)− Γ1(b)]
+

Γ1(b)

Γ0(b)

)
k2
⊥
Ω
χs p

−Γ1(b)

Γ0(b)

T
(1)
⊥p

T
(0)
⊥p

(39)

B = −i ω
Ω

[
Γ0(b)− 1− Γ1(b)

b
+ 2

(
Γ0(b)− Γ1(b)

)

+
Γ0(b)− Γ1(b)

1− Γ0(b)

(
Γ0(b)− Γ1(b)− 1− Γ0(b)

b

)]
bz
B0

+
1

1− Γ0(b)

[
Γ0(b)− Γ1(b)− 1− Γ0(b)

b

]
k2
⊥
Ω
χc p. (40)

In A, we have neglected a contribution of the form

4C3
1 (b)

(
bΓ0(b)−Γ1(b)−bΓ1(b)

Γ0(b)−Γ1(b)
+ bΓ1(b)

Γ0(b)

)T (0)
⊥p
−T (0)

‖p

T
(0)
⊥p

k2z
k2⊥

bz
B0

that,

without being totally negligible, is nevertheless relatively
small due to the factor k2

z/k
2
⊥. We check that this term

has essentially no effect at the level of the dispersion re-
lation and can thus be discarded in the fluid model. Fur-
thermore, in the above equations, the temperature dis-
turbance T

(1)
⊥p /T

(0)
⊥p is provided by α⊥p. The quantity

iωbz/B0 is estimated using the Faraday-Maxwell equa-
tion and the expressions of Ψ and E⊥ given by the gen-
eralized Ohm’s law. Finally, the contributions χs and χc
are given by χsẑ = (ik⊥×u⊥)/k2

⊥ and χc = (ik⊥·u⊥)/k2
⊥.

Let us now turn to Πz = (Πxz,Πyz,Πzz) where Πzz =
0 in the linear description. This vector was neglected by
Smolyakov et al. [1995] and Cheng and Johnson, [1999],
but turns out not to be globally negligible. Writing

Πz = −∇⊥C +∇⊥ × (Dẑ), (41)
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simplified expressions for C and D can be derived from
Eq. (24) by noticing that the contributions involving(T (0)

⊥
T

(0)
‖

− 2
)
kz
k⊥

(
1−Γ0(b)

)(
1 +

k2z
k2⊥

)
e

T
(0)
⊥

(Φ−Ψ) in Eq.(24)

and in the corresponding equation for Πyz are small and
also that neglecting the terms proportional to ω has a
minor influence at the level of the dispersion relation. A
more accurate description is possible but would lead to
a cumbersome formalism. Retaining the above approxi-
mations, we are led to write

C
p
(0)

‖p
= i

kz
k2
⊥

(
T

(0)
⊥
T

(0)

‖
− 1

)[(
Γ0(b)− Γ1(b)− 1

)
bz
B0

−
(
1− Γ0(b)

)
eΨ

T
(0)
⊥

]
(42)

D
p
(0)

‖p
=

(
Γ0(b)− Γ1(b)− 1)

)(
T

(0)
⊥
T

(0)

‖
− 1

)
4π

cB0k2
⊥
jz.

(43)

4.5. Comparison with the Kinetic Theory

In order to test the accuracy of the fluid model, we
compare in this section its predictions for the dispersion
relation of the various MHD waves, and the instability
growth rate of the mirror modes, with the results of Sec-
tion II, based on the full kinetic theory. Linearizing the
fluid model in a reference frame where ∂/∂y = 0, one
easily derives

−∂t∂xxχc p + ∂xx

(
p⊥

ρ
(0)
p

− p
(0)
⊥
ρ
(0)
p

A+ c2A
bz
B0

)

+
(
c2A +

p
(0)
⊥ − p

(0)

‖

ρ
(0)
p

)
∂zz

bz
B0

−
p
(0)

‖p

ρ
(0)
p

∂xxzC = 0 (44)

−∂t∂xxχs p −
(
c2A +

p
(0)
⊥ − p

(0)

‖

ρ
(0)
p

)
∂xz

by
B0

−p
(0)
⊥
ρ
(0)
p

∂xxB −
p
(0)

‖

ρ
(0)
p

∂xxzD = 0 (45)

∂tuzp + ∂z

( p‖

ρ
(0)
p

+
p
(0)
⊥ − p

(0)

‖

ρ
(0)
p

bz
B0

)
−
p
(0)

‖p

ρ
(0)
p

∂xxC = 0,

(46)

where the pressures without subscript denote the sum
of the proton and electron pressures and where we have
used the generalized Ohm’s law that rewrites

c

B0
Ex = ∂xχs p − c2A

Ω
∂x

bz
B0

+
(
c2A
Ω

+
p
(0)
⊥ e − p

(0)

‖ e

ρ
(0)
p Ω

)
∂z
bx
B0

− 1

ρ
(0)
p Ω

∂xp⊥ e (47)

c

B0
Ey = −∂xχc p +

(
c2A
Ω

+
p
(0)
⊥ e − p

(0)

‖ e

ρ
(0)
p Ω

)
∂z
by
B0

(48)

Ψ =
1

n0e

(
p‖ e + (p

(0)
⊥ e − p

(0)

‖ e )
bz
B0

)
. (49)

We also have

∂t
np
n0

− ∂xxχc p + ∂zuzp = 0 (50)
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∂t
by
B0

+
c

B0
(∂zEx + ∂xzΨ) = 0 (51)

∂t
bz
B0

+
c

B0
∂xEy = 0, (52)

together with the relations ∂xbx + ∂zbz = 0 and

jz =
c

4π
∂xby.

Equations (44)-(46) and (50)-(52), supplemented by
the expressions for the pressures resulting from Eqs. (31)-
(32) and Eqs. (35)-(36), provide a closed system from
which the dispersion relation is easily obtained using a
symbolic calculator.

In order to test the capability of the model to describe
KAWs, we included in Fig. 1 for the frequency of these
waves as a function of perpendicular wavenumber, the
prediction of the fluid model (cross symbols). We observe
that the agreement with the kinetic theory is excellent.

Concerning magneto-sonic waves propagating perpen-
dicular to the ambient magnetic field, the phase velocity
is accurately reproduced by the model, since the adia-
batic regime associated with the condition ∂t À ∂z is
correctly described by the dynamical equations (31)-(32)
and (35)-(36) governing the pressures. The corrective
dispersive terms in the wavenumber cone kz/k⊥ ¿ 1
which require second order accuracy in a 1/Ω expan-
sion of the FLR terms, are however not properly cap-
tured. The kinetic theory developed in the previous sec-
tion is also insufficient to describe this finite frequency
mode that requires higher order terms in the develop-
ment of Xγ and Yγ . In fact, only a few terms propor-
tional to ω4/Ω4 are to be calculated, that originate from
the next order contribution to X0, the other extra terms
in Y0, X1 and Y1 being all proportional to kz. These
terms give rise to an extra contribution to n

(1)
p /n

(0)
p that

reads
2

b
(bΓ0(b)− bΓ1(b)− Γ1(b))

ω4

Ω4

bz
B0

and to an extra

contribution to uyp (taking the angle ψ = 0) given by

−2i

√
2T

(0)
⊥p
mp

√
2

b

(
bΓ1(b)− bΓ0(b) + Γ1(b) +

Γ1(b)

2b

)
ω4

Ω4

bz
B0

.

The integrals are here calculated keeping only the l = ±1
terms in the summation (see Appendix). The other terms
of the series contribute for only a few percents when
b = O(1). With these extra terms, one easily com-
putes the dispersion relation of transverse magnetosonic
waves and verifies its agreement with eqs. (2.10)-(2.11)
of Mikhailovskii and Smolyakov [1985]. Figure 5 displays
<(ω)/k⊥vA as a function of b for β‖p = 1, τ = 1 and
Ap = Ae = 0 (taking θ = 10−4) for the numerical reso-
lution of the dispersion relation of the full kinetic theory
(diamonds), for the analytic formula of Mikhailovskii and
Smolyakov [1985] (crosses), which is only valid for very
small values of b, and for the fluid model (circles). As
announced, for transverse magnetosonic waves, the fluid
model is only valid at the point b = 0.

We now turn to the main property of this model, i.e.
its capability to model of mirror modes at finite values
of the parameter b. We first address a case with cold
electrons and parameters corresponding to a proximity
to the mirror instability threshold (Ap = 0.7, β⊥ p = 1.5,
θ = 0.1). As seen on Fig. 6, the agreement between
kinetic theory (diamonds) and the fluid model (circles)
is excellent, except at the largest values of the param-
eter b for which a deviation is visible, although small.
In order to analyze the origin of the discrepancy at these
small scales, we symbolize by crosses the results obtained
when the dispersion relation is derived from the fluid
model in an improved form that retains all terms in the
FLR corrections and a fourth pole approximation used
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for the plasma response function in the first term of Πyz.
Note that these extra terms cannot be simply incorpo-
rated when the fluid model is used to address an initial
value problem, due to the presence of high powers of the
frequency in the denominator. They are only used here
in the computation of the dispersion relation for com-
parison. Figure (6) shows that the agreement between
kinetic theory and this “extended” fluid model is then ex-
cellent throughout the entire b-range. This suggests that
a proper modeling of these extra terms in the framework
of a more sophisticated model, would ensure a high ac-
curacy up to the smallest transverse scales. Keeping a
larger number of fluid moments could also contribute to
improve the accuracy of the model.

For parameters corresponding to a finite distance to
threshold and finite electron temperature (τ = 1, Ap =
1.5, Ae = 0.1, β⊥ p = 1.5, θ = 0.2), we compare in Fig. 7
the results of the kinetic theory (diamonds) with those of
the fluid model (circles) for the imaginary part of the fre-
quency as a function of k⊥rp. Crosses again correspond
to the “extended” fluid model. As seen on this graph,
the agreement between kinetic theory and the fluid mod-
els is good (and even better when including the extra
terms) when the growth rate takes small values. It clearly
deteriorates close to the maximum growth rate as the
conditions for the validity of the asymptotics performed
on the kinetic theory are violated. The important point
concerns however the fact that the model reproduces the
large-scale behavior with asymptotic accuracy and dis-
plays the correct qualitative behavior when b is of order
unity.

5. Concluding Remarks

We have constructed a Landau fluid model that in-
cludes small-scale FLR effects in order to reproduce the
growth rate of the mirror instability for perturbations
with arbitrary transverse wavenumber, and in particular
the arrest of the instability at small scales. The model
also accurately reproduces the dispersion relation of ki-
netic Alfvén waves and the phase velocity of transverse
magnetosonic waves. At a technical level, an interesting
property of this approach concerns the differential form
of the closure conditions, which originates from the neces-
sity of approaching the plasma response function by Padé
approximants of sufficiently high order to avoid spurious
Landau dissipation. A similar development is reported
by Goswami et al. [2005] in the context of a high order
Landau fluid closure for the large-scale dynamics.

The present model should provide an efficient tool
to simulate the quasi-transverse dynamics in the nonlin-
ear regime, with the aim to reproduce in particular the
formation and evolution of coherent structures and tur-
bulent cascades similar to those observed in the terres-
trial magnetosheath by satellite missions ( Sahraoui et al.
[2003] and Tsurutani et al. [2005]). Such a study will be
the object of a forthcoming paper. Nevertheless, an accu-
rate description of oblique MHD waves requires a closure
of the moment hierarchy at a higher order, as illustrated
by Passot and Sulem [2004a, 2004b] and Goswami et al.
[2005]. Matching to the kinetic theory as needed to also
capture the small-scale dynamics is however a delicate is-
sue that is presently under investigation. Such a refined
model would also permit to account for situations where
the existence of a strong temperature variations requires
a fully nonlinear description of their evolution.

Acknowledgments. We acknowledge useful discussions
with G. Belmont and F. Sahraoui. This work benefited of
support from CNRS program “Soleil-Terre”.
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Appendix

The computation of the velocities and the density fluc-
tuations of the various species require the estimate of
Xj(ζl) and Yj(ζl) for 0 ≤ j ≤ 1. For l 6= 0, one writes

ζ l = −ζ lΩ
ω

(
1− ω

lΩ

)
. Using that Z(ζ) = −1/ζ−1/2ζ3−

3/4ζ5 +O(1/ζ7) for ζ → +∞, one obtains when expand-
ing at the order (ω/Ω)3 needed to get a uniform descrip-
tion of the moments at order (ω/Ω)2,

X0 =
ω

lΩ
+

[
1− 1

2ζ2
0

(
T

(0)
⊥
T

(0)

‖
− 1

)](
ω

lΩ

)2

+
[
1− 1

ζ2
0

(
T

(0)
⊥
T

(0)

‖
− 3

2

)](
ω

lΩ

)3

(A1)

Y0 = − 1

2ζ2
0

(
ω

lΩ

)2

− 1

ζ2
0

(
ω

lΩ

)3

(A2)

X1 =
1

2ζ 0

(
T

(0)
⊥
T

(0)

‖
− 1

)(
ω

lΩ

)

+
1

2ζ 0

(
T

(0)
⊥
T

(0)

‖
− 2

)(
ω

lΩ

)2

+
[

1

2ζ0

(
T

(0)
⊥
T

(0)

‖
− 3

)

+
3

4ζ3
0

(
T

(0)
⊥
T

(0)

‖
− 1

)](
ω

lΩ

)3

(A3)

Y1 =
1

2ζ 0

(
ω

lΩ

)
+

1

2ζ 0

(
ω

lΩ

)2

+
(

1

2ζ0
+

3

4ζ3
0

)(
ω

lΩ

)3

. (A4)

We are thus led to sum series of the form

Skp (x) =
∑
l6=0

1

lk
Jl(x)Jl−p(x)

and

Σkp(x) =
∑
l6=0

1

lk
J ′l (x)Jl−p(x)

and to define the integrals

Cls(b) =

∫
ṽl⊥Σ2

s(αṽ⊥)e−ṽ
2
⊥dṽ⊥

and

Dl
s(b) =

∫
ṽl⊥S

2
s (αṽ⊥)e−ṽ

2
⊥dṽ⊥.

One has S0
0(x) = 1− J2

0 (x), S1
0(x) = 0, Σ1

0(x) = 0,

S0
1(x) = −S0

−1 = J0(x)J1(x), S
1
1(x) = S1

−1 =
1

x
(1− J2

0 (x))

and Σ1
1(x) = Σ1

−1 =
1

x
J0(x)J1(x), and one also makes

use of the identities
∫ +∞
0

J2
0 (αx)e−x

2
xdx = 1

2
e−bI0(b),∫ +∞

0
J0(αx)J

′
0(αx)e

−x2
x2dx =

√
2b
4
e−b

(
I1(b) − I0(b)

)
,

∫ +∞
0

J2
1 (αx)e−x

2
x3dx = b

2
e−b

(
I0(b) − I1(b)

)
, where

Iν(b) is the modified Bessel function of order ν. One
also uses the standard notation Γν(b) = e−bIν(b).

The series Skp (x) and Σkp(x) for k ≥ 2 are in con-
trast difficult to compute exactly but can be estimated
with a sufficient accuracy by retaining only the contribu-
tions originating from l = ±1 and in some cases from
l = ±2 also. In the expression of uzp, we approxi-
mate C2

0 (b) by retaining the contributions of l = ±1
and l = ±2 that are comparable, in the form C2

0 (b) ≈
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(1/4
√

2b)(3bΓ0(b)−3Γ1(b)−2Γ1(b)−2Γ0(b)+4Γ1(b)/b).
For D1

0(b), we only retain the contribution of l = ±1,
which gives D1

0(b) ≈ Γ1(b). Further contributions are
conveniently computed using a software for symbolic cal-
culations. The contribution of l = ±2 gives for ex-
ample (1/4b)(bΓ0(b) − 2Γ1(b)). One then checks that
such corrections do not significantly affect the summa-
tion and can be overlooked for the sake of simplicity.
Using a similar approximation for coefficients entering
χps, we approximate C3

1 (b) ≈ (−3bΓ0(b) + 2Γ0(b) +
3bΓ1(b) + 2Γ1(b) − 2Γ1(b)/b + 2Γ0(b)/b − 4Γ1(b)/b

2)/4
and D2

1(b) ≈ (1/
√

2b)(bΓ0(b)− bΓ1(b)− Γ1(b)).
The computation of the pressure tensor components

in the low frequency limit requires the additional compu-
tation of

X2 =
1

2

(
ω

lΩ

)
+

[
1

2
− 3

4ζ2
0

(
T

(0)
⊥
T

(0)

‖
− 1

)](
ω

lΩ

)2

+
[
1

2
− 3

ζ2
0

(
T

(0)
⊥
T

(0)

‖
− 3

2

)](
ω

lΩ

)3

(A5)

Y2 = − 3

4ζ2
0

(
ω

lΩ

)2

− 3

2ζ2
0

(
ω

lΩ

)3

. (A6)

One also needs the identities

S1
2(x) = S1

−2 = −J0(x)J2(x) (A7)

S2
2(x) = −S2

−2 =
2

x
J0(x)J1(x)− 2

x2

(
1− J2

0 (x)
)
(A8)

S3
2(x) = −S3

−2

= − 2

x2
J0(x)J1(x) +

1

x

(
1− 2J2

1 (x)
)

(A9)

and

∫ +∞

0

J2
0 (αx)e−x

2
x3dx

= −1

2
e−b(bI0(b)− I0(b)− bI1(b)) (A10)

∫ +∞

0

J2(αx)J0(αx)e
−x2

x3dx

=
1

2
e−b

(
bI0(b)− I1(b)− bI1(b)

)
. (A11)
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Figure 1. Comparison of the normalized frequencies
<(ω)/kzvA of kinetic Alfvén waves as a function of b
for β⊥p = 0.001, τ = 100 and isotropic equilibrium
temperatures, obtained by numerical resolution of the
full dispersion relation (circles) and from the analytic

formula ω2 = k2
zv

2
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(
1 + (
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+
T

(0)
e

T
(0)
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)

(diamonds). The

cross symbols refer to the predictions of the model de-
scribed in Section III.
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Figure 2. Mirror mode growth rate =(ω)/k⊥vth,p as a

function of θ =
kz
k⊥

for a case with Ap = 1, Ae = 0.2,

τ = 1, β⊥p = 2 using the full plasma response function
R (circles) and its one-pole approximation (crosses), to-
gether with the growth rate given by formula (23) from
Pokhotelov et al. [2000] (diamonds) and based on the
“quasi-hydrodynamic approximation” for the large scale
dynamics.
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Figure 3. Growth rates γmax/Ω maximized over the

angle of propagation, as a function of k⊥rp =
√

2b for
Ap = β⊥p = 1.5 and cold electrons, using the kinetic
dispersion relation calculated with (diamonds) and with-
out (circles) terms in θ2 = k2

z/k
2
⊥. Crosses correspond to

the growth rate calculated using a series expansion of the
dispersion relation truncated at order ζ3 (see text).
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Figure 4. Growth rate (maximized over the propaga-
tion angles) for electron temperature anisotropies Ae = 1
(diamonds) and Ae = 1.005 (circles), for Ap = 1.5, τ = 1
and β⊥p = 1.5.
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Figure 5. Normalized frequencies <(ω)/k⊥vA of trans-
verse magnetosonic waves as a function of b for β⊥p = 1,
τ = 1 and isotropic equilibrium temperatures, given by
numerical resolution of the fluid model (circles), the full
kinetic theory (diamond) and by the asymptotic formula
of Mikhailovskii and Smolyakov [1985] (crosses).
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Figure 6. Mirror mode growth rates γ/Ω as a func-

tion of k⊥rp =
√

2b for τ = 0, Ap = 0.7, β⊥ p = 1.5,
θ = 0.1 obtained from kinetic theory (diamonds) and the
fluid model (circles). Crosses correspond to an extended
version of the model (see text).
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Figure 7. Mirror mode growth rates γ/Ω as a function

of k⊥rp =
√

2b for τ = 1, Ap = 1.5, Ae = 0.1, β⊥ p = 1.5,
θ = 0.2 obtained from kinetic theory (diamonds) and
the fluid model (circles). Crosses correspond to a linear
model where all terms are kept in the FLR corrections
and a fourth pole approximation is used for the plasma
response function in the first term of Πyz.


