Literature

Cosmic Magnetism and the Galactic Magnetic Field

Reviews and Fundamentals

Shukurov, A.; Mesoscale Magnetic Structures in Spiral Galaxies; in “Cosmic Magnetic Fields”; Eds. Richard Wielebinski, Rainer Beck; Lecture Notes in Physics, 664, 113 (2005).
A review on the fundamental processes governing magnetic fields in galaxies.

Chamandy, L, Shukurov, A., Subramanian, K., Stoker, K.; Non-linear galactic dynamos: a toolbox, MNRAS 443, 1867 (2014).
A collection of simple solutions of disc dynamo equations that can be used in various applications.

Haverkorn, M.; Magnetic Fields in the Milky Way; Chapter in “Magnetic Fields in Diffuse Media”, Eds. Elisabete de Gouveia dal Pino and Alex Lazarian., Astrophysics and Space Science Library, Volume 407, Springer (2015); Page 483
A recent review of our knowledge about the Galactic Magnetic Field.

Models, Simulations and Datasets

Poezd, A., Shukurov, A., Sokoloff, D.; Global Magnetic Patterns in the Milky-Way and the Andromeda Nebula; Monthly Notices of the Royal Astronomical Society, 264, 285 (1993).
An early approach to model large scale fields in galaxies by a thin disk dynamo.

Han, J.L., Qiao, G.J.; The magnetic field in the disk of our Galaxy; Astronomy & Astrophysics, 288, 759 (1994).
An early paramatrised model for the disk field of our Galaxy constrained by Faraday rotation measures.

Stanev, T.; Ultra-high-energy cosmic rays and the large-scale structure of the Galactic magnetic field; Astrophysical Journal, 479, 290 (1997).
First complete model set for the Galactic Magnetic Field used to be used to calculate UHECR deflections.

Bykov, A., Popov, V., Shukurov, A., Sokoloff, D.; Anomalous persistence of bisymmetric magnetic structures in spiral galaxies; Monthly Notices of the Royal Astronomical Society, 292, 1 (1997).
Application of the disk dynamo approach to spiral galaxies.

Sun, X.H., Reich, W., Waelkens, A., Enßlin, T.A.; Radio observational constraints on Galactic 3D-emission models; Astronomy & Astrophysics, 477, 573 (2008).
A 3D model of the Galactic Magnetic Field constrained by polarized synchrotron emission and rotation measures.

Kulesza-Żydzik, B., Kulpa-Dybeł, K., Otmianowska-Mazur, K., Soida, M., Urbanik, M.; 3D MHD simulations of magnetic field evolution and radio polarization of barred galaxies; Astronomy and Astrophysics, 522, A61 (2010)
Presentation of MHD simulation scheme for magnetic fields in barred galaxies

Jansson, R., Farrar, G.R.; A New Model of the Galactic Magnetic Field; Astrophysical Journal, 757, 14 and Astrophysical Journal Letters, 761, L11 (2012).
One of the currently most sophisticated GMF models, used as a standard reference in UHECR science.

Kulpa-Dybeł, K., Nowak, N., Otmianowska-Mazur, K., Hanasz, M., Siejkowski, H., Kulesza-Żydzik, B.; The effect of supernova rate on the magnetic field evolution in barred galaxies; Astronomy & Astrophysics, 575, A93 (2015)
MHD simulation results on the impact of the cosmic ray driven dynamo on magnetic fields in galaxies.

Planck Collaboration; Planck intermediate results. XLII. Large-scale Galactic magnetic fields; Astronomy & Astrophysics, 596, A103 (2016)
GMF model published by the Planck collaboration, using also Planck polarized dust maps as a tracer.

Ultra-high Energy Cosmic Rays

Reviews

Hillas, A.M.; The Origin of Ultra-High-Energy Cosmic Rays; Annual Review of Astronomy and Astrophysics, 22, 425 (1984).
An early and fundamantal review of UHECR, source of the “Hillas plot”.

Kotera, K., Olinto, A.V.; The Astrophysics of Ultrahigh-Energy Cosmic Rays, Annual Review of Astronomy and Astrophysics 49, 119-153 (2011).
A quite recent review covering almost all aspects of UHECR theory and observations.

Energy spectrum, composition, and arrival directions

Stanev, T., Biermann, P.L., Lloyd-Evans, J., Rachen, J.P., Watson, A.A.; Arrival Directions of the Most Energetic Cosmic Rays; Physical Review Letters 75, 3056 (1995).
The first paper claiming anisotropy above 40 EeV based on Havarah Park data.

Pierre Auger Collaboration; Correlation of the Highest-Energy Cosmic Rays with Nearby Extragalactic Objects; Science, 318, 938 (2007).
First Auger result on UHECR anisotropy, suggesting a correlation with local AGN.

Pierre Auger Collaboration; Depth of Maximum of Air-Shower Profiles at the Pierre Auger Observatory: Composition Implications; Physical Review D, 90, 122006 (2014).
Profile likelihood method applied to latest Auger data to fit fractions of nuclear species.

Pierre Auger Collaboration; Searches for Anisotropies in the Arrival Directions of the Highest Energy Cosmic Rays Detected by the Pierre Auger Observatory; Astrophysical Journal 804, 15 (2015).
Latest update of the search for anisotropy with Auger data at the highest energies. The appendix has the list of 231 events with E > 52 EeV, with arrival directions, energy, zenith angle and date..

Pierre Auger Collaboration; Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 × 1018 eV; Science, 357, 1266 (2017).
Unambiguous discovery of dipole anisotropy in UHECR arrival directions, confirming extragalactic origin.

Extragalactic sources, propagation, and related subjects

Rachen, J.P., Biermann, P.L.; Extragalactic Ultra-High Energy Cosmic-Rays. I. Contribution from Hot Spots in FR-II Radio Galaxies; Astronomy and Astrophysics 272, 161 (1993).
An early UHECR source model including a simplified propagation approach.

Rachen, J.P.; Ultra-high energy cosmic rays from radio galaxies revisited; Proc. XXth Rencontres de Blois, “Challenges in Particle Astrophysics”, Page 287 (2008).
A late editorial to the paper above, including a funny look at the Auger hot spot around Cen A.

Merson, A.I., Jasche, J., Abdalla, F.B., Lahav, O., Wandelt, B., Jones, D.H., Colless, M.; Halo detection via large-scale Bayesian inference; Monthly Notices of the Royal Astronomical Society, 460, 1340 (2016)
Base work in large-scale structure reconstructions used to build a prior for extragalactic cosmic ray origin.

Schaal, K., Springel, V., Pakmor, R., Pfrommer, C., Nelson, D., et al.; Shock finding on a moving-mesh – II. Hydrodynamic shocks in the Illustris universe; Monthly Notices of the Royal Astronomical Society, 461, 4441 (2016)
Recent work on baryonic shock detection in large-scale structure formation

Deflections in the Galactic Magnetic Field

Farrar, G.R., Jansson, R., Feain, I.J., Gaensler, B.M.; Galactic magnetic deflections and Centaurus A as a UHECR source; Journal of Cosmology and Astroparticle Physics, 01, 023 (2013).
Analysis of UHECR deflections from the nearest radio galaxy using the JF12 GMF model.

Keivani, A., Farrar, G.R.; Sutherland, M.; Magnetic deflections of ultra-high energy cosmic rays from Centaurus A; Astroparticle Physics 61, 47 (2015).
More details on UHECR deflections from Centaurus A.

Bayesian Inference Methods

Fundamentals

Jaynes, E.T.; Probability Theory: The Logic of Science; Cambridge University Press, 2003 (free preview including table of contents)
Comprehensive textbook, considered the “Bible” of Bayesian inference .

Enßlin, T.A., Frommert, M., Kitaura, F.S.; Information field theory for cosmological perturbation reconstruction and nonlinear signal analysis; Physical Review D, 80, 105005 (2009)
A non-parametric approach to Bayesian inference

Computational Methods and Algorithms

Buchner, J., Georgakakis, A., Nandra, K., Hsu, L., Rangel, C., Brightman, M., Merloni, A., Salvato, M., Donley, J., Kocevski, D.; X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue; Astronomy & Astrophysics, Volume 564, 125 (2014).

Software Packages

Hammurabi

Waelkens, A., Jaffe, T., Reinecke, M., Kitaura, F. S., Enßlin, T. A.; Simulating polarized Galactic synchrotron emission at all frequencies: The Hammurabi Code; Astronomy & Astrophysics, 495, 697 (2009).
The currently most-used code to calculate observables for Galactic magnetic field models. Webpage link.

NIFTy

Selig, M., Bell, M.R., Junklewitz, H., Oppermann, N., Reinecke, M., Greiner, M., Pachajoa, C., Enßlin, T.A.; NIFTy – Numerical Information Field Theory: A versatile Python library for signal inference, Astronomy & Astrophysics, 554, A26 (2013)
Python library allowing a quick setup of numerical Bayesian inference chains. Webpage link.

CRPropa

Alves Batista, R., Dundovic, A., Erdmann, M., Kampert, K.-H., Kümpel, D., Müller, G., Sigl, G., van Vliet, A., Walz, D., Winchen, T.; CRPropa 3 — A public astrophysical simulation framework for propagating extraterrestrial ultra-high energy particles; Journal of Cosmology and Astroparticle Physics, 05, 038 (2016)
The most recent version of the most comprehensive UHECR propagation code existing. Webpage link.