Using CAVMORPH and FORWARD to predict X-Ray emission of hot cavity cores Kathy Reeves, Harvard-Smithsonian Center for Astrophysics

...with thanks to the ISSI Cavities Team

Hinode XRT

Summer 2008 cavity

XRT cavity observing program

- * Three filters Al-poly (coolest), Ti-poly (middle) and Thin Be (hottest)
- # 768"x768" field of view
- # 2x2 binning (~2" pixels)
- * Long exposure times (12 65 sec)
- * Lossless compression

XRT data

Friday, March 1, 13

Cavity structure

Cavity structure

Cavity structure

(HOT, BIGHT FILAMENT CAVITY CORE - SEE HUDSON ET AL. 1999)

XRT thin Be, 20080719_1500, summed 1 hour

Friday, March 1, 13

XRT X-ray filters

Temperature ratios

Temperature movie

CAVMORPH model

Model parameters

 Table 1

 Geometrical Parameters for the Streamer and Cavity in the Morphological Model

Quantity	Parameter	Value
Streamer central colatitude	θ_0	$131^{\circ}.41 \pm 3.27$
Streamer central Carrington longitude	ϕ_0	252.29 ± 0.52
Angle of streamer axis to equator	m	2°.6
Tilt of streamer height axis vs. radial	α	0 °
Streamer half-width at photosphere	$S_{ m width}$	40°
Streamer half-length at photosphere	Slength	100°
Streamer current sheet height	$R_{\rm cs}$	$2.5~R_{\odot}$
Streamer current sheet half-width	$CS_{ m width}$	3°
Cavity top radius at ϕ_0	$r_{\rm ctop_0}$	$1.33 \ R_{\odot} \pm 0.005$
Cavity top colatitude at ϕ_0	$\theta_{\rm ctop_0}$	$131^{\circ}_{\cdot}69 \pm 1.78$
Cavity height at ϕ_0	$C_{\rm rad_0}$	$0.331~R_{\odot}\pm 0.005$
Cavity width at ϕ_0	$C_{\rm norm_0}$	$0.296 \ R_{\odot} \pm 0.005$
Cavity half-length	C_{length}	$35^{\circ} \pm 2$

Model parameters

Table 2 Geometrical and Thermodynamic Parameters for the Cavity Cores Used in the Morphological Model					
Quantity	Parameter	2008 Jul 19	2008 Jul 21	2008 Jul 23	
Angle of core to equator	m_N	2°.6	10°	2°.6	
Core central Carrington longitude	ϕ_N	282	242	230	
Core top radius at ϕ_N	r _{Ntop}	$1.16 R_{\odot}$	$1.13 R_{\odot}$	$1.15 R_{\odot}$	
Core top colatitude at ϕ_N	$\theta_{\rm Ntop}$	131°4	131°4	131°.4	
Core height at ϕ_N	N _{rad}	$0.09 R_{\odot}$	$0.06 R_{\odot}$	$0.07~R_{\odot}$	
Core width at ϕ_N	N _{norm}	$0.09 R_{\odot}$	$0.07 R_{\odot}$	$0.06 R_{\odot}$	
Core half-length	N_{length}	20°	20°	15°	
Percent of core occupied by "hole"		30%	0%	0%	
Temperature of cavity		1.6 MK	1.65 MK	1.5 MK	
Temperature of rim		1.3 MK	1.35 MK	1.3 MK	
Temperature of core		1.75 MK	1.70 MK	2.0 MK	
Core density scale factor ^a		1.2	1.8	1.2	

Note. a The core density is the scale factor times the cavity density.

And now use FORWARD...

Friday, March 1, 13

Conclusions

- * XRT observations show hot cavity cores with low emission measures.
- * We can do a reasonable job of modeling the observations with CAVMORPH + FORWARD.
- * Nougat substructures could be indicative of hot field lines as in Fan 2012.
- * More work needs to be done to explain magnetic field structure that causes the ring shaped nougat.