Future of Radio Coronal Magnetography

Diagnostic	Application	Inst. Req.	References
Thermal	Active regions	Imaging spectroscopy	White & Kundu 1997
gyroresonance	(B → B ?)	& polarimetry (cm-λ)	
Nonthermal	Flares & CMEs	Imaging spectroscopy	Bastian et al. 1998
gyrosynchrotron	$(B \rightarrow B)$	& polarimetry (cm- λ , flares; m- λ CMEs)	Fleishman et al 2009
Thermal free-free	Quiet sun	Imaging spectroscopy	Gelfriekh 2004
	(B)	cm-λ)	
Loop oscillations	Flares	Imaging spectroscopy	Benz et al. 1984
	(discrete loops)	& polarimetry (m- λ to cm- λ)	Aschwanden et al.
Mode coupling	Active region corona	Imaging spectroscopy	Ryabov 2004
	(topological)	& polarimetry (cm- λ)	
Radio bursts	Corona	Imaging spectroscopy	Dulk & McLean 1978
	(statistical, cases)	& polarimetry (dm-λ, m-λ)	
Propagation	Corona & heliosphere	Imaging spectroscopy	Bastian 2001
techniques	(B _∥ and fluctuations)	(submm- λ , flares; m- λ heliosphere)	

Avrett & Loeser 2008

Lee et al

2D MAGNETOGRAM

- *B* map deduced from 1–24 GHz spectra (*b*) match the model (*a*) very well, everywhere in the region. (*c*) is a comparison along a line through the center of the region.
- The fit only works down to 119 G (corresponding to f= 3 $f_{\rm B}$ = 1 GHz)

from Gary et al. 2004

Angular broadening

Example:

351 antenna pairs can be used to measure:

D(s) is related to the spatial spectrum of the electron density fluctuations in the SW, -5 the parameters of which may be fit as a function of radius and P.A.

Tomographic reconstruction of recurrent structures in the inner heliosphere using observations of interplanetary scintillation (IPS).

LOFAR could provide much more comprehensive maps at higher angular resolution.

Jackson et al. 2001

Diagnostic	Application	Inst. Req.	References
Thermal	Active regions	Imaging spectroscopy	White & Kundu 1997
gyroresonance	(B → B ?)	& polarimetry (cm-λ)	
Nonthermal	Flares & CMEs	Imaging spectroscopy	Bastian et al. 1998
gyrosynchrotron	$(B \rightarrow B)$	& polarimetry (cm- λ , flares; m- λ CMEs)	Fleishman et al 2009
Thermal free-free	Quiet sun	Imaging spectroscopy	Gelfriekh 2004
	(B)	cm-λ)	
Loop oscillations	Flares	Imaging spectroscopy	Benz et al. 1984
	(discrete loops)	& polarimetry (m- λ to cm- λ)	Aschwanden et al.
Mode coupling	Active region corona	Imaging spectroscopy	Ryabov 2004
	(topological)	& polarimetry (cm- λ)	
Radio bursts	Corona	Imaging spectroscopy	Dulk & McLean 1978
	(statistical, cases)	& polarimetry (dm-λ, m-λ)	
Propagation	Corona & heliosphere	Imaging spectroscopy	Bastian 2001
techniques	(B _∥ and fluctuations)	(submm- λ , flares; m- λ heliosphere)	

FREQUENCY AGILE SOLAR RADIOTELESCOPE

- FASR's fundamental innovation is the ability to perform *dynamic, broadband, imaging spectroscopy* over an extremely large frequency bandwidth – from 50 MHz to 21 GHz (or I=1.4 cm to 6 m).
- FASR therefore measures the polarized brightness temperature spectrum along every line of site as a function of time.
- By imaging the entire solar atmosphere at once, it will provide insights into these phenomena and processes as *coupled phenomena*.

R SCIENCE OBJECTIVES

Nature & Evolution of Coronal Magnetic Fields

- Coronal magnetography Temporal & spatial evolution of fields Coronal seismology

High energy solar physics

- Magnetic energy release Plasma heating and dynamics
- Electron acceleration and transport

Drivers of Space Weather

- Birth & acceleration of CMEs
- **Prominence eruptions** •
- Origin of energetic particles

FASR SCIENCE OBJECTIVES

- Coronal & chromospheric heating
 Thermal structure & dynamics
- Formation & structure of filaments
- Spicules, jets

The Solar Wind

- Solar wind sources
- Coronal holes and fast solar wind

Speed (km s⁻¹

Synoptic Studies

- Radiative inputs to the upper atmosphere •
- Global magnetic field & dynamo •
- Flare statistics

MAGNETIC TOPOLOGY FROM QT LAYER

- (a) -42° (b) 0° (c) +42° (c) +42°
- Upper panels show radio "depolarization line" at a single frequency due to mode-conversion at a quasitransverse layer, vs. photospheric neutral line.

 Using FASR's many frequencies, a QT surface can be mapped in projection. The surface changes greatly with viewing angle.

> from Ryabov, 2004— Chapter 7

