Scattering polarization magnetometry

Jeff Kuhn and Gabriel Dima

Coronal IR Wavelengths and benchmark coronal magnetic sensitivity

Temperature sensitivity from 3000K to 3MK

Stokes V: FeXIII IR Coronal Polarimetry

Measuring Coronal Fields with Zeeman affect and with instrument crosstalk

- Unlike photospheric Zeeman observations, in the corona there is a strong linear polarization signal, and only a weak intrinsic Stokes V signal. Even small U-V cross-talk dominates measured Stokes V
- In weak-field approximation, $V = Bk \cdot dI/d\lambda$, the observed circular polarization can be written as

 $- V'(\lambda) = \alpha \cdot I(\lambda) + Bk \cdot dI(\lambda) / d\lambda = \alpha \cdot I(\lambda + Bk / \alpha),$

• Thus, *B* can be directly measured by comparison with the shift of *V* with respect to *I* in the spectral direction.

Coronal Hanle Magnetometry

- Requires simultaneous observations of the Hanle linear polarization from two coronal emission lines formed with similar magnetic fields, or from same region
- Requires a forbidden line + permitted line Hanle measurement
- Requires measuring orientation and degree of polarization from both lines
- Recovers direction and strength of local coronal magnetic field

Limiting CHM issues

- Collisional depolarization of the forbidden line may not be known
- The foreground/background line-of-sight contribution to the observables may not be known
- The permitted and forbidden lines may not sample the same local magnetic field

CHM concept sketch (permitted source) e α (Plane of sky) θ' (Observer Ω Direction) Ω

- Forbidden line gives B field direction projected on the sky (modulo 90 deg Van Vleck ambiguity)
- Permitted line polarization deviates from this angle by amount that depends on field strength
- Degree of polarization of both lines encodes the angle B makes out of the plane of the sky
- Saturated Hanle polarization tends to +Q orientation

Forbidden CEL: Classical strong field
(saturated) Hanle regime

$$p = \frac{(1-\mu^{2})(1-3\mu^{\prime 2})}{3-\mu^{2}-\mu^{\prime 2}+3\mu^{2}\mu^{\prime 2}},$$

$$\mu = \cos\theta, \ \mu' = \cos\theta'$$

$$\mu^{\prime 2} < 1/3:$$

$$\sin\theta \sin\alpha = \pm \cos\theta' \rightarrow \mu' = \pm\sqrt{1-\mu^{2}}\sin\alpha$$

$$p(\alpha,\mu) = \frac{1-3\sin^{2}\alpha - \mu^{2} + 6\mu^{2}\sin^{2}\alpha - 3\mu^{4}\sin^{2}\alpha}{3-\sin^{2}\alpha - \mu^{2} + 4\mu^{2}\sin^{2}\alpha - 3\mu^{4}\sin^{2}\alpha}$$

$$\rho(\alpha,\mu) = \frac{1-3\cos^{2}\alpha - \mu^{2} + 6\mu^{2}\cos^{2}\alpha - 3\mu^{4}\cos^{2}\alpha}{3-\cos^{2}\alpha - \mu^{2} + 4\mu^{2}\cos^{2}\alpha - 3\mu^{4}\cos^{2}\alpha}$$

$$\mu^{\prime 2} > 1/3:$$

$$\sin\theta \cos\alpha = \pm \cos\theta' \rightarrow \mu' = \pm\sqrt{1-\mu^{2}}\cos\alpha$$

$$p(\alpha,\mu) = \frac{1-3\cos^{2}\alpha - \mu^{2} + 6\mu^{2}\cos^{2}\alpha - 3\mu^{4}\cos^{2}\alpha}{3-\cos^{2}\alpha - \mu^{2} + 4\mu^{2}\cos^{2}\alpha - 3\mu^{4}\cos^{2}\alpha}$$

Permitted CEL:Unsaturated Hanle Regime

 $0 = \cos\theta\cos\theta' + \sin\theta\sin\theta'\cos\chi$

$$\tan \alpha_{1} = H, \ \tan \alpha_{2} = 2H \quad \text{H=}0.88 \text{ B/}\gamma \ [\text{G/}10^{7} \text{s}^{-1}]$$

$$C_{1} = \cos \alpha_{1} \cos(\alpha_{1} + \chi) \qquad \text{S}_{1} = \cos \alpha_{1} \sin(\alpha_{1} + \chi)$$

$$C_{2} = \cos \alpha_{2} \cos(\alpha_{2} + 2\chi) \qquad \text{S}_{2} = \cos \alpha_{2} \sin(\alpha_{2} + 2\chi)$$

$$R_{00} = (3/8)(3 - \mu^{2} - \mu^{12} + 3\mu^{2}\mu^{12}) + (3/2)C_{1}\mu\mu'\sqrt{1 - \mu^{2}}\sqrt{1 - \mu^{12}}$$

$$+ (3/8)C_{2}(1 - \mu^{2})(1 - \mu^{12})$$

$$R_{10} = (3/8)(1 - \mu^{2})(1 - 3\mu^{12}) + (3/2)C_{1}\mu\mu'\sqrt{1 - \mu^{2}}\sqrt{1 - \mu^{12}}$$

$$- (3/8)C_{2}(1 + \mu^{2})(1 - \mu^{12})$$

$$R_{20} = (3/2)S_{1}\mu'\sqrt{1 - \mu^{2}}\sqrt{1 - \mu^{12}} - (3/4)S_{2}\mu(1 - \mu^{12})$$

$$E.L.Chpt5$$

Example: He I 1083 Hel Polarization angle deviation from Si X $_{\mu=0.1}$

θ E θ' Ω Ω'

Classical Hanle Notes

- B> B_{crit}:
 - polarization angle deviation is small
 - Polarization strength encodes B geometry
- B<B_{crit}
 - B orientation and B strength are encoded in polarization degree and angle
 - Polarization angle deviation is large

Coronal Helium

Helium ^{3}D q 5876 ^{1}P 504 3_P 10830 3_S 55 584 A=1.7x10⁻⁴ s⁻¹ 537 $n_3(A+q) = n_1 n_e q_{collision}$ Solar UV radiation Coronal electron density ^{1}S Neutral HeI Singlet Density

SOLARC imaging spectropolarimeter: limb, Q

Q>0 \rightarrow perpendicular polarization to limb

Cool He 0.25R from solar limb

• Stokes Q: Near Pole, Feb. 15, 2007

Dusty plasma, Neutral He formation (Moise, Raymond, Kuhn 2011)

Fig. 3.— The polarized brightness in He I 1083.0nm plotted against the white light polarized brightness from MLSO. Non-detections are plotted as upper limits at 0.5×10^{-8} times the disk intensity.

2006 Libya: Eclipse Imaging Spectropolarimeter

Raw IR, polarized fiber spectra

Summed corona and sky spectra

Spectra and Hanle depolarization

Si X is strongest coronal line

Line intensities, linear scale

Use getline, lam, spsk, spmean, xl, xlc, spline, scont Ints = reform(scont(*,0,1)) Fibermap, ints, 20,0

Fe

Longwave bright vs. distance

plot,r,alog10(pvec(*,6)),psym=2,xtit='Dist, sol units',ytit='Alog10 med longwave int'

Polarization vs. fiber distance

IDL> plot,dvec(7,0:15,2),xtit='Time seq. no.',ytit='Pol. Cont. Bright. Long'

SiX (vs. FeXIII) is a powerful coronal diagnostic

FeXIII useful dynamic range: $10^{0.6}$ Line/continuum exponent: 3/2

SiX useful dynamic range: 10^{1.6} Line/continuum exponent: 4/3

FORWARD goals

- Model IR continuum polarization variability
- Model K-corona IR continuum brightness
- Model SiX and FeXIII polarization amplitude and direction variability
- Demonstrate Hel + SiX CHM

Wavelength [nm]

CryoNIRSP Wavelengths and benchmark coronal magnetic sensitivity

Temperature sensitivity from 3000K to 3MK

DKIST and CryoNIRSP: emergent science frontiers

- The molecular photosphere
 - Ambipolar dynamics in sunspots
- Observing the heliosphere from the ground
 - A dusty plasma, "inner source"
- Our dark energy problem
 - Seeing coronal magnetism
 - Permitted + Forbidden line Hanle Vector coronal magnetometry
- Night-time solar physics
 - Imaging magnetism in other stellar atmospheres and learning from solar magnetism
 - Circumstellar science (imbedded stars...)

CryoNIRSP FOV

4' slit 3' scan 90s

Mass: 2500kg

CryoNIRSP: March, 2014

CryoNIRSP Single Slit Data Sample: Si IX 3.93µm

240 arcsec = $0.25 R_{\odot}$

DKIST and CryoNIRSP will measure B>4G at this resolution in about 1hr