Achieving the potential of weak lensing observations Gary Bernstein (UPenn) ISSI/Berne 3 Nov 2010

What we owe the Universe and ourselves

- Statistical reach of surveys
- * Resolution and sampling
- * Shear algorithmic systematics
- * PSF measurement systematics
- * Photometric redshift calibration
- * Photo-z outlier rates

Statistical limits of WL

- Surveys bounding present & future projects' plans/claims
- * Total S/N on the shear signal: $S/N \approx \frac{0.02}{0.3/\sqrt{N}}$
- * Total S/N on power spectrum:

$$\frac{P}{\delta P} \approx \sqrt{\frac{N_{\text{modes}}}{2}} = \ell_{\text{max}} \sqrt{f_{\text{sky}}/2}$$

Spurious shear signal:

$$\langle \gamma_{\text{sys}}^2 \rangle < \delta P \approx \frac{2(0.02)^2}{N_{\text{modes}}}$$

Survey	CFHLS	DES	Euclid
n _{eff} (arcmin⁻²)	10	10 (?)	30 (?)
f _{sky}	0.004	0.12	0.5
N _{eff}	6x10 ⁶	2x10 ⁸	2x10 ⁹
Shear S/N	160	900	3000
N _{modes} (I<1000)	4x10 ³	1x10 ⁵	5x10 ⁵
Power S/N	50	250	500
Scaling error	<0.01	0.001	<0.0003
Spurious shear RMS	<0.003	<0.0013	<0.001

Preserving WL statistical power requires:

- Shear scaling accuracy (multiplicative errors) of
 - * <0.01 (now)
 - * <0.001 (DES, KIDS, HSC?)
 - * <0.0003 (LSST, Euclid, WFIRST?)
- Somewhat relaxed in more rigorous analysis of tomography

Bernstein 4

- * Shear algorithms, undersampling must cause <0.001 multiplicative errors.</p>
- * PSF size must be known to 1 part in 1000 if galaxy size is ~PSF size
- * Mean of photo-z's must be known to ~0.001
- Rate of O(1) errors in photo-z must be known to +-0.001

Preserving WL statistical power requires:

Spurious shear signals (uncorrelated with lensing shear) must be
 < <0.003 RMS (now)</p>

- * <0.001 (future)</pre>
- * PSF ellipticity must be known to +-0.001 if galaxy size is ~PSF size
 - * Tighter specification if galaxies are poorly resolved
 - * Looser if galaxy half-light radii well above PSF's

* CFHLS team has worked very hard for several years and is struggling to be statistics-limited.

***** What will your future WL survey do to improve upon the performance of CFHLS??

* Getting more data is not a solution, it makes the problem harder!

* Better seeing is not a solution unless you limit yourself to galaxies >> PSF size!

Bernstein 7

Resolution & Sampling

- * Very difficult & expensive to dig high-precision shears out of poorly resolved galaxies.
- # Ideally should have "headroom" in resolution vs typical galaxy size.

Resolution & Sampling

- If telescope delivers resolution: don't throw it away by aliasing! Need sufficient sampling.
- * Note that sampling pitch is (pixel size) / (# of exposures) if the PSF is stable!
 - * and don't forget to subtract samples lost to cosmic rays, chips gaps, etc.
- * There are well-defined mathematical criteria for aliasing, involving k_{max} of optical system. Sampling rates are not well described by FWHM for non-Gaussian PSFs.
- * Ask Chris Hirata & Barney Rowe...

PSF Knowledge

* Challenging to know your PSF to 1 part per 1000 in size, shape for each galaxy!

* Are stellar images sufficient to tell you this?

- * How many degrees of freedom are in the PSF pattern per exposure - optics flexure, thermal drifts, pointing jitter, atmospheric wavefront, detector effects? Highly non-linear model?
- * What is total S/N of stellar images per exposure?

* Are you scraping for poorly-resolved galaxies?

PSF Knowledge

* Example: Ma et al. (2008) ***** SNAP design ***** PSF has: * static optical model * + wandering secondary mirror (5 DOF) * + pointing jitter (6 DOF) Stellar data recovers all 11 DOF and highprecision PSF.

Shape algorithmic progress

or high ellipticity.

resolution, high ellipticity!

Bernstein 11

These tests use pure elliptical Sersic galaxies convolved with elliptical Gaussian PSF.

Photo-z calibration

Measuring <z> and outlier rates to 0.001 accuracy requires redshift survey with 99.9% completeness!

- * unless you have some other knowledge of the z's of the redshift failures.
- * Photo-z's are trained and validated on spectroscopic surveys that are typically i<23 mag and/or only 70% complete.
- Inconceivable to me that we would simply trust that the calibration is precise for the other 30% of galaxies and those too faint for the spectro survey!

Photo-z calibration

* Only KIDS, DES are operating within range of current deep spectro-z surveys.

Outlier trouble

- * From GMB & Huterer
 (2009):
- Shows size of dark energy bias induced by 0.001 error in outlier rate - relative to the statistical errors of Stage IV surveys.
- * Outlier rate must be known to 1-3 parts per thousand!

Outliers the hard way:

- * Suppose that in a redshift bin, fraction f are outliers.
- * Complete spectra of N galaxies will yield an average of fN outliers.
- * Statistical fluctuations are \sqrt{fN} .
- * Uncertainty in outlier rate is $\sqrt{(f/N)}$, so $N > f/(0.001)^2$
- **∗** For *f*=0.02: need *N*=20,000.
- * Higher outlier rate forces larger spectroscopic sample for calibration.

Bernstein 17

Photo-z calibration survey

- # High completeness spec-z survey of ~20k galaxies needs detection of ~10⁻¹⁷ cgs emission lines across visible + NIR
- * This will require (at least) high-multiplex visible spectrograph on 8m telescope
- * PLUS high-multiplex NIR spectra, WFIRST or Euclid deep surveys

I_AB < 25

USING ILBERT ET AL SIMULATION

Outliers: shortcuts?

* Newman (2008), Matthews & Newman (2010): Find photo-z dn/dz by cross-correlating with incomplete spectro-z survey (see also Zhang et al 2010, GMB & Huterer 2010).

* Problem 1: magnification bias creates a crosscorrelation even with no physical overlap (also crowding effects - Hartlap et al. 2010). Must subtract such signals to high accuracy somehow.

* Problem 2: x-corr signal is ~b(z)(dn/dz)r(z), with b and r being bias of outliers, and r is correlation coefficient of outliers w.r.t. spectro sample. How would we know these???

Benefits of spectroscopic cross-correlation

Bernstein 19

- * Substantial systematic-error reduction in WL analyses (as per Newman, even if not an outlier solution)
- * Known substantial gains in potential cosmological accuracy:
 - * WL x-corr gives bias of the spectro sample (Pen)
 - * Spectro-sample reduces much of the projection loss in simple shear tomography
- * New tests of gravity enabled (e.g. Reyes et al.)
- * "De-clustification" of the density field may alleviate the "information saturation" problem
- * Calibration of galaxy cluster statistics (Oguri & Takada)
- * Things we have not thought of yet!!

Bernstein 20

What the Dark Energy ^{Ber} Survey(s) of the Future Need:

- * A spectroscopic survey over much of the same volume not just for BAO!
- * Sufficient color info to keep a small photo-z outlier rate
- * A highly complete spectro-z survey to the full photo-z depth, to calibrate photo-z & outlier rates
- * Sufficient resolution to resolve the galaxies being used for shear measurement!
- * A plan for determining the PSF to part-per-thousand accuracy on each exposure
- Sufficient sampling for rigorous de-aliasing
- * Color information on a per-galaxy basis to defeat color gradient ambiguity.
- * Shape-measurement algorithms better than currently available.

Being big is not enough to make use of the opportunity that Nature is handing us!