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What we owe the Universe and ourselves

Statistical reach of surveys

Resolution and sampling

Shear algorithmic systematics

PSF measurement systematics

Photometric redshift calibration

Photo-z outlier rates
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Statistical limits of WL
Surveys bounding 
present & future 
projects’ plans/claims

Total S/N on the shear 
signal: 

Total S/N on power 
spectrum:

Spurious shear signal:
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Preserving WL statistical power requires:

Shear algorithms, undersampling must cause <0.001 multiplicative 
errors.

PSF size must be known to 1 part in 1000 if galaxy size is ~PSF 
size

Mean of photo-z’s must be known to ~0.001

Rate of O(1) errors in photo-z must be known to +-0.001
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Huterer, Takada, GB, Jain

15k deg2, neff=30Shear scaling accuracy 
(multiplicative errors) of

<0.01 (now)

<0.001 (DES, KIDS, HSC?)

<0.0003 (LSST, Euclid, 
WFIRST?)

Somewhat relaxed in more 
rigorous analysis of tomography
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Spurious shear signals (uncorrelated with lensing shear) must be

<0.003 RMS (now)

<0.001 (future)

PSF ellipticity must be known to +-0.001 if galaxy size is ~PSF 
size

Tighter specification if galaxies are poorly resolved

Looser if galaxy half-light radii well above PSF’s
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Preserving WL statistical power requires:



CFHLS team has worked very hard for several 
years and is struggling to be statistics-limited.

What will your future WL survey do to improve 
upon the performance of CFHLS??

Getting more data is not a solution, it makes the 
problem harder!

Better seeing is not a solution unless you limit 
yourself to galaxies >> PSF size!
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Resolution & Sampling

Very difficult & expensive 
to dig high-precision 
shears out of poorly 
resolved galaxies.

Ideally should have 
“headroom” in resolution 
vs typical galaxy size.
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Resolution & Sampling
8

If telescope delivers resolution: don’t throw it away by 
aliasing!  Need sufficient sampling.

Note that sampling pitch is (pixel size) / (# of exposures) 
if the PSF is stable!

and don’t forget to subtract samples lost to cosmic 
rays, chips gaps, etc.

There are well-defined mathematical criteria for 
aliasing, involving kmax of optical system. Sampling 
rates are not well described by FWHM for non-
Gaussian PSFs.  

Ask Chris Hirata & Barney Rowe...
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PSF Knowledge
Challenging to know your PSF to 1 part per 1000 
in size, shape for each galaxy!

Are stellar images sufficient to tell you this?

How many degrees of freedom are in the PSF 
pattern per exposure - optics flexure, thermal 
drifts, pointing jitter, atmospheric wavefront, 
detector effects?  Highly non-linear model?

What is total S/N of stellar images per 
exposure?

Are you scraping for poorly-resolved galaxies?
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PSF Knowledge

Example: Ma et al. (2008)
SNAP design
PSF has:

static optical model
+ wandering secondary 
mirror (5 DOF)
+ pointing jitter (6 DOF)

Stellar data recovers all 
11 DOF and high-
precision PSF.
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Shape algorithmic progress
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Nakajima & Bernstein:

Elliptical Gauss-Laguerre fitting.
Notice >0.01 errors for n=4 Sersic 

or high ellipticity.

FDNT:

Multiplicative errors below 0.001, 
even for high Sersic indices, poor 

resolution, high ellipticity!

These tests use pure elliptical Sersic galaxies convolved with elliptical Gaussian PSF.
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Future issue: color gradients

Deconvolution is ambiguous without knowing 
whether each photon was blue or red!
Not just issue for FDNT!
Easily percent-level.
Essential to obtain some info on color gradients.
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2 galaxy 
components

color-dependent 
PSF

convolve +observe 
simultaneously in 

broad filter
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Photo-z calibration

Measuring <z> and outlier rates to 0.001 accuracy 
requires redshift survey with 99.9% completeness!

unless you have some other knowledge of the 
z’s of the redshift failures.

Photo-z’s are trained and validated on 
spectroscopic surveys that are typically i<23 mag 
and/or only 70% complete.

Inconceivable to me that we would simply trust 
that the calibration is precise for the other 30% of 
galaxies and those too faint for the spectro survey!
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Photo-z calibration

Only KIDS, DES are 
operating within 
range of current deep 
spectro-z surveys.
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Outlier trouble

From GMB & Huterer 
(2009): 

Shows size of dark 
energy bias induced by 
0.001 error in outlier 
rate - relative to the 
statistical errors of 
Stage IV surveys.

Outlier rate must be 
known to 1-3 parts per 
thousand!
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Outliers the hard way:
Suppose that in a redshift bin, fraction f are 
outliers.

Complete spectra of N galaxies will yield an 
average of fN outliers.

Statistical fluctuations are √fN.

Uncertainty in outlier rate is √(f/N), so N>f/(0.001)2

For f=0.02: need N=20,000.  

Higher outlier rate forces larger spectroscopic 
sample for calibration.
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Photo-z calibration survey

High completeness spec-z 
survey of ~20k galaxies 
needs detection of ~10-17 
cgs emission lines across 
visible + NIR

This will require (at least) 
high-multiplex visible 
spectrograph on 8m 
telescope

PLUS high-multiplex NIR 
spectra, WFIRST or Euclid 
deep surveys
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Outliers: shortcuts?
Newman (2008), Matthews & Newman (2010): Find 
photo-z dn/dz by cross-correlating with 
incomplete spectro-z survey (see also Zhang et al 
2010, GMB & Huterer 2010).
Problem 1: magnification bias creates a cross-
correlation even with no physical overlap (also 
crowding effects - Hartlap et al. 2010).  Must 
subtract such signals to high accuracy somehow.

Problem 2: x-corr signal is ∝b(z)(dn/dz)r(z),with b 

and r being bias of outliers, and r is correlation 
coefficient of outliers w.r.t. spectro sample. How 
would we know these???
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Benefits of spectroscopic cross-correlation

Substantial systematic-error reduction in WL analyses 
(as per Newman, even if not an outlier solution)

Known substantial gains in potential cosmological 
accuracy: 

WL x-corr gives bias of the spectro sample (Pen)

Spectro-sample reduces much of the projection loss 
in simple shear tomography

New tests of gravity enabled (e.g. Reyes et al.)

“De-clustification” of the density field may alleviate the 
“information saturation” problem

Calibration of galaxy cluster statistics (Oguri & Takada)

Things we have not thought of yet!!
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BernsteinWhat the Dark Energy 
Survey(s) of the Future Need:

A spectroscopic survey over much of the same volume - not just 
for BAO!
Sufficient color info to keep a small photo-z outlier rate
A highly complete spectro-z survey to the full photo-z depth, to 
calibrate photo-z & outlier rates
Sufficient resolution to resolve the galaxies being used for shear 
measurement!
A plan for determining the PSF to part-per-thousand accuracy on 
each exposure
Sufficient sampling for rigorous de-aliasing
Color information on a per-galaxy basis to defeat color gradient 
ambiguity.
Shape-measurement algorithms better than currently available.
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Being big is not enough to make use of the opportunity that Nature is handing us!


