Magnetometer data analysis and Ionospheric electrodynamics (with SECS)

Heikki Vanhamäki
Olaf Amm

Finnish Meteorological Institute
MIRACLE network

- Magnetometers
- All-sky cameras
- (STARE radars)
- Also several other instruments in the area
Selected analysis methods

<table>
<thead>
<tr>
<th>Input</th>
<th>Assumptions</th>
<th>Output</th>
<th>Name of method</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_G</td>
<td>-</td>
<td>$J_{eq,ion}$, $J_{eq,int}$</td>
<td>Field continuation and separation</td>
<td>No true currents, no FAC</td>
</tr>
<tr>
<td>B_G, ${E$ satellite data $}$</td>
<td>Σ_P, Σ_H $\nabla \times E = 0$</td>
<td>${E}$, J, $j_{</td>
<td></td>
<td>}$</td>
</tr>
<tr>
<td>B_G $j_{</td>
<td></td>
<td>}$, ${E}$</td>
<td>-</td>
<td>J, ${\Sigma_P$, Σ_H}</td>
</tr>
<tr>
<td>B_G $j_{</td>
<td></td>
<td>}$</td>
<td>Σ_P, Σ_H $\nabla \times E = 0$</td>
<td>E, J, $j_{</td>
</tr>
<tr>
<td>$j_{</td>
<td></td>
<td>}$</td>
<td>Σ_P, Σ_H $\nabla \times E = 0$</td>
<td>E, J</td>
</tr>
<tr>
<td>B_G, E</td>
<td>$\alpha = \Sigma_H / \Sigma_P$</td>
<td>Σ_H, Σ_P, J, $j_{</td>
<td></td>
<td>}$</td>
</tr>
<tr>
<td>$j_{</td>
<td></td>
<td>}$, E</td>
<td></td>
<td>Σ_H, Σ_P, J, $j_{</td>
</tr>
</tbody>
</table>

Adapted from Amm et al (2003)
Ionospheric electrodynamics

• Primary variables: E, J, Σ_P, and Σ_H

• 6 degrees of freedom:

 $$E = -\nabla \Phi_E - \hat{e}_\parallel \times \nabla \Psi_E$$

 $$J = -\nabla \Phi_J - \hat{e}_\parallel \times \nabla \Psi_J$$

 + 2 conductances

• 2 equations: $\nabla \cdot$ and $\nabla \times$ of

 $$J = \Sigma_P E + \Sigma_H \hat{e}_\parallel \times E$$

• Usually may assume $\nabla \times E = 0 \iff \Psi_E = 0$

 (sometimes not: Vanhamäki et al., 2007)

• Need to know 3 input variables
2D vector fields

• Ionosphere is approximately 2D
 (some 3D effects may be important, Amm et al., 2008)

• Vector field \mathbf{V} with 2 scalars
 • potentials: $\mathbf{V} = -\nabla \Phi - \mathbf{e}_\parallel \times \nabla \Psi$
 • divs and curls: $f = \nabla \cdot \mathbf{V}$ and $g = (\nabla \times \mathbf{V})_\parallel$

• Φ and Ψ: Spherical (cap) harmonics, Fourier series ...

• f and g: SECS
Spherical Elementary Current Systems

• Green's functions of $\nabla \cdot$ and $\nabla \times$ operators
• Complete set of basis functions

\[\vec{J}_{el,cf} = \frac{I_{el,cf}}{4\pi R_I} \delta (R_I - r) \cot (\theta'/2) \hat{e}_\theta, \]

\[\vec{J}_{el,df} = \frac{I_{el,df}}{4\pi R_I} \delta (R_I - r) \cot (\theta'/2) \hat{e}_\phi, \]
Ionospheric equivalent current

• Impossible to determine ionospheric J from ground B

• **Definition:** J_{eq} is div-free spherical sheet current that gives correct B below the ionosphere

• J_{eq} always exist and is unique (potential theory)

• If $\chi \geq 70^\circ$ then $J_{eq} \approx$ div-free part of J

 \rightarrow Get $(\nabla \times J)_{\parallel}$ from ground B
\(\vec{J}_{el, cf} = \frac{I_{el, cf}}{\xi \pi R_I} \delta (R_I - r) \cot \left(\frac{\theta'}{2} \right) \hat{e}_\theta' \)

\(\vec{B}_{el, cf} = \frac{\mu_0 I_{el, cf}}{4 \pi r} \left[\left(\frac{R_I \cos \left(\frac{\theta'}{2} \right) - r}{\sin \left(\frac{\theta'}{2} \right) \sqrt{r^2 - 2r R_I \cos \left(\frac{\theta'}{2} \right) + R_I^2}} - \cot \left(\frac{\theta'}{2} \right) \right) \hat{e}_\theta' + \left(\frac{1}{\sqrt{r^2 - 2r R_I \cos \left(\frac{\theta'}{2} \right) + R_I^2}} - 1 \right) \hat{e}_\theta' \right] \)

\(\vec{J}_{eq} \) with SECS

- Amm and Viljanen (1999)
- Need only div-free SECS
- Analytical \(\vec{B} \) for individual SECS
\[(\text{Measured } B_H) = (\text{Transfer matrix}) \cdot (\text{DF SECSs})\]

- Ground induction
 \[\rightarrow\text{ Only horizontal } B\]

\[+ = \text{SECS pole}\]
\[\bullet = \text{magnetometer}\]
Examples

Pulkkinen et al. (2003a)

Huttunen et al. (2002)

THEMIS, Amm 2008
Further developments

- B_G separation into internal and external parts, Pulkkinen et al. (2003b)
 (often not feasible in practise)

- 1-dimensional version for satellite analysis, Juusola et al. (2006)
Selected analysis methods

<table>
<thead>
<tr>
<th>Input</th>
<th>Assumptions</th>
<th>Output</th>
<th>Name of method</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_G</td>
<td>-</td>
<td>$J_{eq,ion}, J_{eq,int}$</td>
<td>Field continuation and separation</td>
<td>No true currents, no FAC</td>
</tr>
<tr>
<td>$B_G, {E, \text{satellite data}}$</td>
<td>Σ_P, Σ_H [\nabla \times E = 0]</td>
<td>${E}, J, j_\parallel$</td>
<td>AMIE</td>
<td>Optimization method, also with sparse data</td>
</tr>
<tr>
<td>$B_G, j_\parallel, {E}$</td>
<td>-</td>
<td>$J, {\Sigma_P, \Sigma_H}$</td>
<td>Elementary current method</td>
<td></td>
</tr>
<tr>
<td>B_G</td>
<td>Σ_P, Σ_H [\nabla \times E = 0]</td>
<td>E, J, j_\parallel</td>
<td>KRM</td>
<td>Boundary conditions critical if non-global</td>
</tr>
<tr>
<td>j_\parallel</td>
<td>Σ_P, Σ_H [\nabla \times E = 0]</td>
<td>E, J</td>
<td>-</td>
<td>Boundary conditions critical if non-global</td>
</tr>
<tr>
<td>B_G, E</td>
<td>$\alpha = \Sigma_H/\Sigma_P$</td>
<td>$\Sigma_H, \Sigma_P, J, j_\parallel$</td>
<td>Method of characteristics (J_{eq}-based)</td>
<td>α assessable from ASC or B_G data</td>
</tr>
<tr>
<td>j_\parallel, E</td>
<td>$\alpha = \Sigma_H/\Sigma_P$</td>
<td>$\Sigma_H, \Sigma_P, J, j_\parallel$</td>
<td>(FAC-based)</td>
<td></td>
</tr>
</tbody>
</table>
KRM method

- Now we have \((\nabla \times \mathbf{J})_\parallel = (\nabla \times \mathbf{J}_{eq})_\parallel\) from \(B_G\)

- If we know \(\Sigma_P\) and \(\Sigma_H\)
 \(\rightarrow\) Can solve \(\mathbf{E}\) and \(\mathbf{J}\)

- KRM method by Kamide et al. (1981)
 - Works only globally

- Local KRM with SECS by Vanhamäki and Amm (2007)
Comparison

• Classical KRM
 • Find such $\mathbf{E} = -\nabla \Phi_E$ that $(\nabla \times \mathbf{J})_\parallel = (\nabla \times \mathbf{J}_{eq})_\parallel$
 • Boundary conditions for Φ_E? (Murison et al, 1985)

• SECS-based KRM
 • Find such $j_\parallel = \nabla \cdot \mathbf{J}$ that $\nabla \times \mathbf{E} = 0$
 • Represent \mathbf{J} and \mathbf{E} with SECS
 • Implicit boundary conditions (sources vanish outside)
Example

- Ω-band event
- J_{eq} from MIRACLE
- Σ_P and Σ_H from UVI
- E and J from KRM
Summary

• 5 variables, 2 equations → Need 3 as input

• Ground \mathbf{B} gives equivalent current, or $(\nabla \times \mathbf{J})_\parallel$

• Spherical Elementary Current Systems (SECS)
 • div-free and curl-free basis functions

• Local KRM with SECS, boundary conditions
References

