Direct effects of particle precipitation and ion chemistry in the middle atmosphere

P. T. Verronen

Finnish Meteorological Institute, Earth Observation
Helsinki, Finland
Contents of presentation

1. Middle atmospheric effects of energetic particle precipitation (EPP)

2. Sodankylä Ion and Neutral Chemistry Model (SIC)
 - Analysis of the ion chemistry scheme
 - Parameterization of EPP-related changes in HO_x and NO_y

3. SIC model versus MLS/Aura observations:
 - SPEs of January 2005 and December 2006
 - Production of HNO_3 and OH

4. Summary
Energetic particle precipitation

Earth’s magnetic field directs charged particles into polar regions
EPP affects both ionosphere and middle atmosphere
Different types of particle precipitation

From a presentation by Randall et al., 2008
SPE: example of geomagnetic cutoff

Proton Cutoff Energies at 100km altitude: Kp=4

Effects of energetic particle precipitation (EPP)

Energetic particles precipitate into atmosphere

\[N_2 + O_2 + O^+ + NO_x \]

\[O_4^+ \]

\[O_2^+(H_2O) \]

\[HO_3^+(H_2O)_n \]

\[NO_x \]

Ozone loss

Ozone connects to temperature and dynamics
Sodankylä Ion and Neutral Chemistry (SIC)

- Altitude range: 20 - 150 km
- Typical time resolution: 5 min
- About 400 photochemical reactions
- Unknowns: 65 ions, 15 minor neutrals
- Solver: time-dependent or steady-state

- Ionization and dissociation rates
- Electron density
 Positive and negative ion composition
 Odd oxygen, hydrogen, and nitrogen concentrations

- Forcing: GCR protons, electrons, X-rays, TLE
- Diffusion parameters: molecular/eddy
- Solar radiation 10 - 4225 Å
- Neutral Atmosphere MSISE-90
SIC: D-region ion chemistry

36 positive ions, 29 negative ions, 400 reactions
Changes in hydrogen and nitrogen species

Particles precipitate into middle atmosphere

– Positive ion chemistry dissociates N_2 and H_2O
– Negative ion chemistry redistributes NO_y (inside the blue box)
SIC: example of HO$_x$ production paths

\[
N_2 + p^+(E) \rightarrow N_2^+ + e^- + p^+(E - \Delta E)
\]

\[
N_2^+ + O_2 \rightarrow O_2^+ + N_2
\]

\[
O_2^+ + O_2 + M \rightarrow O_4^+ + M
\]

\[
O_4^+ + H_2O \rightarrow O_2^+(H_2O) + O_2
\]

\[
\ldots
\]

\[
O_2^+(H_2O)_2 + H_2O \rightarrow H_3O^+(OH)H_2O + O_2
\]

\[
H_3O^+(OH)H_2O + H_2O \rightarrow H^+(H_2O)_3 + OH
\]

\[
H^+(H_2O)_3 + H_2O + M \rightarrow H^+(H_2O)_4 + M
\]

\[
H^+(H_2O)_4 + e^- \rightarrow H^+ + 4H_2O
\]

\[
\text{Net: } H_2O \rightarrow OH + H
\]
SIC: example of HNO$_3$ production paths

\[
\begin{align*}
N_2 + p^+ (E) & \rightarrow N_2^+ + e^- + p^+ (E - \Delta E) \\
O_2 + O_2 + e^- & \rightarrow O_2^- + O_2 \\
O_2^- + O_3 & \rightarrow O_3^- + O_2 \\
O_3^- + CO_2 & \rightarrow CO_3^- + O_2 \\
CO_3^- + NO_2 & \rightarrow NO_3^- + CO_2 \\
NO_3^- + H_2O + M & \rightarrow NO_3^- (H_2O) + M \\
NO_3^- (H_2O) + HNO_3 & \rightarrow NO_3^- (HNO_3) + H_2O \\
NO_3^- (HNO_3) + H^+ (H_2O)_4 & \rightarrow HNO_3 + HNO_3 + 4H_2O
\end{align*}
\]

Net: \(H_2O + O_3 + NO_2 \rightarrow OH + HNO_3 + O_2 \)
P/Q: relative production/loss rates from SIC

\[P/Q = \frac{\text{ionic production} - \text{ionic loss}}{\text{ionization rate}} \]

- H\(_2\)O becomes the limiting factor at upper altitudes
- At night: more negative ions, more HNO\(_3\) production
P/Q: relative production/loss rates from SIC

\[\frac{P}{Q} = \frac{\text{ionic production} - \text{ionic loss}}{\text{ionization rate}} \]

– Note: Zero net change of NO\(_y\) (incl. HNO\(_3\)) by negative ion chemistry
– Net production of NO\(_x\) is by positive ion chemistry
Outstanding issue: nitric acid in CCMs

HNO₃ change (ppbv) 70°N–90°N (night)

MIPAS

WACCM

WACCM (AK)

– From Jackman et al., *Atmos. Chem. Phys.*, 2008
MLS/Aura observations

- Microwave Limb Sounder, measures emissions at mm and sub-mm wavelengths
- Launched in July 2004 into a near-polar orbit, observations cover latitudes between 82°S – 82°N, day and night
- Can be used to monitor temperature and more than 15 trace gases, including O₃, OH, and HNO₃
- First satellite instrument providing continuous observations of mesospheric OH and HO₂
Nitric acid: comparisons

Modeling: Sodankylä Ion and Neutral Chemistry

- Uses MLS temperatures, neutral density, and water vapor.
- 80°N/December–January, no diurnal variations.
- Results reduced to MLS altitude resolution using averaging kernels.

Observations: data version 3.30, SZA > 100° (night-time)

- Data are daily means, uncertainty is standard error of the mean.
- Useful range up to 1.5 hPa (≈50 km) in normal conditions, but can be extended into mesosphere when high amounts are observed.
- Mesospheric HNO₃ data have not been validated.
- Comparison is made with the highest amount of HNO₃ observed after the peak of SPE forcing, assuming that it is least affected by dynamics.
SIC vs. MLS: nitric acid, December 2006 SPE
Before (left), during (middle), and after (right) the SPE forcing

- The model overestimates the HNO$_3$ increase on Dec 9 at 60–65 km.
- Below 50 km the agreement is OK.
- For more details, see Verronen et al., *J. Geophys. Res.*, 2011.
MLS: HNO$_3$ (top) and CO (bottom)
Daily averages at approx. 60 km (2500 K)
Odd hydrogen: comparisons

Modeling: Sodankylä Ion and Neutral Chemistry

– Uses MLS temperatures, neutral density, and water vapor.
– Latitudes $>60^\circ$N, solar proton events of January 2005 and December 2006.

OH observations: data version 3.30

– Useful range up to 0.0032 hPa (\approx90 km).
– Mesospheric data have been validated by Pickett et al., JGR, 2008.
– Data are averaged at 65–75$^\circ$N, for day and night separately.

MLS was the first instrument that provided continuous and global observations of mesospheric HO$_x$.
SIC vs. MLS: hydroxyl, January 2005

OH at 66 km

- MLS
- SIC with SPE
- SIC without SPE

Difference: SIC − MLS

- Night
- Daytime
SIC vs. MLS: OH

Case I: January 18, 12:10 LT
Latitudes 69N − 70N
Longitudes 49W − 27E

Case I: January 18, 21:20 LT
Latitudes 71N − 72N
Longitudes 35W − 41E

Ion chemistry and its effects in models

• Although there are uncertainties, the understanding of ion chemistry seems reasonably good for particle effect modelling.

• Our full knowledge is not used when parameterizing ion chemistry in 3-D atmospheric models, typically:
 – HO_x and NO_x production is included,
 – HNO_3 and HNO_2 production is not included,
 – Chlorine activation is not included

• Two ways to include ion chemistry:
 – Parameterization. Simple and good in all situations?
 – Full ion chemistry. Computationally too expensive?