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Abstract. Lunar Laser Ranging (LLR) measurements are crucial for advanced exploration of the
evolutionary history of the lunar orbit, the laws of fundamental gravitational physics, selenophysics
and geophysics as well as for future human missions to the Moon. Current LLR technique measures
distance to the corner cube reflector (CCR) on the Moon with a precision approaching one millime-
ter that strongly demands further significant improvement of the theoretical model of the orbital
and rotational dynamics of the Earth-Moon system. This model should inevitably be based on the
theory of general relativity, fully incorporate the relevant geophysical/selenophysical processes and
rely upon the most recent IAU standards. We propose new methods and approaches in developing
such a mathematical model. The model takes into account all classic and relativistic effects in the
orbital and rotational motion of the Moon and Earth at the millimeter-range level. It utilizes the
IAU 2000 resolutions on reference frames and demonstrates how to eliminate from the data analysis
all spurious (coordinate-dependent) relativistic effects playing no role in selenophysics/geophysics.
The new model is based on both the locally-inertial and barycentric coordinates and elaborates
on the currently used LLR code to take advantage of one millimeter accuracy for computation
and evaluation of a more complete and detailed set of solution parameters. We explore the new
opportunities of the one-millimeter LLR to perform the most precise fundamental test of general
relativity in the solar system in robust and physically-adequate way.
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Scientific Rationale

LLR technique is currently the most effective way to study the interior of the Moon and dynamics
of the Moon-Earth system. The most important contributions from LLR include: detection of a
molten lunar core and indication to the presence of a solid inner core [1, 2], detection of lunar free
libration [3], an accurate test of the strong principle of equivalence for massive bodies [4], and setting
of a stringent limit on time variability of the universal gravitational constant [5]. LLR has also given
access to more subtle tests of relativity [6–8], measurements of the Moons tidal acceleration [9] and
geodetic precession of the lunar orbit [10, 11], and has provided orders-of-magnitude improvements
in the accuracy of the lunar orbit [12–15] and its rotation [16, 17]. On the geodesy front, LLR
contributes to the determination of the Earth orientation parameters, such as nutation, precession,
polar motion, UT0, and to their long-term variation [18, 19]. LLR also contributes to the realization
of both the terrestrial and selenodesic reference frames [20]. The laser ranging realization of
a dynamically-defined inertial reference frame in contrast to the kinematically-realized frame of
VLBI offers new possibilities for mutual cross-checking and confirmation [19, 21].

Over the years, LLR has benefited from a number of improvements both in observing technology
and data modeling [22]. Recently, a one millimeter precision in determining range distances between
a laser on the Earth and a retro-reflector on the Moon has been achieved [23, 24]. With the precision
of one millimeter, accumulation of more accurate LLR data will lead to new, fascinating discoveries
in fundamental gravitational theory, geophysics, and physics of lunar interior [25] whose unique
interpretation will intimately rely upon our ability to develop a systematic theoretical approach to
analyze the new generation of the LLR data [14, 26].

Nowadays, the theory of the lunar motion should incorporate not only the numerous Newtonian
perturbations but has to deal with much more subtle relativistic phenomena being currently incor-
porated to the LLR codes [27–29]. A theoretical approach, used for construction of the ephemerides,
accepts that the post-Newtonian description of the planetary motions can be achieved with the
Einstein-Infeld-Hoffmann (EIH) equations of motion of point-like masses [30], which are valid in
the barycentric frame of the solar system with time coordinate, t, and spatial coordinates, xi ≡ x.

Due to the covariant nature of general theory of relativity the barycentric coordinates are not
unique and are defined up to the space-time transformation [31, 32]
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where summation goes over all the massive bodies of the solar system (B = 1, 2, ..., N); G is the
universal gravitational constant; c is the speed of light; (RB · vB) denotes an Euclidean dot product
of two vectors RB and vB; MB is mass of a body B; xB = xB(t) and vB = vB(t) are coordinates and
velocity of the body B; RB = x−xB; νB and λB are constant, but otherwise free parameters being
responsible for a particular choice of the coordinates. These parameters can be chosen arbitrarily
for each body B of the solar system. The barycentric coordinates are global coordinates covering
the entire solar system. Therefore, they are of little help for efficient physical decoupling of the
post-Newtonian effects existing in the orbital and rotational motions of the Moon and Earth and
for the description of motion of satellites around these bodies.

Furthermore, there exists another problem stemming from the gauge freedom of the general
theory of relativity. Part of this freedom is associated with the choice of time t and spatial
coordinates x through parameters νB, λB in equation (1). Each term in LLR code depending
implicitly on these parameters has no direct physical meaning as it can be eliminated after making
a specific choice of the coordinates. Current LLR code uses νB = λB = 0, which corresponds
to working in harmonic coordinates. It simplifies equations to large extent but one has to keep
in mind that these coordinates have no physical privilege and that only coordinate-independent
effects can be measured.

It was noticed [33, 34] that the post-Newtonian EIH force in the lunar equations of motion admits
essentially larger freedom of transformations than is given in equation (1). This is because the
Earth-Moon system resides in the tidal gravitational field of the Sun and other planets making the
local background space-time curved. This allows to introduce the local coordinates attached to the
Earth-Moon system in infinite number of ways that significantly complicates physical interpretation
of the LLR data as it reveals that many harmonics in the orbital and/or rotational motion of the
Moon are very sensitive to the choice of the local coordinates. This dependence should be clarified,
otherwise it can lead to misinterpretation of various aspects of gravitational physics of the Earth-
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Moon system [35, 36], thus, degrading the value of extremely accurate LLR measurements for
deeper exploration of the lunar interior [14].

The gauge freedom of the three body problem was studied in papers [33, 34, 37]. It was found
that the post-Newtonian equations of motion of a test body orbiting Earth, can be significantly
simplified by making a space-time transformation from the barycentric coordinates xα = (ct,x),
to geocentric coordinates Xα = (cT,X)
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where A(t,x), B(t,x), Ci(t,x) are polynomials of distance rE = x−xE(t) of the field point x from
geocenter, xE(t). The polynomial coefficients are functions of the time t and are determined by
solving a system of ordinary differential equations, which follows from the gravity field equations
and the tensor law of transformation of the metric tensor. Contrary to the test particle, the Moon
is a massive body, which makes the exploration of the gauge freedom of the lunar motion more
involved. This requires introduction of one global (SSB) frame and three local reference frames
associated with the Earth-Moon barycenter (EMB), the geocenter, and the center of mass of the
Moon (selenocenter). Any local coordinates can be used for processing and interpretation of LLR
data but only those post-Newtonian effects, which do not depend on the transformations (2) can
have direct physical meaning. This point was understood to some extent [38] but the problem of
observable quantities in the one-millimeter LLR code must be discussed at a deeper theoretical
level.

Scientific Objectives

Existing computer-based theories of the lunar ephemeris [27–29] consist of three major blocks:
• the barycentric EIH equations of orbital motion of the Moon, Earth, Sun, and other planets of
the solar system in harmonic coordinates;
• the Newtonian rotational equations of motion of the Moon and Earth;
• the barycentric post-Newtonian equations of light rays propagating from laser to CCR on the
Moon and back.
As we have noticed, the disadvantage of the barycentric approach is that it mixes up the post-
Newtonian effects associated with the orbital motion of the Earth-Moon barycenter around the
Sun with those, which are attributed exclusively to the relative motion of the Moon around Earth.
Therefore, analytic decoupling of the orbital motion of the Earth-Moon barycenter from the relative
motion of the Moon around Earth with identification of the gauge-dependent terms in LLR code
is the primary goal of our research. It leads us to the necessity of re-formulation of the LLR data
processing algorithm in terms of few other reference frames besides the barycentric one. The origin
of these frames should be fixed at the Earth-Moon barycenter, at Earth’s geocenter, and at the
lunar center of mass (selenocenter). We distinguish the Earth-Moon barycenter from the geocenter
because the Moon is not a test particle, thus, making the Earth-Moon barycenter displaced from
the geocenter ∼1710 km below the surface of the Earth. Mathematical design of each frame is
another goal of our study that is reduced to finding a metric tensor by means of solution of the
gravity field equations with an appropriate boundary condition [26]. We shall explore, then, the
gauge freedom of the coordinates in the Earth-Moon system by means of matching the metric
tensors defined in each reference frame in the overlapping domains of their applicability.

The multi-frame post-Newtonian theory of the lunar ephemeris will revamp the LLR data pro-
cessing software in order to suppress the spurious gauge-dependent solutions, which overwhelm
the barycentric LLR code at the one-millimeter accuracy of LLR measurements, thus, hindering
the interpretation of selenophysics, geophysics and fundamental gravitational physics. Careful
mathematical construction of the local frames will allow us to pin down and correctly interpret
all physical effects having classical (lunar interior, Earth geophysics, tides, asteroids, etc.) and
relativistic nature.

The theory of the rotation of Earth and Moon is an important component of our study. The
one-millimeter LLR data suggest that Earth and Moon should be considered as multi-layered
systems. We propose to use the Hamiltonian mechanics of heavenly bodies in order to analyze
their movements in response to the gravitational Newtonian and post-Newtonian torques. This
approach extends to the Moon a mathematical model that had been previously developed in order
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to explain the small changes in Earths rotational axis. This model has being awarded the 2003
European Unions Descartes Prize for Research.

The advanced post-Newtonian dynamics of the Sun-Earth-Moon system are to include the fol-
lowing structural elements:
1) construction of a set of astronomical reference frames decoupling orbital dynamics of the Earth-
Moon system from the rotational motion of Earth and Moon with the full account of the post-
Newtonian corrections and elimination of the gauge modes;
2) relativistic definition of the integral parameters like mass, the center of mass, the multipole
moments of the gravitating bodies;
3) derivation of the relativistic equations of orbital motion of the Earth-Moon center of mass with
respect to the barycentric reference frame of the solar system;
4) derivation of the relativistic orbital equations of motion of Earth and Moon with respect to the
reference frame of the Earth-Moon system;
5) derivation of the Hamiltonian equations of rotational motion of the multi-layer Earth and Moon;
6) derivation of the relativistic equations of motion of CCR on the lunar surface with respect to
the selenocentric reference frame;
7) derivation of the relativistic equations of motion of a laser station with respect to the geocentric
reference frame.

These equations are to be implemented in the LLR data processing software operating with
the round-trip times of the laser pulse between observer on Earth and CCR array on the Moon.
The computational advantage of the new approach in the lunar code is that it unambiguously
separates physical effects from the choice of coordinates - allowing us, thus, to get robust and
unbiased measurement of the true physical parameters of Earth and Moon. The new approach is
particularly useful for comparing different models of the multi-layer lunar interior and for making
fundamental tests of general theory of relativity in the solar system.
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Timeline of the Project

Construction of the post-Newtonian reference frames and transformations: October 30, 2009
Derivation of the post-Newtonian equations of motion of the Moon and the Earth: May 30, 2010
Hamiltonian theory of rotation of the multi-layer Moon and Earth: March 1, 2011
Analytic formulation of the one-millimeter LLR code: June 30, 2011

Schedule of the Project

First meeting: November 1-6, 2009
Second meeting: June 6-11, 2010
Third meeting: November 14-19, 2010
Forth meeting: June 5-10, 2011

The Expected Output

Four papers submitted to peer review journals. Technical report of the formulation of the one-
millimeter LLR code.

The Added Value Provided by ISSI to the Project

The ISSI environment and services will bring together scientists from various disciplines that
otherwise rarely meet at one location and help to create a fruitful scientific enviroment to push
forward the international study of the Moon and Earth with the method of Lunar Laser Ranging.
Regular meetings of the team members hosted by ISSI will facilitate the approbation of the new
theories of the Moon’s orbital and rotational movements, which will lead to the revamping of the
LLR data processing package while keeping it harmonized with the current barycentric LLR code.
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