Primordial molecules and magnetic fields

Daniele Galli, Francesco Palla, Raffaella Schneider Osservatorio Astrofisico di Arcetri

> Dominik Schleicher Leiden Observatory, ESO

ISSI MODULO meeting, Bern, 10-12 March 2010

A (very) short history

- Saslaw & Zipoy (1967): H_2 formation through H_2^+ at redshift z ~10³, $\rightarrow H_2$ ~10⁻⁶
- Peebles & Dicke (1968): H₂ formation through H⁻ at lower z
 → formation of globular clusters
- Hirasawa, Takeda, Hutchins, Silk, Carlberg (1970s): chemical and dynamical evolution of primordial clouds
- \rightarrow poor cooling, high T, top-heavy IMF of first stars
- Palla, Salpeter & Stahler (1983): 3-body reactions
- Lepp & Shull (1984): formation of H2, HD, LiH, HeH⁺ → beginning of the chemistry of the early universe: H₂~10⁻⁶ -HD ~10⁻¹⁰ - LiH ~10⁻¹² - HeH⁺<10⁻¹³

From nuclei to molecules (GP98)

- 21 species
- 22 reactions for H
- 24 reactions for D
- 15 reactions for He
- 26 reactions for Li

3

2

 $\log (1+z)$

0

• Cooling functions for H2, HD and LiH

Galli & Palla (1998) The chemistry of the early Universe, A&A, 335, 403
Galli & Palla (2002) Deuterium chemistry in the primordial gas, P&SS, 50, 1197

Temperature of matter and radiation

Once Compton heating becomes less than expansion cooling, radiation and matter cool adiabatically $T_{rad} \sim (1+z) T_{gas} \sim (1+z)^2$

H₂-chemistry

 $\begin{array}{l} H_2^+ \text{ channel} \\ H+H^+ \rightarrow H_2^+ + \gamma \\ H_2^+ + H \rightarrow H_2^- + H^+ \end{array}$

H⁻ channel H + e⁻ \rightarrow H⁻ + γ H⁻+H \rightarrow H₂ + e⁻

Direct radiative association forbidden, H₂ has no dipole moment (not the case for HD and LiH)

HD-chemistry

Formation: $D^+ + H_2 \rightarrow H^+ + HD$

Destruction: HD + H⁺ \rightarrow D⁺ + H₂

but at low T D⁺ + H \rightarrow D + H⁺

HeH+-chemistry

0 He++

Formation: He + H⁺ \rightarrow HeH⁺ + γ

Destruction: HeH⁺ + H \rightarrow He + H₂⁺ HeH⁺ + $\gamma \rightarrow$ H<u>e + H⁺</u>

He⁺ -5(number fraction) -10HeH⁺ log -15-203 2 4 $\log (1+z)$

He

1

LiH-chemistry

Formation: $Li + H \rightarrow LiH + \gamma$ $Li^- + H \rightarrow LiH + e^-$

Destruction: LiH + $\gamma \rightarrow$ Li + H LiH + H \rightarrow Li + H₂

H₂ vibrationally resolved

C M. Coppola (2010), PhD Thesis

H₂ cooling

- Low-T low-n rates for H₂-H coll. exc. highly sensitive to adopted H₃ potential surface
- GP98: coll. coeff. from Forrey et al. (1997) for T < 600 K, Mandy & Martin (1993) T > 600 K
- New set of H₂-H coll. coeff. (Wrathmall & Flower 2007)
- Also coll. coeff. H₂-H₂ (Flower 2000) and H₂-He (Flower et al. 1998, Balakrishnan et al. 1999)

Today: new improved H₂ cooling rate (Glover & Abel 2008)

GP98 "improved"

- Improved chemical network: ENZO code + GP98 + additional/revised reactions (→ new database)
- Improved cosmological recombination: RECFAST
- Improved cooling rates: H₂: Glover & Abel (2008)
 - HD: Flower et al. (2000), Lipovka et al. (2005)
- Optical depth due to line absorption, photoionization and photodissociation

Schleicher et al. (2008)

Optical depth of the primordial Universe

Dust and metals

Today in the Galaxy: $Z_{MW} \approx 0.02$, $D_{MW} = \rho_{dust} / \rho_{gas} \approx 0.01$

• H₂ formation: gas-phase dominates over dust-catalyzed if

(Glover 2003), assuming HMK rate for H₂ formation on dust grains (but ask Stéphanie, Paola).

 \bullet $\rm H_2$ and HD dominate cooling over dust and metal lines radiation if

 $Z < 10^{-5} - 10^{-3} Z_{\odot}$

(but ask Raffaella et al.). A single massive PopIII SN can produce $Z \approx 10^{-2} Z_{\odot}$! (Greif et al. 2007)

The cosmic scenario

 Standard CDM model: small objects form first and then merge to form larger systems (Blumenthal et al. 1984)

• Primordial gas clouds accumulate in dark-matter "minihaloes" with M $\approx 10^6$ M_{\odot} formed at z $\approx 20-30$ (Bromm et al. 2002)

• When sufficient mass is accumulated ($M_{cloud} > M_{J}$) the cloud can collapse. The subsequent evolution, and the fragmentation mass-scale, depend on the thermodynamics of the gas (Tegmark et al. 1997)

Evolution of an overdense region: I. Semi-analytical model

Tegmark et al. (1997), GP02

Evolution of an overdense region: II. Numerical simulation

Magnetic fields at high-redshift

- Highly speculative (= few data, many theories)
- Inferred from Faraday rotation measure of polarized quasars up to z ≈ 2 (Bernet et al. 2008)
- Zeeman effect detected in a galaxy at z=0.692 (84 μG, Wolfe et al. 2008). Note B_{MW} ≈ 6 μG (Heiles & Troland 2005)
- B in galaxies: dynamo generated (Parker 1979) or fossil (Kulsrud 1999)?

Magnetogenesis

• post-recombination: ejected by Pop III stars (Rees 2005)

• radiation era: photon drag on electrons (Harrison 1973)

 cosmological phase-transitions: electroweak, QCD, GUT (Hogan 1983)

• inflation (Turner & Widrow 1988)

Effects of B field on cosmic evolution

- Formation of first stars with B = 0 well understood (Abel et al. 2002; Bromm & Larson 2004). Critical mass: $M_I \sim (T^3/\rho)^{1/2}$
- With B \neq 0 different dynamics: enhanced stability, magnetic braking, MRI instability, magnetocentrifugal launching of jets. Critical mass: $M_{\rm B} \sim B R^2$
- B also affects primordial chemistry and thermal evolution. Ambipolar diffusion heating:

$$L_{AD} \approx \frac{\eta_{AD}}{4\pi} \frac{B^2}{L_R^2}$$

Evolution of B

Evolution of gas temperature with B

Effects of B on chemistry

Schleicher et al. (2009)

Effects of B on dynamics

Thermal Jeans mass

Magnetic critical mass

For $B_0 > 0.5$ nG the critical mass is larger than M_J !

Conclusions

- Primordial molecules: formed in the Dark Ages, control the thermodynamics of metal-free gas and the formation of the first stars.
- Spectral signatures in the CBR still below sensitivity (but Planck, Herschel).
- Magnetic fields control present-day star formation. Their role for PopIII star formation is largely unexplored.

