Molecule formation in the early Universe

tie voor Wetenschappelijk Onderzoek

Stéphanie Cazaux Marco Spaans Vincent Cobut Paola Caselli

Molecules and Dust at low metallicity

11th March 2010

Introduction

Stars formation = cloud collapse (gas + dust)

- **Molecules** such as CO, O₂, H₂O, **cool** the gas (Neufeld et al. 1995)
- Bromm 2002).
- -----Molecules form in gas & on dust.
- Formation routes of molecules VS metallicity?

Interstellar dust grains

Weingartner & Draine 2001 Mathis, Rumpl & Nordsieck 1977

How does H_2 (HD and D_2) form on interstellar dust grains? Does the formation of H_2 (HD and D_2) change with the size of dust grains?

H₂ (HD) formation on interstellar dust

Process studied by several authors:

Hollenbach & Salpeter 1971, Duley 1996, Katz et al. 1999, Morisset 2004, Cuppen & Herbst 2005, Cuppen & Hornekaer 2008

Our model: Interactions atom/surface: Experiments: TPD ab initio calculations Mobility atoms on the surface. Rate equations and Monte carlo simulations

Comparison with observations

Interaction atom/surface: experiments

Experiments on graphite, amorphous carbon, silicates *Pirronello et al. 1997, 1999, Zecho et al. 2002, Perets et al. 2007, Vidali et al. 2007*

Interaction atom/surface: Density functional theory (DFT)

Recent studies: Hoernekær et al. 2006, Rougeau et al. 2006, Bachellerie et al. 2007

 $1^{st} H \rightarrow \square barrier$

 $2^{nd} H \rightarrow \square no barrier$ to enter para site if spin opposite to $1^{st} H$

• 3^{rd} atom \rightarrow no barrier to form H_2

STM @ 170K

Model: Interaction and mobility

Energy Distance from the surface Physisorption Chemisorption 3Å

Physisorption + chemisorption
 tunnel + thermal hopping

Transmission coefficient of the barriers • mobility of H and D atoms

Model: Interaction and mobility

physisorbed H atoms physisorbed D atoms chemisorbed H atoms chemisorbed D atoms H2 HD

Mechanisms:

Monte Carlo simulations.

Rate equations

Monte Carlo

Follow populations Big grains \rightarrow always 1 species Follow each species small grains random accretion and random walk detail characteristic of the surface \rightarrow para sites

Formation of H2 and HD \rightarrow physisorbed atoms @ low T_{dust} \rightarrow chemisorbed atoms @ high T_{dust}. Inclusion para sites \rightarrow Increase the efficiency >1 mag

H₂ formation rate in the ISM $R(H_2)=(1/2) n_H v_H \sigma n_d S_H \underline{\varepsilon}$

- n_H number density of H atoms
- v_H speed of H atoms in the gas phase
- σ area of the grain
- n_d number density of dust grain
- S_{H} sticking coefficient of the H atoms on the grain
- **E**H₂ recombination efficiency

H₂ formation rate: Photo-dissociation Photo-dissociation Observations of several PDRs

(Abergel et al. 1996; Habart et al. 2003)

 $T_{dust} = 15 - 90K$

 $T_{gas} = 60 - 620K$

 $R(H_2) = 3 \ 10^{-17} - 1.5 \ 10^{-16} \ cm^3 s^{-1}$

 H_2 formation @ high Tdust and Tgas → para sites properties Other factors: $R(H_2)=(1/2) n_H v_H \sigma n_d$ Observations of PDRs → H_2 forms efficiently on cold and warm dust grains. The inclusions of the barrier-less route to form H_2 on PAHs (para sites) is necessary to reproduce the observations of PDRs.

H₂ and HD in the early Universe

• **First stars** (pop III) are cooled by **H**₂ (quadrupolar transitions)

• H_2 cools until 200K \rightarrow very massive star ~100M^[] (Abel et al. 2000, 2007, Bromm et al. 2002, Omukai & Palla 2003, Jappsen et al. 2007)

First stars ionize the Universe → next generation can form in a HD cooled gas (dipolar transitions, cool until few ×10K) → star of few × 10M□ (Johnson & Bromm 2006, Yoshida et al. 2007, Mc Greer & Bryan 2008)

• **Chemical** composition of **collapsing clouds** \rightarrow which coolants dominate \rightarrow resulting star

H₂ and HD in the early Universe

Model: gas cloud with uniform metallicity undergoes gravitational collapse at the free fall rate.

-Chemistry dust + gas phase (Glover & Savin 2008, Galli & Palla 1998). Which formation routes dominate:

For H₂

Grain surface

 H^{-} + H route

For HD

Grain surface

 $D^+ + H_2$ route

Grain size distribution linear to Weingartner & Draine 2001

H₂ and HD in the early Universe

- Clouds collapse @ z = 10; nH = 1 cm-3
- Temperatures profiles depend on
 - Adiabatic heating
 - Cooling by H₂ and HD (when no metals, Glover & Abel 2008)
 - Cooling by fine structure lines
 (Meijerink & Spaans 2005)

H₂ and HD in the early Universe Cazaux & Spaans 2009

H₂ grain

10-7

10-8

10-9

. 10-10

° 10-11 Ξ

ົບ₁₀₋₁₂

'n

Z=10-4

/H⁻+H

10-

10-9

10-10

10-1

10-1

10-13

10-1

10-15

10

D+

H-

H;

100

1000

104

105

nΗ

106

107

fractional 10-

H₂ and HD in the early Universe: Conclusions

----Small fraction of dust \rightarrow formation of H₂ on dust grain the most efficient route.

→ H_2 enhanced → HD enhanced through D⁺ + H_2 . HD formation on dust never dominates.

Impact of this chemistry on star formation (Aykutalp & Spaans)

Star formation VS metallicity

- Follow formation and evolution of primordial clouds \rightarrow hydrodynamic code (ENZO)
- Simulations start with cloud of 8 Mpc, and focus on minihalo of 50 kpc.
- Changing metallicity → impact on ISM and star formation of the minihalo.
- -This code includes chemistry on dust for H₂ and HD
- \blacksquare Next step \rightarrow formation of other species on dust.

Star formation VS metallicity

Density-temperature profile

Redshift z=12ISM metal rich \rightarrow gas cools better \rightarrow Dense & cold region minihalo evolve fast and more compact

Density profile

Other species

Chemical network:

H₂, HD, D₂, OH, OD, O₂, H₂O, HDO, D₂O, O₃, HO₂, DO₂, H₂O₂, HDO₂, D₂O₂

On bare grains: reaction \rightarrow product released in the gas phase. Depend on: binding energy and enthalpy of reaction.

 $H + O \rightarrow OH$ 36% $OH + H \rightarrow H_2O$ 15 % $H_2 + O \rightarrow OH + H$ 4% $H_2 + OH \rightarrow H_2O + H$ 0.8% $O + O \rightarrow O2$ 36% $O + O2 \rightarrow O3$ 0.2%

Water formed in a molecular or atomic environment – ≠ impacts on gas phase

Photo-dissociation regions H molecular, T_{dust} =30K, T_{gas} =30K, G_0 =10³, Av=5

nH=1000 cm⁻³, O/H =3 10⁻⁴, D/H=2 10⁻⁵

Summary and Conclusions

H₂ forms efficiently for a wide range of physical conditions.
 To understand the formation of H₂ on cold and warm dust:

2 interactions atom/surface: physisorption and chemisorption.
Mobility = tunnelling and thermal

To reproduce the observations of PDRs \rightarrow barrier-less route to form H₂ (para sites).

In the early Universe, traces of dust boost the formation of H_2 \rightarrow drives the formation of HD in the gas (D⁺ + H₂).

Metals allow the gas to **cool faster** \rightarrow ISM with cold and dense regions \rightarrow more **compact mini halo**.

Formation of **other species** on dust \rightarrow added in models \rightarrow