Modulo: New paradigm

Laura Magrini & Daniele Galli Osservatorio Astrofisico di Arcetri

Initial conditions

1. Homogeneous spherical cold neutral gas cloud with two initial masses: M=10⁹M \odot and 10¹¹M \odot . The gas temperature can assume one of three possible values: 20, 25, 30 K; and the gas density n_{HI} two values: 1 cm⁻³ and 10 cm⁻³.

2. The volume density of the gas is:

```
\rho_{\text{HI}} = \mathbf{m}_{\text{H}} \mu \mathbf{n}_{\text{HI}},
```

the radius of the gas sphere is: $R_{HI} = [3M_{HI}/(4\pi\rho_{HI})]1/3$,

and the surface density of the gas is:

 $\boldsymbol{\Sigma}_{\text{HI}}$ = ρ_{HI} $\boldsymbol{\mathsf{R}}_{\text{HI}}$,

where m_H is the mass of a hydrogen atom, μ is the molecular weight of the gas, in this case μ = 1.2 to take neutral helium into account, and n_{HI} is the HI number density.

Initial molecular cloud conditions

The clouds have three possible values of number density n_{H2} :

```
Diffuse: n1 = 10^3 \text{ cm}^{-3}
```

Compact: $n2 = 5 \times 10^{4} \text{ cm}^{-3}$

Hyper dense: $n3 = 10^{6}$ cm $^{-3}$

From the cloud densities, we compute their free-fall collapse time:

$$t_{ff} = \sqrt{3\pi/32G\rho_{gas}}$$

Characteristics of proto-galaxies

Clouds characteristics

The phase transformations:

1. From atomic gas to clouds:

Initially the H₂ fraction is zero, for a given metallicity Z and $\Sigma_{gas} = \Sigma_{HI} + \Sigma_{H2}$, the fraction of gas in H₂ can be calculated with the Krumholz, McKee, & Tumlinson (KMT) formulation:

 $\mathbf{f}_{\text{H2}} = \mathbf{f}(\mathbf{Z}, \Sigma_{\text{gas}}),$

namely $M_{H2} = f_{H2} M_{gas}$, where $M_{gas} = M_{HI} + M_{H2}$.

2. From molecular clouds to stars:

The star-formation rate SFR surface density is calculated:

 $d\Sigma^*/dt = \Sigma_{gas} f_{H2} \epsilon / t_{ff(GMC)}$

The equations of the multiphase model:

Star formation

$$\begin{aligned} \frac{ds_{1,D}}{dt} &= H_{1,D}c_D^2 + a_{1,D}c_Ds_{2,D} - D_{1,D}, \\ \frac{ds_{2,D}}{dt} &= H_{2,D}c_D^2 + a_{2,D}c_Ds_{2,D} - D_{2,D}, \\ \frac{dg_D}{dt} &= -\mu_D g_D^n + a'_D c_D s_{2,D} + H'_D c_D^2 + W_D + fg_H, \\ \end{bmatrix} \text{Infall} \end{aligned}$$
Cloud formation
$$\begin{aligned} \frac{dc_D}{dt} &= \mu_D g_D^n - (a_{1,D} + a_{2,D} + a'_D)c_D s_{2,D} - (H_{1,D} + H_{2,D} + H'_D)c_D^2 \\ \frac{dr_D}{dt} &= D_{1,D} + D_{2,D} - W_D \end{aligned}$$

Modulo in the multiphase model

<u>Cloud formation</u>

The molecular cloud fraction by KMT is not directly introduced, but it is compared with the molecular cloud fraction obtained in our model: molecular clouds are formed from atomic gas collapse, following the relation

$dF_{H2}/dt = \epsilon F_{HI}^{1.5}$

The final result for the evolution of the molecular cloud fraction evolution is very similar to the KMT fractions, with several advantages:

- 1. Easier to compute
- 2. Applicable also at low metallicity
- 3. Applicable at any Σ_{gas}

Modulo in the multiphase model

Star formation

٠

٠

The three different molecular cloud density regimes give us three star formation global efficiency:

 Σ_{gas} $f_{H2} \epsilon / t_{ff(GMC)}$

While ϵ is constant, $t_{ff(GMC)}$ depends inversely on the cloud density, and thus **compact** clouds form stars more efficiently than **diffuse** clouds.

$$\frac{ds_{1,D}}{dt} = H_{1,D}c_D^2 + a$$
$$\frac{ds_{2,D}}{dt} = H_{2,D}c_D^2 + a$$

The BCD sample: constraints from observations

# X conversion factor = 3.000e+20 cm^-2 (K km/s)^-1																	
	#				[Diameter	Log	Istar	HI			CC)		SFR	SFR	
	# Name Dist	ance	12+	<В-К	> <lk></lk>	NED	min	avg	Sigmo	(HI)	Fla	g Sigma	a(H2) F	lag	(Msun/	(Msun/	
	# (Mp	c)	log0H		(Msun)) (kpc)	(Ms	sun)	(cm^-2) (Msun/pc/	2)	(cm^-2) (Msun/pc	^Z)	yr)	yr/kp	c^2)
#																	
	Haro3	16.8	8.30	2.89	9.72	4.79	9.09	9.35	1.282e+21	10.3	m21	5.940e+20	9.5	0K	1.90	0.106	13.
	IIZw40	10.3	8.12	1.24	9.13	1.04	8.09	8.34	1.145e+22	91.7	m21	1.500e+20	2.4	0K	3.90	4.610	13.
	IZw18	13.0	7.19	1.10	7.71	0.93	6.51	6.88	4.919e+21	39.4	m21	3.000e+20	4.8	UL	0.09	0.134	13.
	Mrk209	5.4	7.81	2.49	7.83	1.09	7.29	7.36	1.773e+21	14.2	m21	1.350e+20	2.2	0K	0.05	0.051	13.
	Mrk33	24.9	8.45	3.17	10.09	6.86	9.59	9.79	5.416e+20	4.3	m21	1.863e+21	29.8	0K	3.80	0.103	13.
	Mrk71=NGC2363A	3.4	7.90	0.12	7.96	0.81	6.54	6.89	1.545e+21	12.4	cm2	1.020e+20	1.6	UL	0.11	0.214	13.
	Mrk900	13.3	8.04	2.49	9.07	2.90	8.54	8.60	4.465e+20	3.6	m21	2.040e+20	3.3	0K	0.09	0.014	13.
	NGC1140	18.2	8.20	3.30	9.84	6.55	9.30	9.58	1.965e+21	15.7	m21	2.910e+20	4.7	0K	0.82	0.024	13.
	NGC1156	7.1	8.23	2.53	9.56	5.93	8.62	9.10	6.274e+20	5.0	m21	2.280e+20	3.7	0K	0.19	0.007	13.
	NGC1741	55.1	8.05	1.96	10.41	22.44	9.29	9.81	1.218e+21	9.8	m21	4.590e+20	7.4	0K	16.00	0.040	13.
	NGC2537	8.0	8.19	3.07	9.58	3.72	9.14	9.26	6.910e+20	5.5	m21	1.680e+20	2.7	0K	0.15	0.013	13.
	NGC4214	3.3	8.20	2.23	9.20	7.19	8.66	8.67	2.918e+20	2.3	m21	2.700e+20	4.3	0K	0.13	0.003	13.
	NGC5253	3.5	8.19	2.95	9.40	3.14	8.63	9.05	3.406e+20	2.7	m21	2.175e+20	3.5	0K	1.40	0.181	13.
	SBS0335-052	53.7	7.23	2.38	9.21	3.35	7.79	8.72	3.071e+21	24.6	m21	1.625e+21	26.0	UL	1.35	0.154	13.
	UM448	81.Z	8.00	3.62	10.87	8.18	10.30	10.69	4.274e+21	34.2	m21	2.460e+20	3.9	0K	35.20	0.669	13.
	UM462	15.3	7.97	2.01	8.79	2.44	7.95	8.20	2.018e+21	16.2	m21	1.650e+20	2.6	0K	0.28	0.060	13.

Results of the model:

<u>Galaxies with diffuse clouds have a slower evolution than galaxies with compact</u> <u>clouds: at a given time in their evolution they have lower metallicity and stellar</u>

mass

<u>However, to reproduce the mass-metallicity relationship we</u> <u>need to compare with a grid of model for different initial</u> masses

Active galaxies:	SFR	>	1	Msun/	yr
Passive galaxies:	SFR	<	1	Msun/	yr

Mass-metallicity relationship

Observations: active and passive galaxies and the massmetallicity rel. from Lee+06 Models: curves at present time with three densities: **hyperdense**, **compact**, **diffuse**

The specific star formation rate:

in the three density cases and with different initial masses

Kennicut-Schmidt law

Low density

Medium density

High density

Baryonic component evolution

Conclusions

- The multiphase model is able to reproduce the main observational constraints of the BCD sample: SFR, SSFR, mass-metallicity and Kennicut-Schmidt relations, evolution of the baryonic Surface densities
- Different cloud densities gives different rate of evolution, and seems to associate active galaxies with a younger population evolving rapidly than passive galaxies