Impact of dust on interstellar gas

Matthieu Marseille

MoDuLo, 2nd December 2010

Overview

Interstellar dust grains

The simplest molecule: H₂

Model: Rate equations and Monte Carlo simulations Comparison with **observations**

Formation of **water** (and deuterated forms) on dust **Model**: Monte Carlo simulations Impact of grain surface chemistry on **interstellar gas**

The **first layer of ice**: impact for the freeze out of water on dust The snow border

Conclusions Future work

Impact of interstellar dust.

Simplest molecule: H₂

Gas phase reactions do not explain the observed abundance of $\rm H_2$ in the Milky Way.

 $H + e^- \rightarrow H^- + h_V$ and $H^- + H \rightarrow H_2 + e^-$ Grain surface chemistry: Gould & Salpeter 1963

In the MW, H₂ formation on dust grains dominates by many order of magnitude.

Complex molecules:

Hot Cores, Hot Corinos This complex chemistry is a result of the evaporation of ices that covered dust grains. High degree of deuteration: D₂CO/H₂CO ~ 0.05 while D/H=10⁻⁵ (Ceccarelli et al. 1998)

Interstellar dust grains

How does H₂ (HD and D₂) form on interstellar dust grains? How does water forms on dust? What is the impact of such a chemistry on interstellar gas?

Importance of H_2 (HD)

- Most abundant molecule in the universe M(H₂) ~ 5.10⁹ M^O in the Milky Way
- Formation of the first stars of the Universe: H₂ is the only coolant available (Bromm 2002).
- Key species for the formation of other chemical species
- HD can be an important coolant in the early Universe because of its small dipole moment (Nagakura & Omukai 2005)

H₂ observations in astrophysical environments

Photodissociation Regions

_{grain}=10 - 100K

PAHs

= 300' - 10001

Dying stars

Active galactic nuclei

H₂ forms for a wide range of physical conditions

CISCO (H2 (y=1-0 S(1))

Newly born stars

 $= 1500 - 2000 \mathrm{K}$

H₂ (HD) formation on interstellar dust

Process studied by several authors:

Hollenbach & Salpeter 1971, Duley 1996, Katz et al. 1999, Morisset 2004, Cuppen & Herbst 2005, Cuppen & Hornekaer 2008

Our model:

- Interactions atom/surface:
 - Experiments: TPD
 - ab initio calculations
- Mobility atoms on the surface.

Rate equations and Monte carlo simulations

Comparison with observations

Interaction atom/surface: experiments

Experiments on graphite, amorphous carbon, silicates *Pirronello et al. 1997, 1999, Zecho et al. 2002, Perets et al. 2007, Vidali et al. 2007*

Interaction atom/surface: Density functional theory (DFT)

Rate equations and Monte Carlo simulations.

Rate equations

Monte Carlo

Follow populations Big grains \rightarrow always 1 species Follow each species small grains random accretion and random walk detail characteristic of the surface → para sites

Model: Interaction and mobility

Monte Carlo simulations

chemistry on small grains detailed characteristics of the surface (graphite, incusion of para sites properties)

grid sizes vary from few Å to 0.1 µm

Atoms arrive randomly on the grain and have a random walk Each point of the grid is a site:

physisorbed and chemisorbed

t=-In(xrand)/t(evt)

List of accretions times (random number depending on the flux of atoms)

Each time an atom arrives on the grain → possible events

Determine the next event that is ordered in the list

Formation of H₂ and HD →physisorbed atoms @ low T_{dust} →chemisorbed atoms @ high T_{dust} Inclusion para sites → Increase the efficiency >1 mag

40

50 60

H₂ formation rate in the ISM

 $R(H_2) {=} (1/2) \ n_H \ v_H \ \sigma \ n_d \ S_H \ \underline{\boldsymbol{\epsilon}}$

- n_H number density of H atoms
- v_H speed of H atoms in the gas phase
 - σ area of the grain
- n_d number density of dust grain
- S_H sticking coefficient of the H atoms on the grain
- $\mathbf{\mathcal{E}}$ H₂ recombination efficiency

Photo-dissociation regions

Schematic diagram of a photodissociation region. A PRD extends from the atomic surface region to the point where O_2 is not appreciably photodissociate (~ 10 visual magnitude). In PDRs, hydrogen is mainly into the H_2 form and carbon mostly into CO. From Hollenbach and Tielens 1997.

H₂ formation rate: Photo-dissociation Regions

ISOCAM MAP (in the LW2 filter)

Rotational transitions of H₂ and PAHs emission

Abergel et al. 1996 Habart et al. 2003 ISO SWS
 Rotational transitions of H₂
 ISO LWS
 ISOCAM- CVF
 Spectro- imaging
 Rotational transitions of H₂

Gas temperature Photodissociation of H_2 Formation rate of H_2 Grain temperature

*H*₂ formation rate: *Photo-dissociation Regions*

Region	Tsg	Tbg	Tgas	Rate H2
	K	K	K	cm ³ s ⁻¹
chamaeleon	>2.7	15	60	4 10-17
Oph W	10	36	330	1.5 10-16
S 140	10	36	500	1.5 10-16
IC 63	12	44	620	1.5 10-16
NGC 2023	25	60	330	3 10-17
Orion bar	62	90	390	3 10-17

Habart et al. 2004

H₂ Summary and Conclusions

 H_2 forms in **cold** and **warm** environments.

Formation of H_2 on cold and warm dust grains:

- **2 interactions** atom/surface: physisorption and chemisorption.
- Mobility: tunnel and thermal

Observations of PDRs show an **efficient** formation of H_2 formation for **wide range of T**_{dust}.

To reproduce the observations of PDRs \rightarrow **barrier-less route** to form H₂ on PAHs (para sites properties)

Water formation on interstellar dust

- Water could be an important coolant for star formation (T > 100 K, nH > 106 cm-3; Neufeld 1995).
- Water locked on dust grains in the early ages of our solar system → ocean
- The snow line in planetary disks is determined by the freeze out of water on grains
- Interpretation of observations (HIFI)

Water formation on interstellar dust

Star form in clouds made of gas + dust

- Molecules such as CO, O₂, H₂O, cool the gas (Neufeld et al. 1995)
 - Impact of grain surface chemistry on interstellar gas?

Formation of water

Formation of water on dust grains has been studied by several authors for the formation of ices (*Tielens & Hagen 1982; Cuppen & Herbst 2007*)

Ion-molecule reactions: cold gas phase $H_3^+ + O \rightarrow OH^+ + H_2$ $OH^+ + H_2 \rightarrow H_2O^+ + H_2 \rightarrow H_3O^+$ $H_3O^+ + e \rightarrow H_2O + H$ Neutral-neutral reactions: warm / hot gas phase $O + H_2 \rightarrow OH + H$ $OH + H_2 \rightarrow H_2O + H$

> On interstellar dust grains $O+H \rightarrow OH$ $OH + H \rightarrow H_2O$

 $\begin{array}{c} \mathrm{O_2}\mathrm{+H} \rightarrow \mathrm{HO_2} \\ \mathrm{HO_2}\mathrm{+H} \rightarrow \mathrm{H_2O_2} \\ \mathrm{H_2O_2}\mathrm{+H} \rightarrow \mathrm{H_2O} + \mathrm{H} \\ (Miyauchi \ et \ al. \ 2008, \ Iopollo \ et \ al. \ 2008) \end{array}$

 $O_3+H \rightarrow OH + O_2$ $OH+H \rightarrow H_2O$ (Mokrane et al. 2009)

Water on bare grains: **Monte carlo simulations**

Carbon grains

Grain surface = grid

En

Atoms arrive randomly on the grid execute random walk

Each point of the grid is a site: physisorbed and chemisorbed

Chemisorption

Physisorption

Each time an atom arrives on the grain: possible events

Evaporation

Phys → Chem

UV

CR

Water on bare grains: Monte carlo simulations

- Chemical network:
- ${\sf H}_2,\,{\sf HD},\,{\sf D}_2,\,{\sf OH},\,{\sf OD},\,{\sf O}_2,\,{\sf H}_2{\sf O},\,{\sf HDO},\,{\sf D}_2{\sf O},\,{\sf O}_3,\,{\sf HO}_2,\,{\sf DO}_2,\,{\sf H}_2{\sf O}_2,\,{\sf HDO}_2,\,{\sf D}_2{\sf O}_2$
 - Two species in a same site: compare probability to react and probability to escape.

 If reaction occurs probability that the product is released in the gas (Enthalpy and binding energy).

Include photo-dissociation due to UV photons and CR.

Results

Test case:

Grain 10K

nH=10³

D/H =0.1

O/H=0.1

6

OH

OD

6

$$O + H \xrightarrow{P_0} OH + H \xrightarrow{P_1} H_2O$$
$$O + H \xleftarrow{h_V} OH + H \xleftarrow{h_V} H_2O$$

Grain 10K **Hydrogenated species UV** boosts water desorption

Results

Test case: Grain 30K nH=10³ D/H =0.1 O/H=0.1 $\rightarrow^{P1}H_2O$ $O+H \rightarrow OH+\dot{H}$ $O + H \leftarrow OH + H \leftarrow H_2O$ Grain 30K Species rich in oxygen UV boosts H₂O desorption

Results

Grains **10 K** favours **hydrogenation** Warmer grains (**30 K**) favours **oxygenation UV** photons **dissociate** species that **recombine**. "dissociation-formation-dissociation" boost gas phase.

Species released in gas \rightarrow photo-dissociated. Boost VS photo-dissociation?

Dense clouds

Dense clouds: H molecular H2 + O \rightarrow OH + H \rightarrow H2O

 T_{dust} =12K, T_{gas} =20K, G_0 =1, Av=5 nH=5000 cm⁻³, O/H =3 10⁻⁴, D/H=2 10⁻⁵

Photo-dissociation regions

PDR: H molecular H_2O formation involves O_2 and O_3

T_{dust}=30K, T_{gas}=30K, G₀=10³, Av=5 nH=1000 cm⁻³, O/H =3 10⁻⁴, D/H=2 10⁻⁵

Grain surface chemistry in XDR

nH=10³ cm⁻³

nH=10^{5.5} cm⁻³ G0=1,10,100,1000 G0= 10^{3} , 10^{4} , 10^{5} , 10^{6}

Summary and Conclusions

Very first stages of star formation: atomic / molecular / PDR (warm grains). water forms on dust through different routes

Reactions involve different routes with \neq exothermicity: \neq impact on gas

UV \rightarrow photo-dissociate species that reform \rightarrow enhance the fraction released in the gas upon formation.

Chemistry gas + dust during the collapse of a cloud Interstellar gas thermal balance star formation efficiency

Interstellar dust: the hidden protagonist

Stéphanie Cazaux

Kapteyn Astronomical Institute Groningen

The real role of dust

Interplay dust/gas

Star form in clouds (gas + dust)
cules cool the gas
Dust → impact gas → star formation

On dust → complex molecules → building blocks of life

The real role of dust

Projects:

•Grain surface chemistry and molecular complexity (PHD)

•Primordial star formation (Postdoc)

•Diagnostics of star forming regions (Applicant)

Grain surface chemistry: H_2 & HD Cazaux & Tielens 2002, 2004 Cazaux et al. 2002, 2005 Cazaux & Spaans 2004, 2009 H_2O , O_2 , ices Cazaux et al. 2010, submitted, in prep Complex molecules Cazaux et al. 2003

Grain surface chemistry and molecular complexity

Experiments

Available @ KVI (Kernfysisch Versneller Instituut) Groningen.

Grain surface chemistry and molecular complexity

<u>Model</u>

Laboratory results → surface chemistry code (Cazaux et al. 2010)

Goals:

- → Tool for astrophysical models: include dust
- → Complexity in ices VS comets and star forming regions
- → Issue for astrochemistry/ planetology/ astrobiology

+ radiative transfer code. Kapteyn Institute.

Primordial star formation

Early Universe: simple species / no dust.

Project 3

Supernovae produce heavy elements → in dust.

Dust enrichment + chemistry changes star formation

Primordial star formation

Molecular cloud evolution: Hydrodynamic code Kapteyn Institute

Goals: dust affects →Cloud fragmentation →Star formation and final masses

Dust as protagonist

Experiment

Model

Model Dust/gas Chemistry PAHs/gas Lenses _____ TOF spectrometer + ices MCP detec . Schlathoelter, KVI P. Caselli, Leeds V. Cobut, Paris :15 months /P2:12 months P3:6 months P1:18 months /P2:12months **Observations** PDR/XDR + dust Hydrodynamic code + emission lines + dust M. Spaans, Kapteyn M. Spaans, Kapteyn P1:15 months /P2:24months P2:months S. Salvadori, Kapteyn P3: 24 months P1: PHD P2: Applicant P3: Postdoc

Dust as protagonist

Chemical complexity

Star formation

