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1 Introduction 57 

The ISSI Team on NDACC Lidar Algorithms was formed to undertake the implementation of 58 

standardized definitions and approaches in several aspects of the retrieval of ozone (DIAL) and 59 

temperature (density integration technique) within NDACC. One of these aspects is vertical 60 

resolution. The purpose of providing vertical resolution in the data files together with a 61 

geophysical quantity is to provide information to the data user on the ability for the lidar 62 

instrument to detect geophysical features of specific vertical scale. Higher vertical resolution 63 

means that the instruments is able to detect features of small vertical extent, while lower vertical 64 

resolution implies a reduced ability to detect features of small vertical scale. Vertical resolution 65 

is provided in a unit of vertical length (e.g., meter), with the higher the vertical resolution, the 66 

smaller its numerical value.  67 

The retrieval of temperature or atmospheric species from a lidar measurement starts with the 68 

lidar equation (e.g., Hinkley, 1976), which describes the emission of light by a laser source, its 69 

backscatter at altitude z, its extinction and scattering along its path up and back, and finally its 70 

collection on a detector. In Part 2 of the present report, each term of this equation is described in 71 

details. Two important aspects of this equation are relevant to vertical resolution, first (to a first 72 

order approximation) the detected signal is proportional to the backscatter coefficient, which is 73 

proportional to the air number density, implying a large dynamic change in backscattered 74 

intensity between the lower and upper atmosphere (several orders of magnitude), and second, the 75 

signal is eventually limited by range and measurement sensitivity, causing detection noise to 76 

increase with altitude range. 77 

In order to maximize the useful range of a noisy lidar-retrieved ozone or temperature profile, we 78 

can vertically filter the signal (or the species profile) to reduce the undesired noise. In the rest of 79 

this report, the word filtering is preferred to the word smoothing because it is more general and 80 

applies to both the smoothing and differentiation processes, the former process being relevant to 81 

both temperature and ozone retrievals, and the latter process being relevant to the ozone 82 

differential absorption technique. If the lidar signals or geophysical quantities derived from these 83 

measurements were not digitally filtered during the retrieval process, the vertical resolution 84 

would simply be equal to the instrument sampling resolution. However, most retrieved lidar 85 

parameters are digitally filtered at some point in the retrieval scheme. Over the years, NDACC 86 

lidar PIs have been providing temperature and ozone profiles using a wide range of vertical 87 

resolution schemes and definitions. The objective of the present work is not to recommend a 88 

specific vertical resolution scheme, but instead to make sure that the definition used by the data 89 

provider to describe his scheme is reported and interpreted consistently across the network. The 90 

approaches and recommendations in this report were designed so that they can be implemented 91 

consistently by all NDACC lidar investigators. We therefore recommend well-defined methods 92 

allowing a clear mapping of the amount of filtering applied to the lidar signal (or to the species 93 

profile) with the values of vertical resolution actually reported in the NDACC data files. Our 94 

report reviews a number of vertical resolution definitions used until now within the NDACC 95 

lidar community, and proposes to harmonize these definitions. 96 

Section 2 summarizes the basics of digital signal filtering, and provides the main characteristics 97 

of commonly-used smoothing and derivative filters. Section 3 presents examples of filters and 98 

vertical resolution definitions used by the NDACC ozone and temperature lidar community. The 99 

results from the first two sections are used in section 4 to recommend two practical, well-known 100 

definitions of vertical resolution that can be easily linked to the underlying filtering processes. 101 
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One definition is based on the full-width at half-maximum of a finite impulse response, and the 102 

other definition is based on the cut-off frequency of digital filters. Section 4 also describes 103 

numerical tools that were developed by the ISSI Team to facilitate the implementation of the 104 

proposed standardized definitions within the entire NDACC lidar community. The tools consist 105 

of subroutines written in three scientific languages (IDL, MATLAB and FORTRAN) which can 106 

be inserted in the NDACC investigators’ data processing softwares in order to compute the 107 

proper, standardized numerical values of vertical resolution, based on the set of filter coefficients 108 

used. 109 

The present recommendations for the standardization of the reporting of vertical resolution can 110 

be followed likewise for the retrieval of all species targeted by the NDACC lidars, i.e., ozone, 111 

temperature, water vapor, and aerosol backscatter ratio. One exception is when using an Optimal 112 

Estimation Method (OEM) for the retrieval of temperature as recently proposed by Sica and 113 

Haefele (2015), for which vertical resolution is determined from the Full-Width at Half-114 

Maximum (FWHM) of the OEM’s averaging kernels.  115 
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 116 

2 Brief review of signal filtering theory 117 

Signal filtering for lidar data processing consists of either smoothing, differentiating or 118 

smoothing and differentiating at the same time. To describe the filtering process a signal S is 119 

defined in its general sense, i.e., it can be either a raw lidar signal from a single detection 120 

channel, or the ratio of the corrected signals from two detection channels, or an unsmoothed 121 

ozone profile, temperature profile, calibrated or uncalibrated water vapor profile, etc. The only 122 

common requirement is that the signal is formed of a finite number of equally-spaced samples in 123 

the vertical dimension S(k) with k=[1,nk]. The constant interval between two samples, z = 124 

z(k+1)-z(k) for all k, is the sampling width, or sampling resolution, and corresponds to the 125 

smallest vertical interval that can be resolved by the lidar instrument.  126 

In its most physical sense, the signal filtering process at an altitude z(k)  consists of convolving a 127 

set of 2N+1 coefficients cn with the signal S over the interval z = 2Nz of boundaries z(k-N) and 128 

z(k+N): 129 





N

Nn

nf nkSckS )()(  130 

(2.1) 131 

where Sf is the signal after filtering. The transformation associated with this process is known as 132 

a non-recursive digital filter the simplest kind of digital filters, with the coefficients cn being the 133 

coefficients of the filter. A simple example is the arithmetic running average, for which all 134 

coefficients take the same value cn = 1/(2N+1). Several other names exist for this linear 135 

combination, for example boxcar smoothing filter, boxcar function and smoothing by [2N+1]s. 136 

The number of filter coefficients and the values of these coefficients determine the actual effect 137 

of the filter on the signal. Three critical aspects of the effect of the filter on the signal are 1) the 138 

amount of noise reduction due to filtering, 2) the nature and degree of symmetry/asymmetry of 139 

the coefficients around the central value which determines whether the filter’s function is to 140 

smooth, sum, differentiate, or interpolate, and 3) whether the magnitude of specific noise 141 

frequencies are being amplified or reduced after filtering. 142 

In the particular case of an unfiltered signal comprised of independent samples and assuming that 143 

the variance of the noise for the unfiltered signal is constant through the filtering interval 144 

considered (S
2
(k’) = 

2
 for all k’ in the interval [k-N,k+N]), we obtain a simple relation that 145 

estimates the variance of the output signal:  146 





N

Nn

nS ck
Sf

222 )(   147 

(2.2) 148 

This relation reveals the importance of the sum of the squared-coefficients to determine the 149 

amount of noise reduction. However, it does not provide any information on the ability of the 150 

filter to distinguish what is noise and what is actual signal. To illustrate this problem, Figure 2.1  151 

shows an example of a noisy signal before and after filtering, considering two different filters. 152 

We start from a modeled signal represented by the green dash-dot curve. To this ideal signal, we 153 

add random noise which amplitude is distributed following the Poisson statistics (signal 154 

detection noise). The noisy “unfiltered” signal is represented in this figure by a dark-grey dotted 155 
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curve. The signal is then filtered using two different filters, i.e., two different sets of coefficients. 156 

The blue curve shows the filtered signal using least squares linear fitting (identical to boxcar 157 

average, labeled LS-1), while the red curve shows the filtered signal this time using least squares 158 

fitting with a polynomial of degree 2 (LS-2). The number of terms used by both filters is the 159 

same (2N+1=11). The values of the coefficients, and not the number of coefficients, are 160 

responsible for the observed difference.    161 

 162 

 163 
Figure 2.1  Example of the differing impact of two smoothing filters of identical number of terms (2N+1=11). 164 
The green dot-dash curve is the modeled signal (with no noise), the grey dotted curve is the modeled input 165 
signal containing Poisson noise, the blue and red curves are the smoothed signal using a 11-pts boxcar 166 
average (LS-1) and the Least –squares fitting method with a polynomial of degree 2 (LS-2) respectively 167 

 168 

In the real world, we typically do not know the exact nature or behavior of the measured signal. 169 

Consider the example in Figure 2.1, if the definition used to report vertical resolution in the 170 

NDACC data files was based on the number of points used by the filter, we would not be able to 171 

attribute the differences observed between the blue and red curves to a difference in the filtering 172 

procedure. We therefore need to find some analytical way to characterize a specific filter if we 173 

want to understand its exact effect on the signal, and properly interpret features observed on the 174 

smoothed signal. We will see thereafter that it is indeed possible to determine the resolution of 175 

the filter by either quantifying the response of a controlled impulse in the physical domain, or by 176 

using a frequency approach and studying the frequency-response of the filter. 177 

2.1 Classical approach: Unit impulse response and unit step response 178 

The impact of a specific filter on the signal can be characterized by computing the unit impulse 179 

response in the physical domain (usually called the time domain in time series analysis). This can 180 

be done by using a well-known, controlled input signal, e.g., an impulse, and by studying its 181 

response after being convolved by the filter coefficients. Considering a finite impulse response is 182 
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equivalent to considering the output signal IOUT formed by the convolution of an impulse IINP 183 

with a finite number of coefficients cn: 184 





N

Nn

INPnOUT nkIckI )()(  185 

(2.3) 186 

For smoothing, non-derivative filters, this impulse is the discrete Kronecker delta function k0 187 

(also called unit impulse function), which takes a value of 1 at coordinate k=k0 and 0 elsewhere: 188 

1)(0 kk  for 0kk   189 

0)(0 kk  for all 0kk   190 

(2.4) 191 

Using our smoothing interval of 2N+1 points centered at altitude z(k), the input impulse for 192 

which the response is needed will have a value of 1 at the central point, and 0 at all other points: 193 

1)(  nkI INP   for 0n  194 

0)(  nkI INP  for Nn 0  195 

 (2.5) 196 

For derivative filters, we are interested in the response of a discrete Heaviside step function HS 197 

(also called unit step function), which takes a value of 0 for all strictly negative values of k, and a 198 

value of 1 elsewhere: 199 

0)( kH S   0k  200 

1)( kH S   0k  201 

(2.6) 202 

Again using an interval of 2N+1 points centered at z(k), the input step for which the response is 203 

needed will have a value of 0 for all samples below the central point z(k), and a value of 1 for the 204 

central point and all samples above it: 205 

0)(  nkI INP  0 nN  206 

1)(  nkI INP   Nn 0  207 

 (2.7) 208 

Though we considered an impulse (delta function) for smoothing filters and a step function 209 

(Heaviside step) for the derivative filters, for brevity we will call both types of response an 210 

“impulse response” in the rest of this report. For each altitude location considered, the impulse 211 

response consists of a vector which length is at least as large as twice the number of filter 212 

coefficients used to smooth the signal at this location. The magnitude of the impulse response 213 

typically maximizes at the central point z(k) of the filtering interval, and then decreases apart 214 

from this central value to a value of 0 for points outside the smoothing interval. Unlike the 215 

number of coefficients used by the filter, the width of the response (measured in number of bins) 216 

provides a quantitative measure of the actual smoothing impact of the filter on the signal at this 217 

location. Several examples of impulse response are discussed in sections 2.3 and 2.4. 218 

 219 
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2.2 The frequency approach: Transfer function and gain 220 

As in many signal processing applications, the frequency approach applied to lidar signal 221 

filtering or lidar-retrieved profile filtering is a very convenient mathematical framework. It is a 222 

more abstract, but very powerful tool allowing to understand many hidden features of the 223 

smoothing and differentiation processes. A succinct, yet clear discussion of the required 224 

mathematical background is provided by Hamming (1989). Here, we will provide a brief review 225 

of this background relevant to our applications. 226 

1) Aliasing: Any signal consisting of a finite number of equally-spaced samples in the physical 227 

domain is an aliased representation of a sine and cosine function of frequency . Using the usual 228 

trigonometry formulae and the Euler identity, we can therefore express the signal in complex 229 

form: 230 

kiekS )(  231 

(2.8) 232 

In the case of lidar, the signal (or the ozone or temperature profile) is a function of altitude range. 233 

The discretized independent variable is the vertical sampling bin k. The angular frequency  234 

(unit: radian.bin
-1

) is then connected to the frequency f (unit: bin
-1

) and vertical wavelength L 235 

(unit: bin) by the relations: 236 

L
f




2
2   237 

(2.9) 238 

2) Eigen-functions and eigenvalues of a linear system: Any vector x of length M can be formed 239 

by linear combination of M linearly independent (orthogonal) eigenvectors xi: 240 

i

M

i

ia xx 



1

 241 

(2.10) 242 

Furthermore, any non-zero and non-unity matrix A of dimension M by M multiplied by this 243 

vector can be expressed as the sum of the products of its elements by the corresponding 244 

eigenvalues i: 245 

i

M

i

iii

M

i

i aa xAxAx 



11

   246 

(2.11) 247 

3) Invariance under translation: The property of invariance under translation for the sine and 248 

cosine functions implies a direct relation between the signal expressed in its complex form and 249 

the eigenvalue () for a given translation: 250 

)()()( )( kSeeenkS kininki   
 251 

(2.12) 252 

Using the above mathematical background, the filtered signal Sf presented in its classical form as 253 

a linear combination of the input signal S (Eq. (2.1)) can be re-written in its frequency-approach 254 

form: 255 
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)()()()( kSeecekS ki
N

Nn

ni

n

ki

f    


 256 

(2.13) 257 

The eigenvalue () is independent of k, and is called the transfer function, which can be 258 

computed in the frequency domain over a full cycle [-,], or over half a cycle [0,] without 259 

losing information (symmetry of translation): 260 





N

Nn

ni

nec  )(         0   radian.bin
-1

 261 

(2.14) 262 

We can express the transfer function more conveniently as a function of the frequency f: 263 





N

Nn

fni

necfH 2)(      5.00  f  bin
-1

 264 

(2.15) 265 

The maximum value f = 0.5 bin
-1

 is the Nyquist frequency, which corresponds to L=2 bins, and 266 

which expresses the fact that the lidar instrument is unable to fully resolve any feature of vertical 267 

wavelength smaller than twice the sampling resolution (2z). The transformation described in 268 

Eq.(2.15) can easily be recognized as a well-known discrete Laplace Transform, applied to the 269 

filter coefficients.  270 

For a typical smoothing filter, the coefficients have even symmetry, i.e., cn = c-n for all values of 271 

n. The complex transfer function can then be reduced to its real part. The gain of the filter G, 272 

which is the ratio of the actual transfer function  H(f) to the ideal transfer function I(f) can then 273 

be written: 274 





N

n

n nfcc
fH

fI

fH
fG

1

0 )2cos(2
1

)(

)(

)(
)(   5.00  f  bin

-1
 275 

(2.16) 276 

For a derivative filter, the 2N+1 coefficients have odd symmetry, i.e., cn = -c-n for all values of n 277 

and c0 = 0. The complex transfer function is then reduced to its imaginary component: 278 





N

n

n nfcifH
1

)2sin(2)(   279 

With the complex notation of Eq. (2.8), the ideal vertical derivative of the signal can be written: 280 

kiki

f feieikS   2)(   281 

(2.17) 282 

The gain of the filter, i.e., the ratio of the actual transfer function to the ideal transfer function, 283 

then takes the form: 284 





N

n

n nfc
ffi

fH
fG

1

)2sin(
1

2

)(
)( 


  5.00  f  bin

-1
 285 

(2.18) 286 

 287 
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2.3 Impulse response and gain of commonly-used smoothing filters 288 

Here we briefly review, only for reference, a few commonly-used smoothing filters. Providing 289 

recommendations for the use of specific filters is beyond the scope of the ISSI-Team work. 290 

However, inspection of the many transfer functions shown in this section can help the reader in 291 

the design of a filter optimized for his application.  292 

2.3.1 Least squares fitting, boxcar average, and smoothing by ns 293 

Least-squares fitting is a well-established numerical technique used for many applications such 294 

as signal smoothing, differentiation, interpolation, etc.. The relation between the number and 295 

values of the filter coefficients and the type of polynomial used to fit the signal can be found in 296 

many text books and publications (e.g., Birge et al., 1947; Savitsky and Golay, 1964; Steinier et 297 

al., 1972). In this paragraph we show that least-squares fitting with a straight line, boxcar 298 

averaging and smoothing by ns, are all the same filter. We start with the simple case of fitting 299 

five points with a straight line. We therefore look for the minimization of the following function: 300 

 



2

2

2

1010 )()(),(
n

naankSaaF  301 

(2.19) 302 

This minimization is done by differentiating F with respect to each coefficient a0 and a1 and 303 

finding the root of each corresponding equation: 304 

























2

2

10

2

2

10

)(100

)(05

n

n

nknSaa

nkSaa

 305 

(2.20) 306 

The value of the signal after filtering Sf is the mid-point value of the fitting function a0+a1n 307 

which corresponds to the value of a0 (n=0): 308 





2

2

0 )(
5

1
)(

n

f nkSakS  309 

(2.21) 310 

Identifying this equation to the generic Eq. (2.1), we deduce the five coefficients of the filter: 311 

5

1
nc          22  n  312 

We recognize the smoothing-by-5s filter or 5-point boxcar average, or 5-pts running average.  313 

The impulse response of this filter takes a value of 1 for all |n| comprised between 0 and N, and a 314 

value of 0 elsewhere (see Figure 2.2, left plot). Not surprisingly, all impulse response curves 315 

maximize at the central point (n=0), and their full-width at half-maximum (FWHM) increases 316 

with the number of filter coefficients used. 317 

Now switching to the frequency domain and using Eq. (2.14), the transfer function () can be 318 

written in complex form: 319 
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  iiii eeee 22 1
5

1
)(    320 

(2.22) 321 

The gain of the filter can be expressed as a function of frequency f: 322 





2

1

)2cos(
5

1
2

5

1
)()(

n

nffHfG   323 

which simplifies to: 324 











)sin(

)5sin(

5

1
)()(

f

f
fHfG




 325 

(2.23) 326 

We can generalize the above equation by fitting 2N+1 points with a straight line, and we find: 327 

12

1




N
cn       NnN   328 

  NiiNiiiNNi eeeeee
N




  )1()1( ...1...
12

1
)(  329 

(2.24) 330 

Or in function of frequency: 331 


 





N

n N

nf

N
fHfG

1 12

)2cos(
2

12

1
)()(


 332 

which simplifies to 333 

 







 




)sin(

)12(sin

12

1
)()(

f

fN

N
fHfG




 334 

(2.25) 335 

The gains for smoothing by 3s through 25s filters are plotted on the right-hand side of Figure 336 

2.2. The gain provides a more complete description of the smoothing ability of the filters because 337 

it provides a measure of noise attenuation as a function of frequency. All curves show a gain 338 

close to 1 for frequency values near 0 (low-pass filters), but they also show large wiggles at 339 

larger frequencies when we approach the Nyquist frequency. The frequency f0 of the first zero-340 

crossing (zero-gain) is determined by the number of points used: 341 

12

1
0




N
f  342 

(2.26) 343 
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 344 
Figure 2.2  Impulse response (left) and gain (right) for a digital filter equivalent to fitting an unsmoothed 345 
signal with a polynomial of degree 1 or 2 using the least-squares method over an interval comprising 2N+1 346 
points (full width). Full widths represented in this figure range from 3 to 25 points. This least-squares 347 
filtering procedure is equivalent to a running average over 2N+1 points (full width) as well as smoothing by 348 
(2N+1)s  349 

 350 

The wiggles observed on the right-hand side plot of Figure 2.2 (the Gibbs phenomenon) are 351 

undesirable if the filter’s objective is to remove the highest frequencies from the signal, which is 352 

the case for the lidar signal impacted by detection noise. The Gibbs ripples are predicted by the 353 

Fourier theory because these digital filters have a finite number of coefficients, the equivalent in 354 

the physical domain of truncated Fourier series in the frequency domain. The strength of the 355 

frequency approach is to use the Fourier theory, and in particular the concept of windowing, to 356 

minimize the Gibbs ripples. Detailing the underlying theory behind this behavior is beyond the 357 

scope of the present report. Instead, we will simply provide here the most common examples of 358 

modifications made to the filter coefficients allowing an optimized design of a noise-reduction 359 

filter. More details on filters windows can be found for example in Rabiner and Gold (1979). 360 

 361 
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2.3.2 Modified least squares 362 

In this first example we modify the shape of the transfer function by changing the two terms at 363 

the end of the summation, more specifically, taking half of the value of the end coefficients 364 

instead of their full value. We also need to re-normalize the sum of the coefficients to 2N instead 365 

of 2N+1, and we obtain the transfer function for the so-called modified least-squares: 366 
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Leading to: 369 
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(2.28) 371 

With the presently modified coefficients, the frequency f0 of the position of the first zero-gain 372 

node is now: 373 

N
f

2

1
0   374 

Figure 2.3 shows the impulse response (left) and the gain (right) for the modified least-squares 375 

filters with a full-width comprised between 3 and 25 points. As can be seen on the right-hand 376 

side plot, changing the two end coefficients has the effect of producing a slightly less efficient 377 

low-pass filter (f0 is increased) but a more efficient high-stop filter (i.e., smaller amplitude of the 378 

Gibbs ripples). 379 

 380 
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 381 
Figure 2.3  Same as Figure 2.2, but after halving the values of the two end coefficients (modified least-squares, 382 
see text for details) 383 

 384 

2.3.3 Low-pass filter and cut-off frequency 385 

If we were to consider an ideal low-pass filter with an infinite number of terms, the theoretical 386 

transfer function would have values strictly comprised between 0 and 1 representing the perfect 387 

gain of the filter (no ripples). The so-called transition region corresponds to the region where we 388 

want the transfer function to drop from a value of 1 at lower frequencies to a value of 0 at higher 389 

frequencies. The width of the transition region is the bandwidth. We can define the cut-off 390 

frequency of a low-pass filter as the frequency at which the transfer function equals 0.5. For most 391 

low-pass filters this is at the center of the bandwidth.  To design a low-pass filter with the desired 392 

cut-off frequency fC, we start with the initial conditions defining an ideal low-pass filter: 393 

1)( fG  for Cff 0  394 

0)( fG  for 5.0 ffC  395 

)()( fGfG   396 

(2.29) 397 
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Without getting into mathematical details, we find that these conditions are always true for a 398 

family of un-truncated Fourier series with the following transfer function: 399 
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(2.30) 401 

Since we have to work with a finite number of samples, we truncate the series to a finite number 402 

of terms at the expense of producing Gibbs ripples. The real-world low-pass filter thus created 403 

has the following 2N+1 coefficients and transfer function: 404 

C

C

Cn
nf

nf
fc





2

)2sin(
2        NnN   405 

(2.31) 406 





N

n

C

C nf
n

nf
ffHfG

1

)2cos(
)2sin(

22)()( 



 407 

(2.32) 408 

An example, for fc=0.15, is provided for reference in Figure 2.4. The impulse response (left) and 409 

gain (right) are shown for a filter full-width comprised between 3 and 25 points. The first few 410 

Gibbs ripples always have the largest amplitude. Using a higher number of terms causes the 411 

ripples to be more concentrated near the transition region, and causes higher orders’ ripples with 412 

a smaller amplitude to occur near the Nyquist frequency 413 

The gain curves show that the transition region is narrower than that observed for the smoothing 414 

by ns filters, but the Gibbs ripples appear on both sides of the transition region. Just like for the 415 

modified least squares fitting, we can reduce the magnitude of the Gibbs ripples by modifying 416 

the filter coefficients, specifically by applying additional weights to the filter coefficients, a 417 

process called windowing. 418 
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 419 
Figure 2.4  Impulse response and gain of low-pass filters using 2N+1 coefficients (full width), and designed to 420 
have a cut-off frequency fc=0.15. Full widths range from 3 to 25 points 421 

 422 

2.3.4 Lanczos window 423 

The windowing procedure consists of applying well-chosen additional weights to the original 424 

filter coefficients in order to change the shape of the transfer function (in our case, to reduce the 425 

amplitude of the Gibbs ripples). For example it can be shown (Hamming, 1989) that a discrete 426 

Fourier series truncated at its M
th

 term could be efficiently smoothed (and therefore Gibbs ripples 427 

attenuated) if its coefficients were multiplied by the so-called sigma factors. For a smoothing 428 

filter with even symmetry, an unsmoothed, M-terms truncated discrete Fourier series can be 429 

written: 430 
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The sigma factors can be written: 433 
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(2.34) 435 

The smoothed Fourier series can then be written: 436 
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(2.35) 438 

Considering the low-pass filter case with 2N+1 coefficients (full width), the sigma factors are 439 

then: 440 
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Note that the sigma factor at the central location (n=0) is (N,0)=1. The new filter coefficients 443 

and transfer function can now be written:  444 
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(2.38) 448 

Figure 2.5 shows the impulse response (left) and gain (right) of the low-pass filter introduced in 449 

the previous paragraph, this time with its coefficients weighted by the Lanczos window (full-450 

width comprised between 3 and 25 points). The convolution of the low-pass filter coefficients by 451 

the Lanczos window reduces greatly the Gibbs ripples. Note that the 3-point Lanczos window 452 

consists of two null coefficients and one unity coefficient, which is equivalent to no filtering and 453 

results into a gain equal to 1 at all frequencies. We kept it on the figure only for the sake of 454 

completeness. 455 

 456 
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 457 
Figure 2.5  Same as Figure 2.4, this time after the low-pass filter coefficients were convolved with a Lanczos 458 
window 459 

 460 

2.3.5 Von Hann window (or Hanning, or raised cosine window) 461 

Another window commonly used is the von Hann window (also called Hanning window or the 462 

raised cosine window). For a window of 2N+1 terms, the window weights in this case are 463 

defined by: 464 

2

)/cos(1 Nn
wn


        NnN   465 

(2.39) 466 

Figure 2.6 shows the impulse response (left) and gain (right) of the box car average filter after it 467 

is convoluted by the von Hann window. 468 

 469 
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 470 
Figure 2.6  Same as Figure 2.2, but this time after the boxcar filter coefficients were convolved with a von 471 
Hann window 472 

 473 

Using this window causes the transition region to be much wider, but the Gibbs ripples to have a 474 

much smaller amplitude. The frequency f0 of the first node (zero-gain) is now: 475 

N
f

1
0   476 

(2.40) 477 

 478 

2.3.6 Hamming window 479 

The sign of the lobes of the Von Hann window transfer function is opposite to those of the least-480 

square transfer function (not shown). The Hamming window consists of finding the optimized 481 

linear combination of these two transfer functions that will minimize the magnitude of those 482 

lobes. The result is a slightly modified version of the von Hann window: 483 

)/cos( Nnwn         with + 2= 1      NnN   484 

(2.41) 485 
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Contrary to common belief,  and  are not constants. They represent only approximations of the 486 

best solution for the minimization of the lobes amplitude, and their value depends on N. For large 487 

values of N, we find = 0.54 and = 0.23, but for small values (N < 6) we find > 0.55 and < 488 

0.225 (Hamming, 1989). 489 

 490 

2.3.7 Blackman window 491 

We can continue to follow the same approach to minimize further the amplitude of the Gibbs 492 

ripples by taking optimized linear combinations of the rectangular and cosine window functions, 493 

this time using higher harmonics. One common window obtained this way is the Blackman 494 

window, defined by its weights: 495 

)/2cos()/cos( NnNnwn          NnN   496 

(2.42) 497 

This time, we have =0.42, =0.42, and =0.08. 498 

 499 

2.3.8 Kaiser window and NER filter 500 

An alternate set of window weights was suggested by Kaiser and Reed (1977). These weights 501 

have the main function of spreading the large amplitude of the first Gibbs ripples (those near the 502 

transition region) into all the ripples between the transition region and the two ends of the 503 

frequency range (f=0 and f=0.5). The weights are based on the Bessel function I0, and can be 504 

written:  505 
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with the Bessel function: 508 

 



















1

2

0
!

2/
1)(

m

m

m
I


  509 

(2.44) 510 

The convolution of the Kaiser window weights with the boxcar filter coefficients results in the 511 

so-called Near-Equal-Ripple (NER) filter: 512 
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(2.45) 514 

The advantage of this filter is the ability to fine-tune the cut-off frequency, the bandwidth and the 515 

amplitude of the Gibbs ripples, all at the same time. Obviously the method does not produce a 516 

“perfect” filter, but it allows the optimization of at least two filter parameters at the expense of 517 

the third one. For example, we can prescribe the bandwidth of the transition regionfC (full-518 
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width) withfC < 2fC andfC < 1-2fC, and the amplitude of the Gibbs ripples  (half-width), and 519 

deduce the number of filter coefficients needed. Following the formulation of Kaiser and Reed 520 

(1977), the amplitude of the Gibbs ripples can be expressed in terms of attenuation A (in 521 

decibel): 522 

)(log20 10 A  523 

(2.46) 524 

After we fix the attenuation A and bandwidthfC, an optimal Kaiser filter will be designed by 525 

calculating the required number of points N (half-width) using: 526 
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(2.47) 529 

The  parameter used in argument of the Bessel function is then computed using: 530 

 7.81102.0  A      for A > 21 531 

     2107886.0215842.0
4.0

 AA   for 21 < A < 50 532 

0        for A < 21 533 
(2.48) 534 

An example of optimized low-pass filter using a Kaiser window with 50-dB attenuation is 535 

provided in Figure 2.7. Once again the impulse response is on the left, and the gain is on the 536 

right. The right-hand plot shows that the total number of coefficients 2N+1 must be 7 or larger to 537 

produce an optimized filter for this particular value of attenuation. 538 

 539 
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 540 
Figure 2.7  Same as Figure 2.5, this time after the low-pass filter coefficients were convolved with a 50-dB 541 
attenuation Kaiser window 542 

 543 

 544 

2.3.9 Noise reduction and number of filter coefficients 545 

Figure 2.8 shows, for four of the filters introduced in this section, the amount of noise reduction 546 

as a function of the number of filter coefficients used. The noise reduction values are computed 547 

using Eq. (2.2). The black dotted curve on each plot shows the noise reduction expected from an 548 

arithmetic average of multiple samples containing Poisson-distributed noise (i.e., square root of 549 

the number of samples used for the average). Not surprisingly, it is identical to the red symbols 550 

on the top-left figures (boxcar average). The bottom-left and top-right plots show that higher 551 

orders polynomials, or filters convolved with windows, yield a noisier signal (less noise 552 

reduction) than in the case of the simple boxcar average. The bottom-right plot shows that noise 553 

reduction for low-pass filters designed with a prescribed cut-off frequency does not increase with 554 

the number of coefficients used. 555 

 556 
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 557 
Figure 2.8  Noise reduction factor as a function of the number of coefficients, for a selected number of filters 558 
introduced in the previous section (see text for details) 559 
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 560 

 561 
Table 2.1 Noise reduction factor (normalized to sqrt(2N+1)) for the least-squares fitting smoothing filters and 562 
windows introduced in this section 563 

Noise reduction/sqrt(2N+1) 
LS and MLS 

deg. 0-1 

LS 

deg. 2-3 

No window 1.00 0.66 

w/ Lanczos window 0.84* 0.74* 

w/ von Hann window 0.78* 0.71* 

w/ Blackman window 0.73* 0.67* 

w/ Kaiser 50-dB window 0.84* 0.72* 

* Valid for N>3 only. For N<3, values depend on N and are 10-40% lower 564 

 565 

2.4 Impulse response and gain of commonly-used derivative filters 566 

Here we briefly review a few commonly-used derivative filters. Except for the central difference 567 

filter, all filters considered here have the double function of smoothing and differentiating. 568 

2.4.1 Central difference derivative filter 569 

The simplest approximation of the derivative of a signal S at altitude z(k) without a phase shift is 570 

the so-called 3-point central difference which can be written: 571 
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(2.49) 573 

Here we work in units of sampling bins rather than physical units, i.e., we assume the sampling 574 

resolution is z=1. We recognize the set of coefficients: 575 
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(2.50) 577 

The transfer function, obtained from Eq. (2.49) is: 578 

    sin0
2

1
)( iee ii    579 

(2.51) 580 

Following the notation of Eq. (2.18) (odd symmetry) and using the values of the coefficients cn 581 

(Eq. (2.50)), we then compute the gain, i.e., the ratio of the value approximated by the central 582 

difference (Eq. (2.51)) to the value of the ideal derivative (Eq. (2.17)) and find: 583 
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(2.52) 585 

This equation shows that the central difference conserves the slope of the original signal for f=0 586 

only, and underestimates this slope for all other frequencies. Figure 2.9 shows the transfer 587 

function H (red solid curve) and gain G (blue solid curve) for the 3-point central differences. 588 

 589 

 590 
Figure 2.9  Transfer function and gain of the central difference digital filter. The gain (blue curve) is the 591 
transfer function (red curve) normalized by 2f, which is the real part of the ideal differentiator i  592 

 593 

Just like for the smoothing filters presented in section 2.3, we can design derivative low-pass 594 

filters that will conserve the slope of the signal for low values of frequency and attenuate the 595 

slope (or noise) for higher frequency values. A few examples are given below. 596 

 597 

2.4.2 Least squares derivative filters (or Savitsky-Golay derivative filters) 598 

In paragraph 2.3.1, we derived the coefficients of a 5-point boxcar function which was 599 

equivalent to fitting the signal using the least-squares technique with a polynomial of degree 1 600 

(straight line). We can indeed use the second normal equation (second equation of the system of 601 
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Eqs. (2.20)) to compute c1, which is the value of the slope of the fitting function. Applying 602 

Faulhaber’s summing formula to a polynomial of degree 1 (Knuth, 1993), we find the values of 603 

the filter coefficients as a function of the total number of terms NT  to be: 604 
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 For NT = 2N+1 = 3 points, that corresponds to the central difference: 607 
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n
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(2.54) 609 

For NT = 2N+1 = 5 points, that corresponds to: 610 
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n
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(2.55) 612 

For NT = 2N+1 = 7 points, that corresponds to: 613 
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n
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(2.56) 615 

Using a similar mathematical development, the filter coefficients corresponding to the least-616 

squares fitting technique by higher order polynomials can also be obtained. For polynomials of 617 

degrees 3 and 4 (cubic and quartic) we have: 618 
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For NT=2N+1=5 points, that corresponds to: 621 
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(2.58) 623 

For NT=2N+1=7 points, that corresponds to: 624 
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(2.59) 626 

The coefficients of the smoothing and derivative filters associated with the least squares fitting 627 

by polynomials of degrees 1 through 6 are provided by Savitsky and Golay (1964) with corrected 628 

values in Steinier et al. (1972). The impulse response and gain of these filters are plotted in 629 

Figure 2.10 for polynomials of degree 1 and 2 and Figure 2.11 for polynomials of degree 3 and 630 

4, and for full widths ranging between 3 and 25 points. 631 

 632 
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 633 
Figure 2.10  Impulse response (left) and gain (right) of derivative filters obtained from the calculated slope of 634 
a polynomial of degrees 1 and 2 using the least-squares fitting method over an interval comprising 2N+1 635 
points (full width). The gain is the transfer function normalized by 2f. Full widths range from 3 to 25 points  636 

 637 



28 

 

 638 
Figure 2.11  Same as Figure 2.10, but fitting with polynomials of degree 3 and 4 instead of 1 and 2 639 

 640 

2.4.3 Low-pass derivative filters 641 

Just as we did for the low-pass smoothing filters (section 2.3.3), we want to design a derivative 642 

low-pass filter with a prescribed cut-off frequency fC. We therefore start with the initial 643 

conditions defining an ideal derivative low-pass filter: 644 
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(2.60) 647 

We find that these conditions are always true for a family of un-truncated Fourier series with the 648 

following transfer function: 649 
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Again, we truncate the series to a finite number of terms at the expense of producing Gibbs 652 

ripples. The actual low-pass filter thus created has the following 2N+1 coefficients and transfer 653 

function: 654 
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(2.62) 657 

 658 

2.4.4 Lanczos low-pass derivative filters 659 

The low-pass filter coefficients will simply be multiplied by the sigma factors, as defined in 660 

section 2.3, to obtain the smooth derivative filter coefficients: 661 
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 664 

2.4.5 Kaiser window and NERD filter 665 

The low-pass filter coefficients are multiplied by the Kaiser window weights to obtain the 666 

coefficients of the Near-Equal-Ripple Derivative (NERD) filter: 667 
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(2.64) 669 

Figure 2.12 shows the impulse response (left) and gain (right) of a low-pass derivative filter with 670 

fC=0.2 before any convolution. Figure 2.13 is similar to Figure 2.12, but after convolution by a 671 

Lanczos window. Figure 2.14 is similar to Figure 2.12, but after convolution by a Kaiser 672 

window (50-dB attenuation). These figures show that the filters and the windows used are not 673 

optimized for all values of N. Therefore, the choice of filter must be carefully made together with 674 

the number of filter coefficients used. 675 

 676 
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 677 
Figure 2.12  Impulse response (left) and gain (right) of a low-pass derivative filter (fC=0.2). The gain is the 678 
transfer functions normalized by 2f. Full widths range from 3 to 25 points 679 

 680 
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 681 
Figure 2.13  Same as Figure 2.12 but after convolution by a Lanczos window 682 

 683 
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 684 
Figure 2.14  Same as  but after convolution by a Kaiser window tuned for a 50-dB attenuation 685 

 686 

  687 
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 688 

3 Review of vertical resolution definitions used by NDACC lidar 689 

investigators 690 

The filtering schemes or methods of several NDACC lidar investigators have been reviewed and 691 

compared in previous works, for e.g., Beyerle and McDermid (1999) and Godin et al., (1999). 692 

These studies concluded that vertical resolution was not consistently reported between the 693 

various investigators. Here we briefly review the filtering schemes or methods used by various 694 

NDACC lidar investigators, and how vertical resolution is reported in their data files as of 2011. 695 

This review provided critical input to the ISSI Team to determine which definitions of vertical 696 

resolution is appropriate for use in a standardized way across the entire network (see section 4). 697 

In the case of the Observatoire de Haute-Provence (OHP) stratospheric ozone differential 698 

absorption lidar, a 2nd degree polynomial derivative filter (Savitsky-Golay derivative filter) is 699 

used. Vertical resolution is reported following a definition based on the cut-off frequency of the 700 

digital filter (Godin-Beekmann et al., 2003). 701 

For the JPL stratospheric ozone and temperature lidars at Table Mountain, CA and Mauna Loa, 702 

Hawaii, filtering is done by applying a 4th degree polynomial least-squares fit (Savitsky-Golay 703 

derivative filter) to the logarithm of the signals for ozone retrieval. For the temperature profiles, 704 

a Kaiser filter is applied to the logarithm of the relative density profile. In both ozone and 705 

temperature cases, the cutoff frequency of the filter, reversed to the physical domain, is reported 706 

as vertical resolution (Leblanc et al., 2012). 707 

The NASA-GSFC ozone DIAL algorithm (STROZ instrument) (Beyerle and McDermid, 1999) 708 

uses a least-squares 4
th

 degree polynomial fit derivative filter (Savitsky-Golay derivative filter). 709 

The definition of vertical resolution in the NDACC-archived data files is based on the impulse 710 

response of a delta function, by measuring the FWHM of the filter’s response. As shown in 711 

section 4, there is a linear relation between the FWHM and the width of the window (number of 712 

points) used. For the temperature retrieval (Gross et al., 1997), the profiles are smoothed using a 713 

low-pass filter (Kaiser and Reed, 1977), and a simple ad hoc step function is used to define the 714 

values of the vertical resolution. 715 

For the RIVM ozone lidar located in Lauder, New Zealand (Swart et al., 1994), the definition of 716 

vertical resolution is based on the width of the fitting window used for the ozone derivation. 717 

The tropospheric ozone DIAL at Reunion Island (France) uses a 2
nd

 degree polynomial least-718 

squares fit (Savitsky-Golay derivative filter) to filter the ozone measurements. The vertical 719 

resolution is reported as the cut-off frequency of the corresponding digital filter (same ozone 720 

retrieval as for the OHP lidar). For the temperature profiles using the Rayleigh backscatter lidar 721 

measurements at Reunion Island, a Hamming filter is applied on the temperature profile. The 722 

width of the window used is reported as the vertical resolution. 723 

For climatology studies, the PCL temperature algorithm applies a combination of smoothing by 724 

3s and 5s filters or a Kaiser filter on the temperature profiles (e.g. Argall and Sica, 2007). Similar 725 

filters are used in space or time for spectral analysis of atmospheric waves (e.g. Sica and Russell 726 

1999). Filter parameters are reported in the data files locally produced and distributed to the 727 

scientific user community. Previously files were distributed to users with the type of filter and 728 

full bandwidth of the filter. The variance reduction of the filter is folded into the random 729 

uncertainties provided. The product of the data spacing and the filter bandwidth gives the full 730 
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influence of the filter at each point. With the development of a temperature retrieval algorithm 731 

based on an optimal estimation method, vertical resolution of the temperature profile is now 732 

available as a function of altitude (Sica and Haefele 2015). 733 

The ozone DIAL and temperature algorithms of the NDACC lidar in Tsukuba, Japan uses 2
nd

 734 

and 4
th

 degree polynomial least-squares fits (Savitsky-Golay derivative filter). The vertical 735 

resolution is calculated from a simulation model that determines the FWHM of the impulse 736 

response to an ozone delta function. The FWHM is then mapped as a function of altitude. For 737 

temperature a von Hann (or Hanning) window is used on the logarithm of the signal (B. Tatarov, 738 

personal communication, 2010). 739 

The IFU tropospheric ozone DIAL algorithm (instrument located in Garmisch-Partenkirchen, 740 

Germany) uses least-squares first and third degree polynomial fits, as well as a combination of a 741 

linear fit and a Blackman-type window (Eisele and Trickl, 2005; Trickl, 2010). These filters have 742 

a reasonably high cut-off frequency and do not transmit as much noise as the derivative filters 743 

used earlier at IFU (Kempfer et al., 1994). To report vertical resolution in the data files, a 744 

Germany-based standard definition of vertical resolution is used, following the Verein Deutscher 745 

Ingenieure DIAL guideline VDI-4210 published in 1999 (VDI, 1999). This definition is based on 746 

the impulse response to a Heaviside step function. The vertical resolution is given as the distance 747 

separating the positions of the 25% and 75% in the rise of the response, which is approximately 748 

equivalent to the FWHM of the response to a delta function. In the case of the ozone DIAL the 749 

vertical resolution of both the Blackman-type filter used and the combined least-squares-750 

derivative plus Blackman filter. A vertical resolution of 19.2 % or 19.6 % of the filtering interval 751 

was determined, respectively. For small intervals the latter value may change, i.e., the least-752 

squares fit for determining the derivative is executed over just a few data points. For comparison, 753 

an arithmetic average yields a vertical resolution of 50 % of the filtering interval. 754 

Having reviewed the vertical resolution definitions and schemes used across NDACC and 755 

elsewhere, three definitions or approaches can be clearly identified. The first definition is the 756 

number of filter coefficients used, the second definition is based on the cut-off frequency of the 757 

filter, and the third definition is based on the width of the impulse response of the filter. Those 758 

definitions were already mentioned by Beyerle and McDermid (1999), but no decision was made 759 

within NDACC to find a standardized approach across the network.  Section 2 showed that not 760 

all filters have the same properties, and that the characteristics of a filter do not simply depend on 761 

the number of coefficients used, but instead on a combination of the number of coefficients and 762 

their values. Indeed Figure 3.1 below shows the gain of several filters having the same number 763 

of coefficients (5-pts for the smoothing filters on the left hand plot, and 7-pts for the derivative 764 

filters on the right hand plot). It is obvious that, depending on the filter and/or window used, the 765 

transition region between pass-band and stop-band is located at very different frequencies. In the 766 

examples shown, it is located between f=0.12 and f=0.35 for smoothing filters, while the 767 

derivative filters show considerably more variability. 768 

 769 
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 770 
Figure 3.1  Gain of several smoothing (left) and derivative (right) filters, all having the exact same number of 771 
coefficients 2N+1 (5-pts full-width for the smoothing filters and 7-pts full-width for the derivative filters) 772 

 773 

Finding transition regions at different frequencies means that the smoothing effect of the filters 774 

on the signal is different even though the number of coefficients is the same. A vertical 775 

resolution definition based on the number of coefficients is therefore not reliable. Instead we 776 

need to choose a standardized definition based on objective parameters that are directly related to 777 

the effect a filter has on the signal. Two such definitions are proposed thereafter, definitions that 778 

are similar or closely related to the two remaining definitions identified in this section. 779 

  780 
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 781 

4 Proposed standardized vertical resolution definitions for the 782 

NDACC lidars 783 

The two definitions proposed in this report were chosen because they provide a straightforward 784 

characterization of the underlying smoothing effect of filters (see section 2), and they appear to 785 

be already used by a large number of NDACC investigators (see section 3). The first definition 786 

is based on the width of the impulse response of the filter. The second definition is based on the 787 

cut-off frequency of the filter. Further justification for the choice of either definition is provided 788 

at the end of this section. 789 

 790 

4.1 Definition based on the FWHM of a finite impulse response  791 

The full-width-at-half-maximum (FWHM) of an impulse response, as introduced in section 2, is 792 

computed by measuring the distance (in bins) between the two points at which the response 793 

magnitude falls below half of its maximum amplitude. The NDACC-lidar-standardized 794 

definition of vertical resolution proposed here is computed from the response IOUT of a 795 

Kronecker delta function for smoothing filters, and a Heaviside step function for derivative 796 

filters. Because of the dynamic range of the lidar signals (or ozone or temperature profiles), we 797 

assume that the number of filter coefficients varies with altitude. Therefore, the standardized 798 

vertical resolution is estimated separately for each altitude z(k), and the procedure can be 799 

summarized as follows: 800 

1) Define and/or identify the 2N(k)+1 filter coefficients c(k,n) used to perform the smoothing or 801 

differentiation operation on the lidar signal (or the ozone or temperature profile): 802 


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(4.1) 804 

2) Construct an impulse function of finite length 2M(k)+1 to be convolved with the filter 805 

coefficients. The value of M(k) is not critical but has to be greater or equal to N(k). For 806 

smoothing filters, the impulse function is the Kronecker delta function which can be written: 807 
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(4.2) 809 

This function equals 1 at the central point (m=0) and equals 0 everywhere else. For derivative 810 

filters, the impulse function is the Heaviside step function which can be written: 811 
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(4.3) 813 

This function equals 0 at all locations below the central point (m<0) and equals 1 everywhere 814 

else. 815 

3) Convolve the filter coefficients with the impulse function in order to obtain the impulse 816 

response IOUT: 817 
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
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4) Estimate the full width at half-maximum (FWHM) of the impulse response IOUT, by measuring 820 

the distance mIR, in bins, between the two points (located on each side of the central bin) where 821 

the response magnitude falls below half of the maximum amplitude: 822 

 ),(max5.0))(,( 1 iOUTOUT mkIkmkI    for all 0)(  imkM  823 
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(4.5) 826 

For a successful identification of the FWHM, the impulse response should have only two points 827 

where its value falls below half of its maximum amplitude, which is normally the case for all 828 

smoothing and derivative filters used within their prescribed domain of validity (see examples in 829 

section 2). In the event that more than two points exist, the two points farthest from the central 830 

bin should be chosen in order to yield the most conservative estimate of vertical resolution.  831 

5) Compute the standardized vertical definition zIR as the product of the lidar sampling 832 

resolution z and the estimated FWHM: 833 

)()( kmzkz IRIR    834 

(4.6) 835 

Figure 4.1 summarizes the estimation procedure just described. The unsmoothed signal yields a 836 

FWHM of 1 bin. This result is easily derived by considering null coefficients everywhere except 837 

at the central point (m=0), where the coefficient equals 1. The intercept theorem within the 838 

triangles formed by the impulse response at the central point and its two adjacent points (m=-1 839 

and m=1) yields a FWHM of 1 bin, and the standardized vertical resolution using the present 840 

impulse response-based definition will always be greater or equal to the sampling resolution: 841 

zkz IR  )(  for all k 842 

(4.7) 843 

When several filters are applied successively to the signal, the response of the filter must be 844 

computed each time a filtering operation occurs, and vertical resolution needs to be computed 845 

only after the last filtering occurrence. The process can be summarized as follows: a first impulse 846 

response is computed with the first filtering operation. If no further filtering occurs, the impulse 847 

response is used to determine the FWHM and vertical resolution. If a second filtering operation 848 

occurs, the impulse response is used as input signal, and a second response is computed from the 849 

convolution of this input signal with the coefficients of the second filter. If no further filtering 850 

occurs, the second response is used to determine the FWHM and vertical resolution. If a third 851 

filtering operation occurs, the response output from the second convolution is used as input 852 

signal of the third convolution, and so on until no more filtering occurs. Vertical resolution is 853 

always computed from the final output response, i.e., after the final filtering operation. The 854 

schematics shown in Figure 4.2 summarize the procedure.  855 

 856 
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 857 
Figure 4.1  Schematics summarizing the procedure to follow to compute the standardized vertical resolution 858 
with a definition based on the impulse response FWHM zIR 859 

 860 

 861 
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 862 
Figure 4.2  Schematics summarizing the procedure to follow to compute the standardized vertical resolution 863 
with a definition based on impulse response when the signal or profile is filtered multiple times 864 

 865 

 866 

 867 
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4.2 Definition based on the cut-off frequency of digital filters  868 

The cut-off frequency of digital filters is defined as the frequency at which the value of the 869 

filter’s gain is 0.5, typically located at the center of the transition region between the passband 870 

and the stopband (see section 2). The NDACC-lidar-standardized definition proposed here is 871 

computed from the cut-off frequency fC, which is determined from the gain of the filter obtained 872 

by applying a Laplace Transform to the coefficients of the filter used. Once again, because of the 873 

dynamic range of the lidar signals, filtering a lidar signal (or ozone/temperature profile) typically 874 

requires to use a number of filter coefficients varying with altitude. Starting with a lidar signal 875 

(or ozone or temperature profile) S made of nk equally-spaced elements in the vertical 876 

dimension, the standardized vertical resolution is estimated separately for each altitude z(k), and 877 

the procedure can be summarized as follows for each altitude considered: 878 

 879 

1) Define and/or identify the 2N(k)+1 filter coefficients c(k,n) used to perform the smoothing or 880 

differentiation operation on the lidar signal (or on the ozone or temperature profile): 881 
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2) Apply the Laplace Transform to the coefficients to determine the filter’s transfer function and 884 

gain. For non-derivative smoothing filters, the coefficients have even symmetry, i.e., c(k,n)=c(k,-885 

n), and the gain is written: 886 
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For derivative filters, the coefficients have odd symmetry, i.e., c(k,n)=-c(k,-n), and if z is the 889 

sampling resolution, the gain can be written: 890 
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(4.10) 892 

For a successful cut-off frequency estimation process, the gain must be computed with 893 

normalized coefficients cn, that is, the coefficients must meet the following normalization 894 

condition: 895 
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3) Estimate the cut-off frequency, i.e., the frequency fC at which the gain equals 0.5: 899 

  5.0)(, kfkG C   5.0)(0  kfC  900 

(4.12) 901 
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For a successful identification, the gain should have only one crossing with the 0.5-line. This is 902 

normally the case for all smoothing and derivative filters used within their prescribed domain of 903 

validity. In the event that several crossings exist, the frequency closest to zero should be chosen 904 

to ensure that the most conservative estimate of vertical resolution is kept.  905 

4) Calculate the cut-off length mFC (unit: bins), i.e., the inverse of the frequency fC normalized 906 

to the sampling width: 907 
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(4.13) 909 

5) Compute the standardized vertical definition zFC as the product of the lidar sampling 910 

resolution z and the cut-off length mFC at that altitude: 911 
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(4.14) 913 

Figure 4.3 summarizes the estimation procedure just described. The factor of 2 present in the 914 

denominator of Eq. (4.13) is usually not used in spectral analysis, when it is normally assumed 915 

that the minimum vertical scale that can be resolved by the instrument is twice the sampling 916 

resolution (Nyquist criterion). However, it is included here in order to harmonize the numerical 917 

values with the values computed using the impulse response definition. Using the present 918 

proposed definition, an unsmoothed signal yields a vertical resolution of z and the standardized 919 

vertical resolution will always be at least equal to the sampling resolution: 920 

zkzFC  )(   for all k 921 

(4.15) 922 
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 923 
Figure 4.3  Schematics summarizing the procedure to follow to compute the standardized vertical resolution 924 
with a definition based on cut-off frequency z FC 925 

 926 

When several filters are applied successively to the signal, the transfer function must be 927 

computed each time a filtering operation occurs, but vertical resolution needs to be computed 928 

only after the last filtering occurrence. The process can be summarized as follows: a first transfer 929 

function (or gain) is computed with the first filtering operation. When the second filtering 930 

operation occurs, the gain computed using the coefficients of the second operation is multiplied 931 

by the gain computed during the first filtering operation. If no further filtering occurs, the result 932 

of this product is the gain that should be used to determine the cut-off frequency and vertical 933 

resolution. If a third filtering operation occurs, the product of the first and second gain must be 934 

multiplied by the third gain, and so on until no more filtering occurs. When the final filtering 935 

operation is reached, vertical resolution can be computed from the final output gain. The 936 

schematics shown in Figure 4.4 summarize the procedure. 937 

 938 
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 939 
Figure 4.4  Schematics summarizing the procedure to follow to compute the standardized vertical resolution 940 
with a definition based on cut-off frequency when the signal or profile is filtered multiple times 941 

 942 

 943 
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4.3 Comparison between the impulse response-based and cut-off frequency-944 

based definitions 945 

In sections 4.1 and 4.2, we showed that, when using the proposed definitions based on impulse 946 

response and cut-off frequency, the standardized vertical resolution of an unsmoothed lidar 947 

signal (or profile) is equal to the lidar sampling resolution. However this equality between the 948 

two definitions is not perfect for all filters. Here, we show that for most filters, there is a well-949 

defined proportionality relation between the two definitions, but we also show that the 950 

proportionality factor depends on the type of filter used. In the rest of this section, for 951 

convenience we will work with vertical resolutions normalized by the sampling resolution (unit: 952 

bins). The results are therefore shown as cut-off width mFC and impulse response FWHM mIR 953 

instead of zFC and zIR respectively, which is equivalent to assuming z=1. 954 

Figure 4.5 shows, for the smoothing filters introduced in section 2, the correspondence between 955 

the standardized vertical resolutions (in bins) computed using the cut-off frequency and using the 956 

impulse response, for full-widths comprised between 3 and 25 points. The black solid circle at 957 

coordinate (2,1) indicates the vertical resolution for the unsmoothed signal (or profile). The grey 958 

horizontal and vertical dash-dotted lines indicate the highest possible vertical resolutions for the 959 

impulse response-based and cut-off frequency-based definitions respectively. The grey dotted 960 

straight lines indicate the result of the linear regression fits between the two definitions, and the 961 

numbers at their extremity are the values of the slope for three of the four types of filters used. 962 

There is no proportionality between the two definitions for the low-pass filters (diamonds) 963 

because the cut-off frequency is prescribed for this type of filter. Note that the factors of 1.2 and 964 

1.39 do not correspond to the ratio of 1.0 that is assumed for the unsmoothed signal. Very similar 965 

conclusions can be drawn for the derivative filters, as demonstrated by Figure 4.6 (which is 966 

similar to Figure 4.5 but for the derivative filters introduced in section 2). 967 

 968 
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 969 
Figure 4.5  Comparison between the cut-off frequency-based and the impulse response-based standardized 970 
vertical resolutions for several smoothing filters introduced in section 2. The numbers at the end of the dotted 971 
straight lines indicate the proportionality constant (slope) between the 2 definitions for three of the four types 972 
of filters used. There is no such proportionality for the low-pass filter (prescribed cut-off frequency) 973 

 974 
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 975 
Figure 4.6  Same as Figure 4.5, but for derivative filters 976 

 977 

Figure 4.7 is similar to Figure 4.5, but this time after the filters were convolved with the 978 

windows introduced in section 2. The windows change the proportionality constant between the 979 

two definitions, but this constant appears to be approximately the same for a given window, 980 

specifically around 1.04 for Lanczos, 1.0 for von Hann, 0.92 for Blackman, and 1.0 for Kaiser 981 

(50-dB). Table 4.1 summarizes the proportionality constants for all filters and all windows 982 

introduced in section 2. 983 

  984 
Table 4.1 Proportionality factor between the impulse response-based and the cut-off frequency-based 985 
definitions of vertical resolution for the filters and windows introduced in section 2 986 

Ratio zIR/zFC 
LS and MLS 

deg. 0-1 

LS 

deg. 2-3 

LS deriv. 

deg. 1-2 

LS deriv. 

deg. 3-4 

LS derive. 

deg. 5-6 

No window 1.20 1.39 1.12 1.23 1.24 

w/ Lanczos window 1.03 1.04 0.98 0.97 1.07 

w/ von Hann window 1.00 0.98 / / / 

w/ Blackman window 0.92 0.94 0.92 0.92 0.95 

w/ Kaiser 50-dB window 0.98 1.02 0.97 0.98 1.05 

 987 
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 988 
Figure 4.7  Same as Figure 4.5, but the filters being convolved with the four windows introduced in section 2 989 
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 990 

Figure 4.8 shows, for the filters introduced in section 2, the correspondence between the two 991 

proposed standardized vertical resolutions (in bins) and the number of filter coefficients used 992 

(full-widths comprised between 3 and 25 points). The dashed grey line represents unity slope 993 

(i.e., 1 bin for 1 filter coefficient), and the numbers at the end of the red and blue dotted straight 994 

lines indicate the slope of the linear fit applied to the paired points for each definition. As 995 

expected for a boxcar average, the impulse response-based definition yields a vertical resolution 996 

(in bins) that is equal to the number of terms used (see Figure 2.2). This is a particular case for 997 

which reporting vertical resolution using the number of filter terms yields a result identical to the 998 

impulse response-based standardized definition. Note that for low-pass filters with a prescribed 999 

cut-off frequency, the vertical resolution does not depend at all on the number of filter terms 1000 

used (right hand plot). 1001 

 1002 

 1003 
Figure 4.8  Correspondence between cut-off frequency-based (red) and impulse response-based (blue) vertical 1004 
resolution (in bins), and the number of filter coefficients used (full-width), for 3 filters introduced in section 2. 1005 
The dashed grey line represents unity slope (i.e., 1 bin for 1 point), and the numbers at the end of the red and 1006 
blue dotted straight lines indicate the slope of the linear fit applied to the paired points for each definition 1007 

 1008 

Figure 4.9 is similar to Figure 4.8, this time after convolution by a von Hann window. 1009 

Interestingly, this time the cut-off frequency-based definition yields a vertical resolution (in bins) 1010 

equal to the number of terms used for the boxcar average. This is another particular case, this 1011 

time a case for which reporting vertical resolution using the number of filter terms yields a result 1012 

identical to the cut-off frequency-based standardized definition. 1013 

 1014 
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 1015 
Figure 4.9  Same as Figure 4.8 this time after convolution by a von Hann window 1016 

 1017 

Figure 4.10 is similar to Figure 4.8, but for three selected derivative filters. The third filter (right 1018 

hand side) was chosen because once again the cut-off frequency-based definition yields a vertical 1019 

resolution (in bins) that is equal to the number of filter terms used (Savitsky-Golay filter 1020 

derivative, degree 3 or 4). 1021 

 1022 

 1023 
Figure 4.10  Same as Figure 4.8 but for selected derivative filters and windows 1024 

 1025 
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The factors between the vertical resolutions (in bins) and the number of filter coefficients are 1026 

compiled in Table 4.2 and Table 4.3 for the cut-off frequency-based and the impulse response-1027 

based definition respectively. 1028 

 1029 
Table 4.2 Proportionality factor between the number of filter coefficients (full-width) and vertical resolution 1030 
based on cut-off frequency (in bins) for the filters and windows introduced in section 2 1031 

Ratio mFC/(2N+1) 
LS and MLS 

deg. 0-1 

LS 

deg. 2-3 

LS deriv. 

deg. 1-2 

LS deriv. 

deg. 3-4 

LS derive. 

deg. 5-6 

No window 0.83 0.40 0.63 0.34 0.26 

w/ Lanczos window 0.58 0.42 0.51 0.40 0.30 

w/ von Hann window 0.50 0.43 / / / 

w/ Blackman window 0.43 0.36 0.40 0.35 0.30 

w/ Kaiser 50-dB window 0.57 0.41 0.50 0.39 0.30 

 1032 
Table 4.3 Proportionality factor between the number of filter coefficients (full-width) and vertical resolution 1033 
based on impulse response FWHM (in bins) for the filters and windows introduced in section 2 1034 

Ratio mIR/(2N+1) 
LS and MLS 

deg. 0-1 

LS 

deg. 2-3 

LS deriv. 

deg. 1-2 

LS deriv. 

deg. 3-4 

LS derive. 

deg. 5-6 

No window 1.00 0.56 0.71 0.42 0.33 

w/ Lanczos window 0.60 0.43 0.50 0.38 0.32 

w/ von Hann window 0.50 0.39 / / / 

w/ Blackman window 0.41 0.34 0.37 0.31 0.29 

w/ Kaiser 50-dB window 0.56 0.42 0.49 0.37 0.31 

 1035 

In this section, it was shown that each recommended definition of vertical resolution yields its 1036 

own numerical values, i.e., for a same set of filter coefficients, the reported standardized vertical 1037 

resolution will likely have two different numerical values, depending on the definition used. 1038 

Unfortunately there is no simple proportionality factor between the two definitions that could be 1039 

used for all digital filters in order to obtain a “unified” homogenous definition yielding identical 1040 

values. However, after reviewing this homogeneity problem, the ISSI Team concluded that both 1041 

definitions should still be recommended because the computed values remain close (i.e., within 1042 

10% if using windows and within 20% if not using windows), and because each definition is 1043 

indeed useful for specific applications. For example, the cut-off frequency-based definition is 1044 

particularly useful for gravity waves studies from lidar temperature measurements, because it can 1045 

provide, through the transfer function, spectral information that can help interpreting quantitative 1046 

findings on the amplitude and wavelength of lidar-observed waves. This type of information is 1047 

not available when using the impulse response-based definition. On the other hand, the impulse 1048 

response-based definition is widely used in atmospheric remote sensing, and provides 1049 

information in the physical domain similar to that provided through the averaging kernels of 1050 

optimal estimation methods used for passive measurements (e.g., microwave measurement of 1051 

ozone). 1052 

The ISSI Team is well-aware that the slight difference in the values computed using the two 1053 

recommended definitions is somewhat problematic for a smooth NDACC-wide implementation, 1054 
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as well as to ensure proper traceability. For this reason, the ISSI Team strongly recommends that 1055 

ample meta-information be provided to the data users. In particular, reporting both definitions 1056 

and explaining the differences between them will help addressing the problem. 1057 

 1058 

4.4 Additional recommendations to ensure full traceability 1059 

When archiving the ozone or temperature profiles, reporting values of vertical resolution using a 1060 

standardized definition such as zFC or zIR constitutes an important improvement from other, 1061 

non-standardized, methods such as the number of points used by the filter. However, using one 1062 

standardized definition or even both standardized definitions proposed here, still does not 1063 

characterize the complete smoothing effect the filter has on the signal. For full traceability, it is 1064 

necessary to provide for each altitude point, either the set of filter coefficients used (for one-time 1065 

smoothing cases) or to provide the complete transfer function or impulse response. This 1066 

information can be critical when comparing the lidar profiles with profiles from other 1067 

instruments, or when working with averaging kernels used for other measurements.  1068 

If the data provider chooses to report standardized vertical resolution information based on the 1069 

impulse response definition, the complete vertical resolution information should include: 1070 

1) A vector zIR of length nk containing the standardized vertical resolution values at each 1071 

altitude, as proposed in section 4.2 1072 

2) A two-dimensional array of size nk x nm containing the full impulse response used to 1073 

estimate the FWHM, as described in section 2 (nm=2M+1 is the full-length of the 1074 

impulse function convolved with the filter coefficients, and a recommended value is 1075 

nm=nk) 1076 

3) A vector m of length nm containing the distance (in bins) from the central bin at which 1077 

the response is reported 1078 

4) Meta data information describing clearly the nature of the reported vectors and arrays 1079 

If the data provider chooses to report standardized vertical resolution information based on the 1080 

cut-off frequency definition, the complete vertical resolution information should therefore 1081 

include: 1082 

1) A vector zFC of length nk containing the standardized vertical resolution values at each 1083 

altitude, as proposed in section 4.1 1084 

2) A two-dimensional array of size nk x nf containing the gain used to estimate the cut-off 1085 

frequency, as described in section 2 (nf is the number of frequencies used when applying 1086 

a Laplace transform to the filter coefficients, and a recommended value is nf=nk) 1087 

3) A vector f of length nf containing the values of frequency at which the gain is reported 1088 

4) Meta data information describing clearly the nature of the reported vertical resolution 1089 

vector, frequency vector, and two-dimensional gain array 1090 

If the data provider chooses to report standardized vertical resolution based on both the impulse 1091 

response definition and the cut-off frequency definition, the complete vertical resolution 1092 

information should include: 1093 

1) A vector zIR of length nk containing the standardized vertical resolution values at each 1094 

altitude, as proposed in section 4.2 1095 
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2) A two-dimensional array of size nk x nm containing the full impulse response used to 1096 

estimate the FWHM, as described in section 2 (nm=2M+1 is the full-length of the 1097 

impulse function convolved with the filter coefficients, and a recommended value is 1098 

nm=nk) 1099 

3) A vector m of length nm containing the distance (in bins) from the central bin at which 1100 

the response is reported 1101 

4) A vector zFC of length nk containing the standardized vertical resolution values at each 1102 

altitude, as proposed in section 4.1 1103 

5) A two-dimensional array of size nk x nf containing the gain used to estimate the cut-off 1104 

frequency, as described in section 2 (nf is the number of frequencies used when applying 1105 

a Laplace transform to the filter coefficients, and a recommended value is nf=nk) 1106 

6) A vector f of length nf containing the values of frequency at which the gain is reported 1107 

7) Meta data information describing clearly the nature of all reported vectors and arrays 1108 

 1109 

4.5 Practical implementation within NDACC 1110 

Numerical tools were developed and provided to the NDACC PIs in order to facilitate the 1111 

implementation of the network-wide use of the proposed standardized definitions. These tools 1112 

consist of easy-to-use plug-in routines written in IDL, MATLAB and FORTRAN, which convert 1113 

a set of filter coefficients into the needed standardized values of vertical resolution following one 1114 

or the other proposed definitions. The tools are written in such a way that they can be called in 1115 

the NDACC PI’s lidar data processing algorithm each time a smoothing and/or differentiating 1116 

operation occurs. The routines can handle multiple smoothing and/or differentiating operations 1117 

applied successively throughout the lidar data processing chain, as described in sections 4.1 and 1118 

4.2. 1119 

The routine “NDACC_ResolIR” provides vertical resolution values with a definition based on 1120 

the FWHM of the filter’s impulse response. When the routine is called for the first time in the 1121 

data processing chain, the sampling resolution and the coefficients of the filter are the only input 1122 

parameters of the routine. The routine convolves the coefficients with an impulse (delta function 1123 

for smoothing filters and Heaviside function for derivative filters) to obtain the filter’s impulse 1124 

response, and then identifies the full-width at half-maximum (FWHM) of this response. The 1125 

response and the value of vertical resolution are the output parameters of the routine. The 1126 

product of the response full width by the sampling resolution is performed inside the routine. 1127 

When a second call to the routine occurs (second smoothing occurrence), the vertical resolution 1128 

output from the first call is no longer used. Instead, the response output from the first call is used 1129 

as input parameter for the second call, together with the sampling resolution and the coefficients 1130 

of the second filter. The input response is convoluted with the coefficients of the second filter to 1131 

obtain a second response. The routine identifies the FWHM of this new response. Once again the 1132 

vertical resolution is computed inside the routine by calculating the product of the new FWHM 1133 

and the sampling resolution. The new response and the new vertical resolution are the output 1134 

parameters of the routine after the second call. The procedure is repeated as many times as 1135 

needed, i.e., as many times as a smoothing or differentiation operation occurs. 1136 

The routine “NDACC_ResolDF” provides vertical resolution values with a definition based on 1137 

the cut-off frequency of a digital filter. When the routine is called for the first time in the data 1138 

processing chain, the sampling resolution and the coefficients of the filter are the only input 1139 
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parameters of the routine. The routine applies a Laplace transform to the coefficients to obtain 1140 

the filter’s gain, and then identifies the cut-off frequency. The inverse of twice the cut-off 1141 

frequency is multiplied by the sampling resolution to obtain the vertical resolution. The gain and 1142 

the vertical resolution are the output parameters of the routine. When a second call to the routine 1143 

occurs (i.e., a second smoothing operation occurs), the cut-off width output from the first call is 1144 

not used anymore.  Instead, the gain output from the first call is used as input parameter for the 1145 

second call, together with the sampling resolution and the coefficients of the second filter. The 1146 

product of the input gain and gain computed from the second filter is the new gain from which 1147 

the routine identifies the cut-off frequency. A new vertical resolution is obtained by multiplying 1148 

the inverse of twice the new cut-off frequency by the sampling resolution. The new gain and the 1149 

new vertical resolution are the output parameters of the routine after the second call. The 1150 

procedure is repeated as many times as needed, i.e., as many times as a smoothing or 1151 

differentiation operation occurs. 1152 

The standardization tools became available in summer 2011. They were distributed to several 1153 

members of the ISSI Team for testing and validation. Their implementation was validated for 1154 

several NDACC ozone and temperature lidar algorithms. The validation experiments consisted 1155 

of simulating noisy lidar signals with a forward model, then analyzing the simulated signals 1156 

using the NDACC data processing algorithms (inverse models). To quantify the effect of the 1157 

filters used in the algorithms and validate the proper derivation of the standardized vertical 1158 

resolution therein, the theoretical gain and the actual gain of the filter were compared. The actual 1159 

gain is the ratio of the Fast Fourier Transform (FFT) of the signals (or profiles) before and after 1160 

filtering. The theoretical gain is the gain computed by applying the Laplace Transform to the 1161 

filter coefficients. 1162 

An example of such validation experiment is shown for the JPL temperature lidar at Mauna Loa, 1163 

Hawaii in Figure 4.11. The filter in this case is a boxcar average convoluted with a von Hann 1164 

window (17 points full-width), and the routine to test is NDACC_ResolDF. The experiment 1165 

consisted of producing 30 sets of noisy simulated lidar signals (blue curve, left plot), then 1166 

analyzing the signals to retrieve temperature (red curve, left plot). The observed gain (blue curve, 1167 

right plot) is an average of the 30 gains obtained by calculating the ratio of the FFT of each 1168 

smoothed profile to the corresponding unsmoothed profile. The theoretical gain (red curve, right 1169 

plot) was obtained by applying a Laplace Transform to the filter coefficients. The theoretical and 1170 

observed gain curves agree very well, especially in the transition region and at the location of the 1171 

cut-off frequency, thus validating the proper implementation of the routine into this particular 1172 

algorithm. In this particular case, the cut-off frequency fC has a value of 0.0625, which when 1173 

inversed, yields 16 bins (i.e., interval including 17 points, consistent with the left plot of Figure 1174 

4.9). Using a sampling resolution of 300-m (see Figure 4.11 left plot) the vertical resolution is 1175 

therefore 4.8 km. 1176 

 1177 
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 1178 
Figure 4.11  Results of the validation of the routine NDACC_ResolDF implemented in the JPL temperature 1179 
lidar algorithm for the NDACC station of Mauna Loa. Left: unfiltered, noisy simulated profile (blue) and 1180 
retrieved, filtered profile (red); Right: observed gain (blue) and theoretical gain (red). A boxcar average 1181 
convolved with a von Hann window (17-points full-width) is used in this case (see text for details) 1182 

 1183 

Another example of validation is shown in Figure 4.12 (RIVM stratospheric ozone lidar in 1184 

Lauder, New Zealand). The derivative filter in this case is a least-squares fit using a polynomial 1185 

of degree 1 (5 points full-width), and the routine being tested is NDACC_ResolIR. The 1186 

experiment consisted of producing simulated lidar signals for an ozone profile that included a 1187 

delta peak perturbation of 100% amplitude at 30 km altitude (blue curve, left plot), then 1188 

analyzing the signals to retrieve ozone (red curve, left plot). The observed response (blue curve, 1189 

right plot) is obtained by calculating the FWHM of the resulting perturbation in the smoothed 1190 

profile. The theoretical response (red curve, right plot) was obtained by convolving a Heaviside 1191 

step function with the filter coefficients. The theoretical and observed response curves agree very 1192 

well, especially their FWHM, thus validating the proper implementation of the routine into this 1193 

particular algorithm. 1194 

 1195 
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 1196 
Figure 4.12  Same as Figure 4.11  but for  NDACC_ResolIR implemented in the RIVM stratospheric ozone 1197 
lidar algorithm for the NDACC station of Lauder. Left: unfiltered, simulated profile including an impulse 1198 
perturbation of 100% at 30 km (blue), and retrieved, filtered profile (red); Right: observed response (blue) 1199 
and theoretical response (red). A least-squares polynomial of degree 1 (5-points full-width) is used in this case 1200 
(see text for details) 1201 

 1202 

A third example of validation is shown in Figure 4.13 for the tropospheric ozone lidar at 1203 

Reunion Island, France. Once again a good agreement between the observed and theoretical gain 1204 

curves demonstrate that the routine NDACC_ResolDF was successfully implemented in the 1205 

Reunion island tropospheric ozone lidar data processing algorithm. 1206 

 1207 

 1208 
Figure 4.13  Same as Figure 4.11 but for  NDACC_ResolDF implemented in the tropospheric ozone lidar 1209 
algorithm for the NDACC station of Reunion Island (see text for details) 1210 

 1211 

  1212 
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