

Formulation of multi-fluid species equations

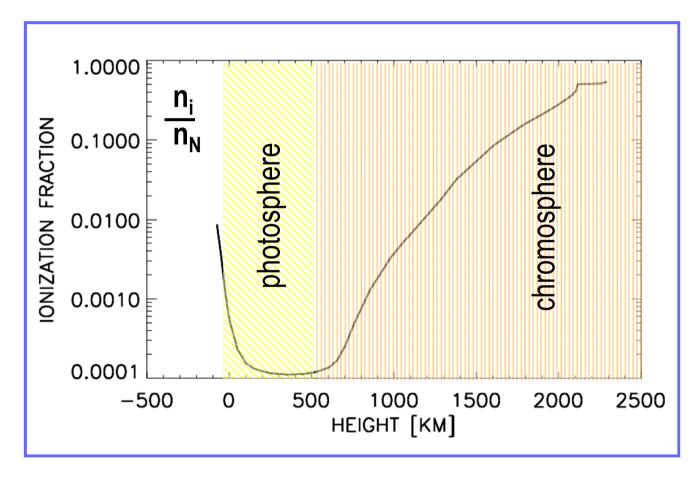
E. Khomenko, M. Collados, A. Díaz and N. Vitas

Departamento de Astrofísica, Universidad de La Laguna and Instituto de Astrofísica de Canarias (IAC),

La Laguna, Tenerife (Spain).

1st ISSI meeting on PIPA, Bern, Jan 27-31, 2014

Degree of Ionization in VAL-C model



Equations for individual species

Species: Particle density

$$\bullet n_{\alpha} = \sum_{I} n_{\alpha \mathbf{I}} = \sum_{I} \sum_{E} n_{\alpha \mathbf{I} \mathbf{E}}$$

 α = species ; I = ionisation state; E = excitation state

•
$$m_{\alpha_{\mathrm{IE}}} = m_{\alpha_{\mathrm{I}}} = m_{\alpha}$$

•
$$\vec{u}_{\alpha \text{\tiny IE}} = \vec{u}_{\alpha \text{\tiny I}}
eq \vec{u}_{\alpha}$$

•
$$n_e = \sum_{\alpha} \sum_{I \ge 1} I \cdot n_{\alpha I}$$

Equations for individual species

Boltzmann equation

$$\frac{\partial f_{\alpha_{\rm IE}}}{\partial t} + \vec{v}\vec{\nabla}f_{\alpha_{\rm IE}} + \vec{a}\vec{\nabla}_v f_{\alpha_{\rm IE}} = \left(\frac{\partial f_{\alpha_{\rm IE}}}{\partial t}\right)_{\rm coll}$$

$$\vec{v} = \vec{u}_{\alpha \mathrm{IE}} + \vec{c}_{\alpha \mathrm{IE}} = \vec{u}_{\alpha \mathrm{I}} + \vec{c}_{\alpha \mathrm{I}}$$

Equations for individual species

Transport equations

$$\frac{\partial}{\partial t} (n_{\alpha \text{IE}} \langle \chi \rangle_{\alpha \text{IE}}) + \vec{\nabla} (n_{\alpha \text{IE}} \langle \chi \vec{v} \rangle_{\alpha \text{IE}}) - n_{\alpha \text{IE}} \langle \vec{a} \vec{\nabla}_{v} \chi \rangle_{\alpha \text{IE}}$$
$$= \int_{V} \chi \left(\frac{\partial f_{\alpha \text{IE}}}{\partial t} \right)_{\text{coll}} d^{3} v$$

$$\begin{aligned} \frac{\partial}{\partial t} (n_{\alpha \text{IE}} \langle \vec{\chi} \rangle_{\alpha \text{IE}}) + \vec{\nabla} (n_{\alpha \text{IE}} \langle \vec{\chi} \otimes \vec{v} \rangle_{\alpha \text{IE}}) - n_{\alpha \text{IE}} \langle (\vec{a} \vec{\nabla}_{v}) \vec{\chi} \rangle_{\alpha \text{IE}} \\ &= \int_{V} \vec{\chi} \left(\frac{\partial f_{\alpha \text{IE}}}{\partial t} \right)_{\text{coll}} d^{3} v \end{aligned}$$

Mass conservation

•
$$\chi = m_{\alpha \text{IE}} = m_{\alpha}$$
 • $\langle \chi \rangle_{\alpha \text{IE}} = m_{\alpha \text{IE}}$

$$\bullet \langle \chi \vec{v} \rangle_{\alpha_{\rm IE}} = m_{\alpha_{\rm IE}} \langle \vec{v}_{\alpha_{\rm IE}} \rangle = m_{\alpha_{\rm IE}} \vec{u}_{\alpha_{\rm IE}} \qquad \bullet \vec{\nabla}_v \chi = 0$$

$$\frac{\partial \rho_{\alpha_{\rm IE}}}{\partial t} + \vec{\nabla} (\rho_{\alpha_{\rm IE}} \vec{u}_{\alpha_{\rm I}}) = m_{\alpha} \int_{V} \left(\frac{\partial f_{\alpha_{\rm IE}}}{\partial t} \right)_{\rm coll} d^{3}v = S_{\alpha_{\rm IE}}$$

$$S_{\alpha IE} = m_{\alpha} \sum_{I'E' \neq IE} (n_{\alpha I'E'} P_{\alpha I'E'IE} - n_{\alpha IE} P_{\alpha IEI'E'})$$
Inelastic photons
$$P_{\alpha IEI'E'} = F_{\alpha IEI'E'} + C_{\alpha IEI'E'}$$
particles

SPIA

Mass conservation

Electrons

$$\frac{\partial \rho_e}{\partial t} + \vec{\nabla}(\rho_e \vec{u}_e) = m_e \sum_{\alpha} \sum_{\mathbf{I}} \sum_{\mathbf{I}' \neq \mathbf{I}} (n_{\alpha \mathbf{I}'} P_{\alpha \mathbf{I}' \mathbf{I}} - n_{\alpha \mathbf{I}} P_{\alpha \mathbf{II'}})$$

Momentum conservation

•
$$\vec{\chi} = m_{\alpha \text{ie}} \vec{v}$$

-

$$\rho_{\alpha_{\mathrm{IE}}} \frac{D\vec{u}_{\alpha_{\mathrm{I}}}}{Dt} = n_{\alpha_{\mathrm{IE}}} q_{\alpha_{\mathrm{I}}} (\vec{E} + \vec{u}_{\alpha_{\mathrm{I}}} \times \vec{B}) + \rho_{\alpha_{\mathrm{IE}}} \vec{g} - \vec{\nabla} \hat{\mathbf{p}}_{\alpha_{\mathrm{IE}}} + \vec{R}_{\alpha_{\mathrm{IE}}} - \vec{u}_{\alpha_{\mathrm{I}}} S_{\alpha_{\mathrm{IE}}} + \vec{R}_{\alpha_{\mathrm{IE}}} - \vec{u}_{\alpha_{\mathrm{I}}} S_{\alpha_{\mathrm{IE}}}$$

$$\rho_e \frac{D\vec{u}_e}{Dt} = -en_e(\vec{E} + \vec{u}_e \times \vec{B}) + \rho_e \vec{g} - \vec{\nabla} \hat{\mathbf{p}}_e + \vec{R}_e - \vec{u}_e S_e$$

Energy conservation

•
$$\chi = m_{\alpha}v^2/2 + E_{\alpha \text{IE}}$$
 • $e_{\alpha \text{IE}} = \frac{3}{2}p_{\alpha \text{IE}} + n_{\alpha \text{IE}}E_{\alpha \text{IE}}$

$$\begin{split} \frac{De_{\alpha \text{IE}}}{Dt} + e_{\alpha \text{IE}} \vec{\nabla} \vec{u}_{\alpha \text{I}} + \hat{\mathbf{p}}_{\alpha \text{IE}} \vec{\nabla} \vec{u}_{\alpha \text{I}} + \vec{\nabla} \vec{q}_{\alpha \text{IE}} \neq Q_{\alpha \text{IE}} \\ Q_{\alpha \text{IE}} = M_{\alpha \text{IE}} - \vec{u}_{\alpha \text{I}} \vec{R}_{\alpha \text{IE}} + \left(\frac{1}{2}u_{\alpha \text{I}}^2 + E_{\alpha \text{IE}}/m_{\alpha}\right) S_{\alpha \text{IE}} \end{split}$$

$$\frac{De_e}{Dt} + e_e \vec{\nabla} \vec{u}_e + \hat{\mathbf{p}}_{\mathbf{e}} \vec{\nabla} \vec{u}_e + \vec{\nabla} \vec{q}_e = M_e - \vec{u}_e \vec{R}_e + \frac{1}{2} u_e^2 S_e$$

Photons: Radiative Transfer equation

Boltzmann equation for photons

$$\frac{\partial f_R}{\partial t} + \vec{v}\vec{\nabla}f_R + \vec{F}\vec{\nabla}_p f_R = \left(\frac{\partial f_R}{\partial t}\right)_{\text{coll}}$$

$$f_R = f_R(\vec{r}, \vec{n}, \nu, t)$$

$$\vec{F} = 0$$

$$I_\nu(\vec{r}, \vec{n}, t) = ch\nu f_R(\vec{r}, \vec{n}, \nu, t)$$

$$\frac{dI_\nu}{ds} = j_\nu - k_\nu I_\nu$$
Radiative
Transfer
equation

1st ISSI meeting on PIPA, Bern, Jan 27-31, 2014

Photons: Radiative Transfer equation

Transport equations

$$\frac{1}{c^2}\frac{\partial \vec{F}_R}{\partial t} + \vec{\nabla}\hat{P}_R = \frac{1}{c}\int_0^\infty \oint (j_\nu - k_\nu I_\nu)\vec{n}d\omega d\nu$$

$$\frac{\partial F_R}{\partial t} + \vec{\nabla} \vec{F}_R = \int_0^\infty \oint (j_\nu - k_\nu I_\nu) d\omega d\nu$$

Radiation pressure

$$E_R(\vec{r},t) = \frac{1}{c} \int_0^\infty \oint I_\nu(\vec{r},\vec{n},\nu,t) d\omega d\nu$$

Energy flux

$$\vec{F}_R(\vec{r},t) = \int_0^\infty \oint \vec{n} I_\nu(\vec{r},\vec{n},\nu,t) d\omega d\nu$$

$$\hat{P}_{R}(\vec{r},t) = \frac{1}{c} \int_{0}^{\infty} \oint \vec{n} \otimes \vec{n} I_{\nu}(\vec{r},\vec{n},\nu,t) d\omega d\nu$$

1st ISSI meeting on PIPA, Bern, Jan 27-31, 2014

KANYAN MANAN KI AKA MAKAN TO KATATAN KITAN KITAN KITAN

Average neutral and charged particle

Mass conservation

Neutrals
$$\frac{\partial \rho_n}{\partial t} + \vec{\nabla}(\rho_n \vec{u}_n) = S_n$$

Charges
$$\frac{\partial \rho_c}{\partial t} + \vec{\nabla}(\rho_c \vec{u}_c) = S_i + S_e = S_c$$

$$\rho_c = \sum_{\alpha} \rho_{\alpha i} + \rho_e$$

1st ISSI meeting on PIPA, Bern, Jan 27-31, 2014 Khomenko, Collados, Diaz & Vitas

KANYAN MANAN KI AKA MAKAN TO KATATAN KITAN KITAN KITAN

Average neutral and charged particle

Momentum conservation

Neutrals

Charges

$$\rho_n \frac{D \vec{u}_n}{D t} = \rho_n \vec{g} - \vec{\nabla} \hat{\mathbf{p}}_n + \vec{R}_n - \vec{u}_n S_n$$
$$\rho_c \frac{D \vec{u}_c}{D t} = [\vec{J} \times \vec{B}] + \rho_c \vec{g} - \vec{\nabla} \hat{\mathbf{p}}_{ie} + \vec{R}_{ie} - \vec{u}_c S_c$$

$$\hat{\mathbf{p}}_{\mathbf{n}} = \sum_{\alpha} \hat{\mathbf{p}}_{\alpha \mathbf{n}} + \sum_{\alpha} \rho_{\alpha n} (\vec{w}_{\alpha n} \otimes \vec{w}_{\alpha n})$$
$$\hat{\mathbf{p}}_{\mathbf{ie}} = \sum_{\alpha} \hat{\mathbf{p}}_{\alpha \mathbf{i}} + \hat{\mathbf{p}}_{\mathbf{e}} + \sum_{\alpha} \rho_{\alpha i} (\vec{w}_{\alpha i} \otimes \vec{w}_{\alpha i}) + \rho_e (\vec{w}_e \otimes \vec{w}_e)$$

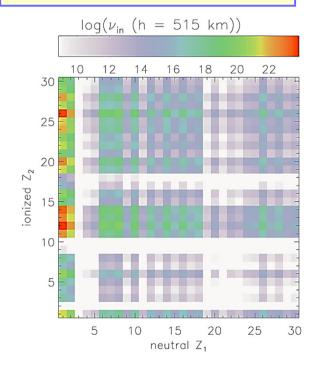
....

1st ISSI meeting on PIPA, Bern, Jan 27-31, 2014 Khomenko, Collados, Diaz & Vitas

KAN M M X M M YAR MARAM TO & GAMEN AMBONIN ATO X

Average neutral and charged particle

Momentum conservation



$$\vec{R}_n \approx -\sum_{\beta=1}^N \nu_{en_\beta} \rho_e(\vec{u}_n - \vec{u}_e) - \sum_{\alpha=1}^N \sum_{\beta=1}^N \nu_{i_\alpha n_\beta} \rho_i(\vec{u}_n - \vec{u}_i)$$
$$\vec{R}_i \approx -\sum_{\alpha=1}^N \nu_{ei_\alpha} \frac{m_e}{e} \vec{J} - \sum_{\alpha=1}^N \sum_{\beta=1}^N \nu_{i_\alpha n_\beta} \rho_i(\vec{u}_i - \vec{u}_n)$$
$$\vec{R}_e \approx \sum_{\alpha=1}^N \nu_{ei_\alpha} \frac{m_e}{e} \vec{J} + \sum_{\beta=1}^N \nu_{en_\beta} \rho_e(\vec{u}_n - \vec{u}_e)$$

Average neutral and charged particle

Energy conservation

Neutrals
$$\frac{3}{2} \frac{Dp_n}{Dt} + \frac{3}{2} p_n \vec{\nabla} \vec{u}_n + (\hat{\mathbf{p}}_n \vec{\nabla}) \vec{u}_n + \vec{\nabla} \vec{q}_n = \sum_{\alpha} M_{\alpha n} + \frac{1}{2} u_n^2 S_n - \vec{u}_n \vec{R}_n$$

$$\begin{array}{ll} \textbf{Charges} & \frac{3}{2} \frac{Dp_{ie}}{Dt} + \frac{3}{2} p_{ie} \vec{\nabla} \vec{u}_c + (\hat{\mathbf{p}}_{ie} \vec{\nabla}) \vec{u}_c + \vec{\nabla} \vec{q}_{ie} = \\ \vec{J} (\vec{E} + [\vec{u}_c \times \vec{B}]) + \sum_{\alpha} M_{\alpha i} + M_e + \frac{1}{2} u_c^2 S_c - \vec{u}_c \vec{R}_{ie} \end{array}$$

CARA MARA MAY AVAL MARAMA TO SAFAMAN AMBONIN ATOS

Photons

$$\vec{\nabla}\hat{P}_{Rn} = \frac{1}{c} \int_0^\infty \oint (j_\nu - k_\nu I_\nu) \vec{n} d\omega d\nu \bigg|_n$$

$$\vec{\nabla}\hat{P}_{Rc} = \frac{1}{c} \int_0^\infty \oint (j_\nu - k_\nu I_\nu) \vec{n} d\omega d\nu \bigg|_{i\epsilon}$$

$$\vec{\nabla}\vec{F}_{Rn} = \int_0^\infty \oint (j_\nu - k_\nu I_\nu) d\omega d\nu \bigg|_n$$

$$\vec{\nabla}\vec{F}_{Rc} = \int_0^\infty \oint (j_\nu - k_\nu I_\nu) d\omega d\nu \bigg|_{ie}$$

KAKAN NXKN KY AKKN MAKKN MOK BUNKN KNON KNON

Ohm's law

$$\vec{E}^* = [\vec{E} + \vec{u}_c \times B] = \frac{1}{en_e} [\vec{J} \times \vec{B}] - \frac{\vec{\nabla} \hat{\mathbf{p}}_e}{en_e} + \frac{\rho_e}{(en_e)^2} \left(\sum_{\alpha} \nu_{ei_{\alpha}} + \sum_{\beta} \nu_{en_{\beta}} \right) \vec{J}$$
$$- \frac{\rho_e}{en_e} (\vec{u}_c - \vec{u}_n) \left(\sum_{\beta} \nu_{en_{\beta}} - \sum_{\alpha} \sum_{\beta} \nu_{i_{\alpha}n_{\beta}} \right)$$

Single-Fluid description

electrons +ions +neutrals

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \left(\rho \vec{u} \right) = 0$$

Momentum conservation

$$\rho \frac{D\vec{u}}{Dt} = \vec{J} \times \vec{B} + \rho \vec{g} - \vec{\nabla} \hat{\mathbf{p}} - \vec{\nabla} \hat{\mathbf{P}}_{\mathbf{R}}$$

Energy conservation

$$\frac{\partial}{\partial t} \left(\frac{3p}{2} + \frac{1}{2}\rho u^2 \right) + \vec{\nabla} \left(\vec{u} \left(\frac{3p}{2} + \frac{1}{2}\rho u^2 \right) + \hat{\mathbf{p}}\vec{u} \right) \\ + \vec{\nabla}\vec{q} + \vec{\nabla}\vec{F}_R = \vec{J}\vec{E} + \rho\vec{u}\vec{g}$$

Single-Fluid description

 $\vec{E}^* = c_i \vec{J} + c_{ib} [\vec{J} \times \vec{B}] + c_{ibb} [(\vec{J} \times \vec{B}) \times \vec{B}] + c_{pe} \vec{\nabla} \hat{\mathbf{p}}_e$ Ohm's law $+c_{nt}\vec{G}+c_{ntb}[\vec{G}\times\vec{B}]$ $\alpha_n = \sum_{\beta=1}^{N} \rho_e \nu_{en_\beta} + \sum_{\alpha=1}^{N} \sum_{\beta=1}^{N} \rho_i \nu_{i_\alpha n_\beta}$ $c_j = \frac{1}{(en_e)^2} \left(\sum_{\alpha=1}^N \rho_e \nu_{ei_\alpha} + o \sum_{\beta=1}^N \rho_e \nu_{en_\beta} \right) \approx \frac{\alpha_e}{(en_e)^2}$ $\alpha_e = \sum_{\alpha=1}^{N} \rho_e \nu_{ei_{\alpha}} + \sum_{\alpha=1}^{N} \rho_e \nu_{en_{\beta}}$ $c_{jb} = \frac{1}{e^n} \left(1 - 2\xi_n \epsilon_1 + \xi_n \epsilon_2 \right)$ $c_{jbb} = -\frac{\xi_n^2}{\alpha_n}$ $\epsilon_1 = \sum_{n=1}^{N} \rho_e \nu_{en_\beta} / \alpha_n \ll 1$ $c_{pe} = -\frac{1}{en_e}$ $\epsilon_2 = \sum_{\alpha} \sum_{\alpha} \sum_{\alpha} \rho_e \nu_{i_{\alpha} n_{\beta}} / \alpha_n \ll 1$ $c_{pt} = \frac{1}{en_{\alpha}} \left(\epsilon_1 - \epsilon_2\right)$ $\alpha = 1 \beta =$ $o = \sum \sum N \rho_i \nu_{i_\alpha n_\beta} / \alpha_n \approx 1$ $c_{ptb} = \frac{\xi_n}{\alpha_n}$ $\alpha = 1 \beta = 1$ SPIA

1st ISSI meeting on PIPA, Bern, Jan 27-31, 2014