

High Cadence Spectroscopy of Prominence Dynamics

Antonio J. Díaz, Elena Khomenko, Manolo Collados

Departamento de Astrofísica, Universidad de La Laguna and Instituto de Astrofísica de Canarias (IAC),

La Laguna, Tenerife (Spain).

- One clear deviation from MHD would be the presence of a drift velocity between neutrals and ions.
- Simultaneous measurements of proxies for these quantities measured in other contexts (sunspots), but interpretation may prove difficult for the different formation regions of the lines.
- However, prominences are an excellent target:
 - Plasma conditions suitable for the coexistence of ions and neutrals (ionization fraction around 50%),
 - Complex plasma dynamics, but easy to observe!
 - Line formation in small regions (which share the same macroscopic parameters).

Single fluid description

Combining the momentum equations of the species and neglecting electron inertia we obtain an expression for the drift velocity:

$$m{w} = m{u}_i - m{u}_n = rac{\xi_n}{lpha_n} \left[m{J} imes m{B}
ight] - rac{m{G}}{lpha_n} + \epsilon rac{m{J}}{e n_e} + rac{\xi_n
ho_e}{lpha_n} m{g}$$

Ambipolar term

- •Start with the ambipolar term only
- •The drift velocity can be calculated afterwards.
- •Simulations of RTI report drift velocities on the order of 1 km/s

- Two campaigns in the VTT (September 12 and May 13; one in THEMIS (June 13) with different lines.
- Setup: high cadence (around 1.5 s) two simultaneous spectral regions, without spectropolarimetry. This setup also allow us to have more counts. Small scans.
- Two different lines: one for a ionized element and one for a neutral one (at least). The most suitable candidates are both in the infrared (Call 8524 and Hel 10380).

Observational target (11 sep 2012)

1000

- Target: prominence near AAR11564, observed from 08:49UT continuously for almost 30 min with only one AO jump. R0=6-8.
- Slit along the limb in this series ٠ (prominence and surges). 10 steps in scan (so image at a fixed position every 15 seconds).

 $H\alpha$, 2 days before

Quiescent prominence.

SDO AIA He II

(304 Å)

11-Sep-2012 21:01:43.120

11565

1000

Hα slitjaw images

No flat or dark processing in this movie, raw images. FOV much larger. Slit scan can be seen (1200 images, 1.5 cadence).

Call and He I data

- Spectral data (I) $\Delta\lambda$ =0.011 A/pixel
- Dark and flat reduction, realignment of AO jump.
- Ca images much noisier, pca decomposition to filter it.

Call and He I fitting

 Ca II: one component, single gaussian. Outputs are amplitude (counts), Doppler displacement and width.

$$f(x) = a_0 \exp\left[\frac{-(x-a_1)}{2a_2}\right]$$

• He I: pattern (triplet), fixed amplitude and distance between components (Wiehr et al. 03), baseline set to 0 and no opacity taken into account. Same outputs than Call fitting.

$$f(x) = r_2 a_0 \exp\left[\frac{-(x - a_1 - \Delta_1)}{2a_2}\right] + r_1 a_0 \exp\left[\frac{-(x - a_1)}{2a_2}\right] + a_0 \exp\left[\frac{-(x - a_1 - \Delta_2)}{2a_2}\right] + a_3.$$

• Only a single component (more on this later).

Call and He I amplitude

- Good correlation between images (similarity with Hα too).
- Some of the Call signal lost in the noise level.
- Regions where fitting does not meet the requirements.
- Differences between consecutive images (seeing not good enough)

Call and Hel width

- Related to temperature.
- Serves as an indication of the points where two components are required.
- Again remarkable correlation between the lines.

Measure of LOS velocity (Doppler velocity)

- Striking similarity between the images! Confirms we are looking to plasma with same dynamics.
- Velocities in the expected range (around 5 km/s)

Call and He I velocity correlation

- Cuts for a fixed position.
 - Same signal, well above the noise level. Extremely well correlated (correlation coefficient above 95%), except in very few places. Confirms visual impression.

Call and He I velocity correlation

- Cuts for a fixed time.
- Wave front almost parallel to the slit?
- Ca and He seem to be out of phase at some instants (related to theoretical predictions, Soler et al. 13, work in progress)

Call and He I parameter correlation

 Amplitudes, displacements and widths are apparently not correlated.

Drift velocities

 Assuming that the LOS velocity of HeI and Call is a proxy of the velocity of neutrals and ions, respectively, we can measure the drift velocity w between ions and neutrals.

- Only one gaussian has been adjusted so far, but some of the profiles show clear asymmetries between the wings, or even two clear peaks.
- At some points it can be attibuted to surges from the nearby AR, but in other cases it seems to be intrinsic (subresolution elements).

Open questions

- Data fitting needs to be refined to avoid doubts with the analysis.
- Error estimates: do not seem to be a problem checking the variations in the time series, but some estimate is necessary to constrain the range of w.
- Differences in intensity: He and Ca have different formation temperatures (Ca closer to the cooler core of the threads), so this can be expected.
- Wave analysis and interpretation. Relation with other observations and theoretical models.
- Ca and He formation is similar?

Open questions

- If PI effect is confirmed, some estimates about the local conditions of the plasma (and the amount of energy dissipated by the process) need to be computed.
- Relation with other observations: type of prominence, counterstreaming & swaying threads...

Conclusions

- Prominences are highly dynamical, with short living structures. Observational challenge (no spectropolarimetry with these constraints).
- Observing simultaneously a neutral (HeI 10830) and ionized line (Call 8542) might provide clues on the PI effects.
- Preliminary results show an excellent correlation in Doppler displacement between the lines. Only in a few regions differences are significant (and also maybe some hints of phase delay).
- Drift velocity in the expected range. Theoretical models and simulations necessary to asses these conclusions and extract potentially more information from this type of observations (ionization fraction at least).

