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Motivation

Strong (Hall) diffusion

Protostellar disks

HD141569 Circumstellar Disk NASA HST
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Motivation

Strong (Hall) diffusion

Dense molecular clouds

Horsehead Nebula NASA HST
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Motivation

Strong (Hall) diffusion

Dwarf nova disk
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Weakly ionised approximation

Derivation of the weakly ionised equations

We assume the equations of MHD, but with a non-zero “diffusive” term
in the induction equation - i.e. the electric field in the fluid frame is
non-zero.
The equation of motion for the charged species is then

αiρi(E + vi × B) = ∇pi + ρi
Di

Dt
vi −

N
∑

j 6=i

fij

One can solve this system numerically, but better to simplify it if
possible.
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Weakly ionised approximation

Weakly ionised approximation

We presume that a neutral species dominates (by mass) the
system and thus the overall velocity of the fluid(s) is roughly v1.

Neglect collisions between different charged species

Neglect inertia (and pressure) of charged species
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Weakly ionised approximation

Weakly ionised approximation

The equation of motion of the charged species becomes

αiρi(E + vi × B) + fi1 = 0

where

fij = Cij + sijvj − sjivi

where

Cij = ρiρjKij(vj − vi)

(we neglect terms with s, and K is related to the collision frequency)
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Weakly ionised approximation

Weakly ionised approximation

Now

J =

N
∑

i=1

αiρivi

We assume

N
∑

i=1

αiρi = 0

and re-write our equations in the rest-frame of the neutral fluid:

E′ = E + v × B

0 = αiρi(E′ + v′
i × B)−

B
βi
(αiρiv′

i).

where we introduce the Hall parameter, βi ≡
αi B

K1iρ1
.
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Weakly ionised approximation

Weakly ionised approximation

Calculating J from our equations of motion for the charged species we
arrive (after a little algebra) at

J = σ||E
′
|| + σ⊥E′ + σH(E′

× b)

where

σH =
1
B

N
∑

i=1

αiρi

1 + β2
i

,

σ⊥ =
1
B

N
∑

i=1

αiρiβi

1 + β2
i

,

σ|| =
1
B

N
∑

i=1

αiρiβi .
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Weakly ionised approximation

Weakly ionised approximation

We can invert this equation to get

E′ = r0
(J · B)B

B2 + r1
B × J

B
+ r2

B × (J × B)

B2 .

This is our Generalised Ohm’s Law for the weakly ionised case.
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Weakly ionised approximation

The weakly ionised equations

Our equations for our system are then:

∂ρi

∂t
+∇ · (ρiv i) = 0, (1 ≤ i ≤ N),

∂ρ1v1

∂t
+∇ ·

(

ρv1v1 + a2ρI
)

= J × B,

∂B
∂t

+∇ · (v1B − Bv1) = −∇× E ′,

αiρi (E + v i × B) + ρiρ1Ki 1(v1 − v i) = 0, 2 < i ≤ N,

∇ · B = 0,

∇× B = J,
N
∑

i=2

αiρi = 0.
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A numerical approach

Numerical technique

If we know B we can advance these equations easily:

Advance the neutral density and neutral momentum equations
using an explicit upwind method (without source terms)

Advance the charged density equations

Apply the source term to the neutral momentum equation

Advance magnetic field

Algebraically solve for the charged gas velocities

This is done in an operator-split fashion
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A numerical approach

The induction equation

Consider the linearised induction equation

∂B
∂t

+
∂M
∂x

= rORO
∂2B
∂x2 + rHRH

∂2B
∂x2 + rARA

∂2B
∂x2

where

B = (By ,Bz)

M = (uBy − vBx ,uBz − wBx)
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The numerical challenge

The challenge

Discretise the induction equation, ignoring rO and assuming
Bn

j = Bneiωj to get

Bn+1 = ABn

Stability requires the spectral radius of A to be less than or equal to 1
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The numerical challenge

Conventional methods

Explicit methods:
Conventional schemes show poor stability for large Hall effect

(∆t → 0 as η ≡
rA

rH
becomes small)

Even for low η they require quite a low time-step (∆t ∝ (∆x)−2)
Simple to implement in multidimensional/parallel/adaptive codes

Implicit methods:
Unconditionally stable
Difficult to implement in multidimensional/parallel/adaptive codes

We want it all: An explicit, stable method
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The numerical challenge

Dealing with ∇× E′

For diagonal terms (associated with r2 and r0 if large) use Super
Time-Stepping:

τSTS =
∑N

i=1 dτi

Require that
∣

∣

∣

∏N
i−1(1 − dτi λ̂)

∣

∣

∣
< 1

dτi = τSTD
[

(−1 + ν) cos
(2i−1

N
π

2

)

+ 1 + ν
]−1

N and ν are user-defined

τSTS → N2τSTD as ν → 0
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The numerical challenge

Dealing with ∇× E′

For the Hall term (r1 term) use the “Hall Diffusion Scheme” which relies
on the off-diagonal nature of the Hall operator.
An example: For a pure Hall operator (anti-symmetric operator) we
might have the following discretisation:

(By )
n+1
i = (By )

n
i +

∆t
∆x2

[

(Bz)
n
i+1 − 2(Bz)

n
i + (Bz)

n
i−1

]

(Bz)
n+1
i = (Bz)

n
i +

∆t
∆x2

[

(By )
n+1
i+1 − 2(By )

n+1
i + (By )

n+1
i−1

]

Explicit for By , implicit for Bz . Stability is good, though still have
∆t ∝ ∆x2.
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Performance

How efficient is the resulting code?

For some standard tests we get the following timings (in seconds, for a
serial code):

Ambipolar dominated Hall dominated Sub-shock
Implicit 1.9 23.3 2.7
Explicit 1.9 14.8 1.9
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Performance

Do the algorithms scale?
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Scaling for JuRoPA system is virtually perfect up to 2048 cores.
Code scales (on BG/P systems) from 8192 cores up to 294912
cores with circa 70% efficiency.
Performance on XT5 has since been improved ...
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Performance

The importance of scaling

For some published turbulence simulations:

On an 8-core workstation a 643 run takes about 12 hrs

On the BG/Q with 4096 cores a 5123 run takes about 1 day

On an 8-core workstation a 5123 run would take at least 6 years
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Conclusions

Conclusions

The weakly ionised approximation is very useful (approach can be
extended to fully ionised)

Explicit algorithms are both available and valuable

Algorithm development should, if possible, allow for scaling
There are still outstanding issues ....

What can be done if diffusion is very large?
Diffusion in rarefied regions sometimes dominates - can we ignore
it?
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