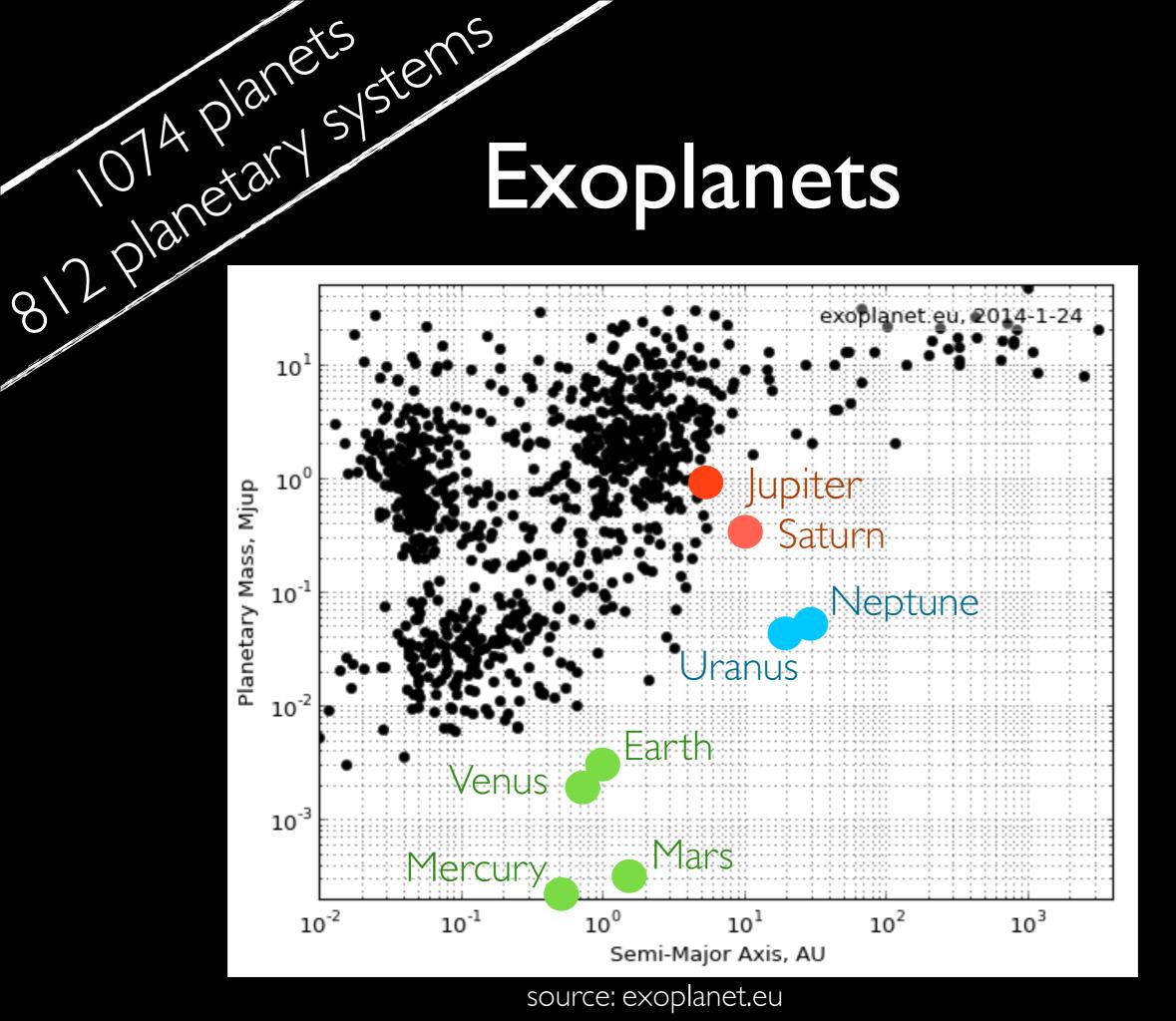
Accretion through giant planet circumplanetary disks

Sarah Keith

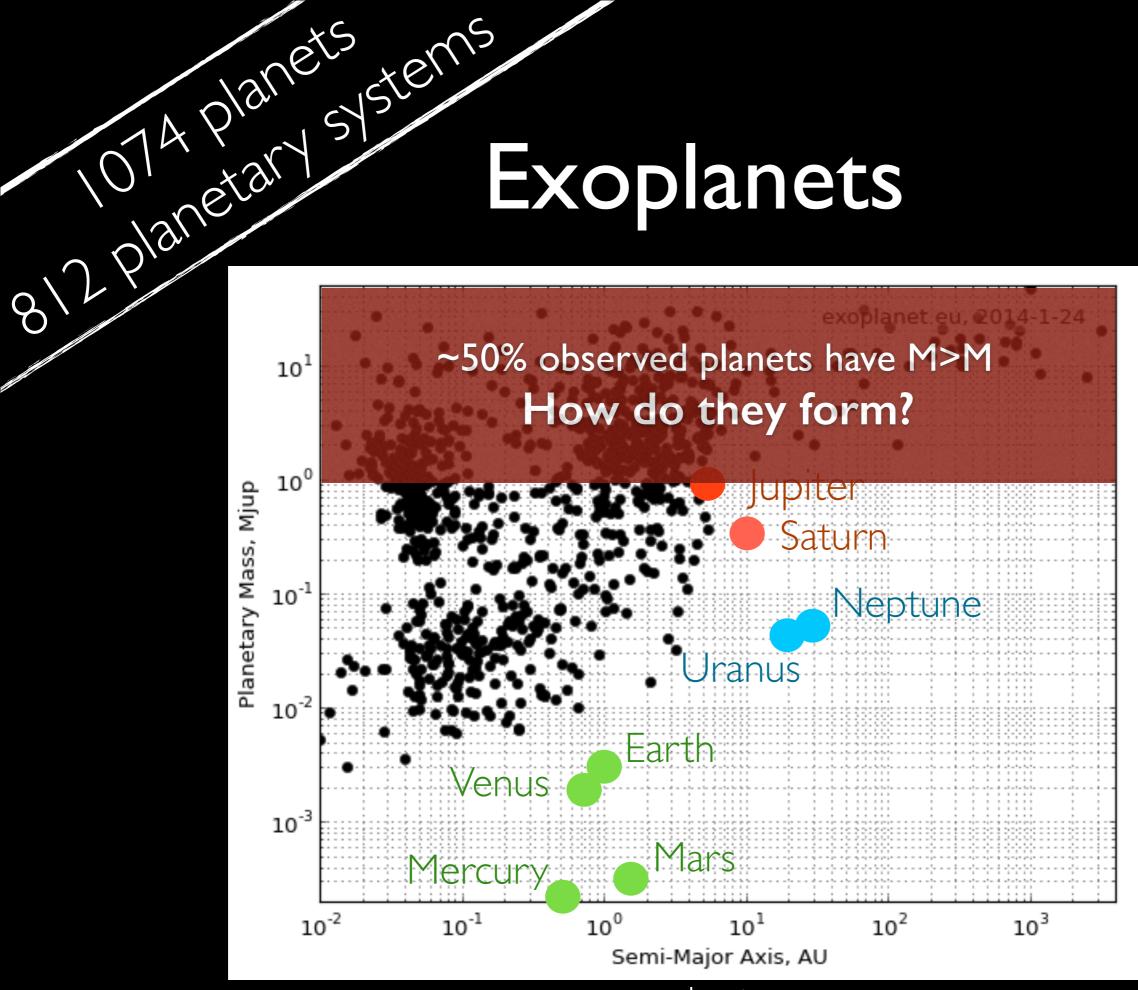
Macquarie University & JBCA

Email: sarah.l.keith@mq.edu.au

Exoplanets



Exoplanets



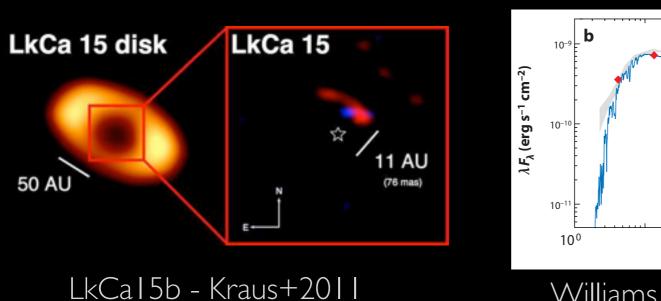
source: exoplanet.eu

Constraints on planet formation

Review: Williams & Ceiza 2011

- Formation timescale from protoplanetary disk lifetime (3×10⁶ yrs)
- Spectra, direct imaging show planet gaps (& spiral arms)

- Protoplanetary disk temperature, density profiles
- Exoplanet semi-major axis & mass distribution



Williams & Ceiza 2011

10¹

 λ (µm)

CoKu Tau/4

Classic transition

 10^{2}

HD 142527 - Casassus+2013

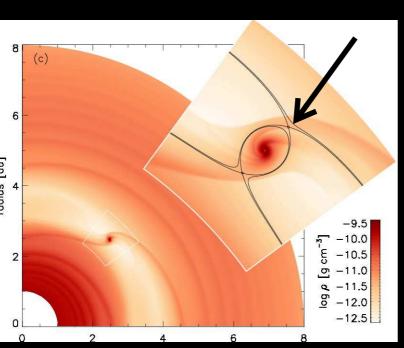
Giant planet formation

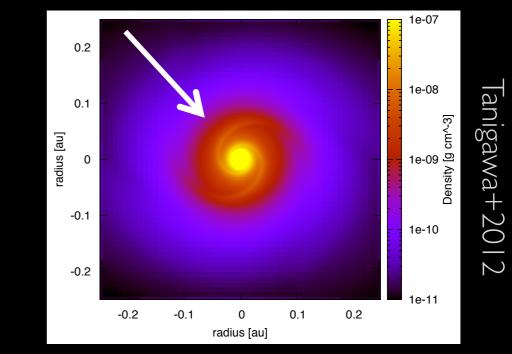
See review: Armitage 2010

- Planetary embryo forms via core accretion or direct collapse (>100au)
- Runaway gas accretion and envelope collapse

- Planet opens a gap (~au) in the disk.
- Formation of circumplanetary disk

Circumplanetary disk





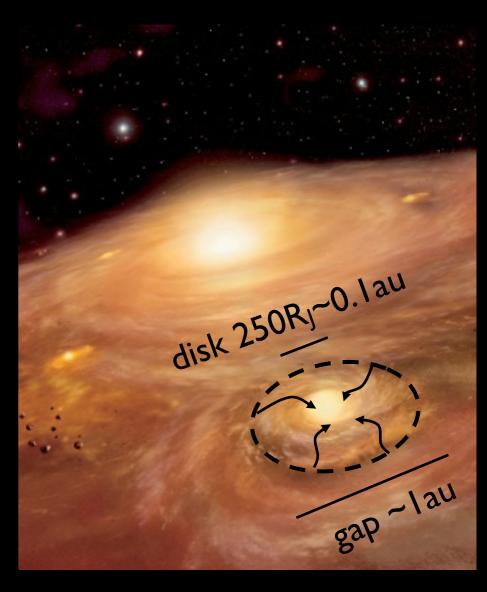
... an accretion disk around a forming giant planet

- Initially the disk is hot delivering mass to the planet $(M^{2/3}M_{J})$

Dual purpose disk

- Later the disk cools, the formation site for satellites

- Not yet observable, little studied



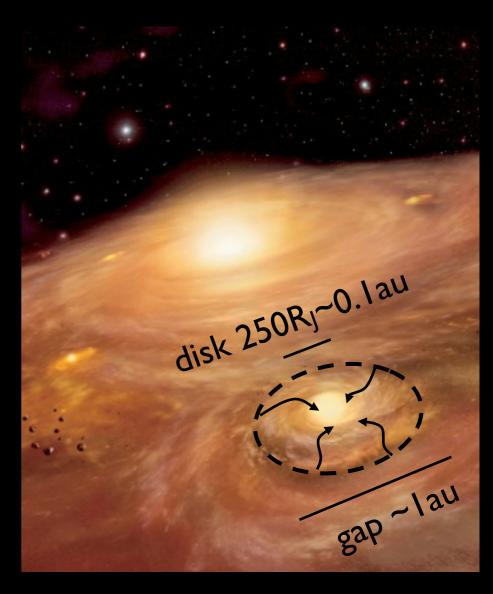
... an accretion disk around a forming giant planet

- Initially the disk is hot delivering mass to the planet $(M\sim^2/_3M_J)$

Dual purpose disk

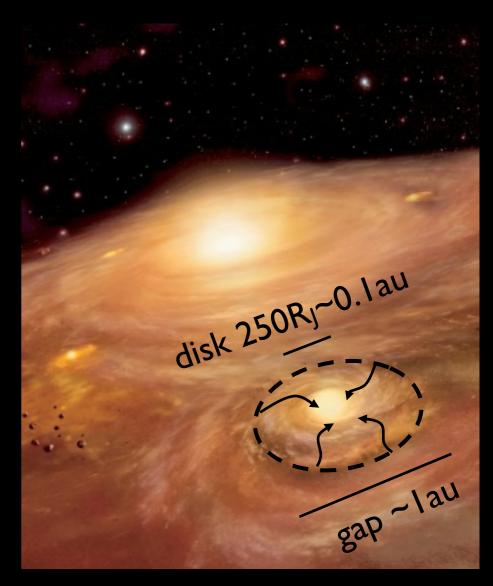
- Later the disk cools, the formation site for satellites

- Not yet observable, little studied



... an accretion disk around a forming giant planet

- Accretion requires angular momentum loss
- An effective viscosity is needed for mass inflow
- Accretion mechanism could be hydromagnetic turbulence, large scale winds/jets or gravitational instability



... an accretion disk around a forming giant planet

- But these mechanisms require special conditions to act
- Accretion mechanism could be hydromagnetic turbulence, large scale winds/jets or gravitational instability

Accretion mechanism: Magnetic field

Active regions: Ionised; B field coupled; turbulent; accreting Dead Zones: Low ionisation; B field decoupled; Not accreting

Dead zone 🔰

Thermal Ionisation

Small-scale field

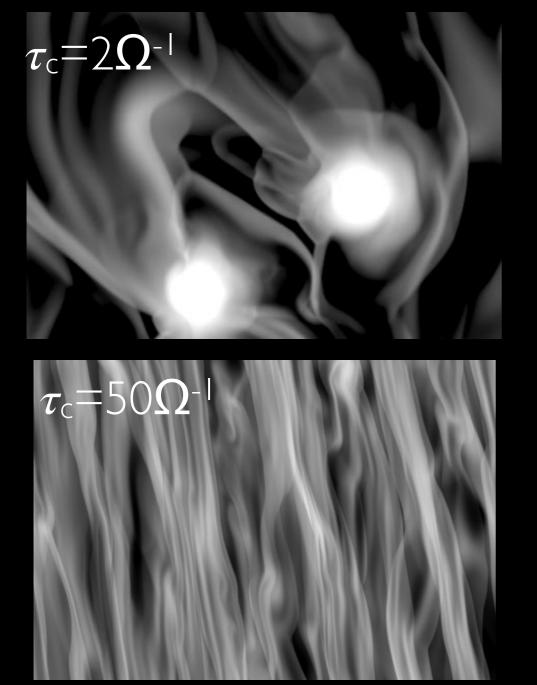
...or large-scale fields

Magnetorotational Instability (MRI)

Magnetic braking, Centrifugal disk wind, Jet

+Radioactive Decay

Accretion mechanisms: Gravitoturbulence



Gravitationally unstable for massive disks

$$\begin{split} Q &\equiv \frac{c_s \Omega}{\pi G \Sigma} < Q_{\rm crit} \simeq 1 \\ M_{\rm disk} \gtrsim \frac{H}{r} M_* \,, \ \text{Toomre (1964)} \end{split}$$

Cooling determines final state

$$\Omega t_{\rm cool}$$

 $= \frac{\Sigma c_s^2 \Omega}{\sigma T_s^4} \stackrel{<30}{>30} \text{ fragmentation}$

Gammie 2001, Meru & Bate 2012

Aim

- Determine whether these mechanisms are effective in a circumplanetary disk (particularly for B-field).

- Develop a disk model self-consistently with the level of accretion from these mechanisms.

- Assess the viability of the resulting disk.

Disk model Review: Pringle 1981

the standard ID accretion disk model:

Keplerian

Sound speed

Self Gravity

Scale Height

Average Density

 $\sqrt{\frac{GM}{r^3}}$ $\dot{M} = 2\pi\nu\Sigma$ Active Midplane Local heating $T_s = \left(\frac{3\dot{M}\Omega^2}{8\pi\sigma}\right)^{\frac{1}{4}}$ = \sqrt{kT}/m_n $c_s\Omega$ Plane-parallel $\sigma T^4 = \frac{3}{8} \tau \sigma T_s^4$ stellar atmosphere $\overline{\pi G\Sigma}$ model $\frac{2Q}{1+\sqrt{1+4Q^2}}\frac{c_s}{\Omega}$ $\tau = \kappa \Sigma / 2 \gg 1$ Optical depth $\rho = \frac{\Sigma}{2H}$ Turbulent viscosity $\nu = \alpha c_s H_s$

Disk model Review: Pringle 1981

the standard ID accretion disk model:

Keplerian

Sound speed

Self Gravity

Scale Height

Average Density

$\sqrt{\frac{GM}{r^3}}$	Active Midplane	$\dot{M} = 2\pi\nu\Sigma$
= $\sqrt{kT/m_n}$	Local heating T_s	$= \left(\frac{3\dot{M}\Omega^2}{8\pi\sigma}\right)^{\frac{1}{4}}$
$\frac{c_s\Omega}{\pi G\Sigma}$	Plane-parallel stellar atmosphere	$\sigma T^4 = \frac{3}{8} \tau \sigma T_s^4$
$\underline{\qquad 2Q \qquad c_s}$	model	
$\frac{1}{1 + \sqrt{1 + 4Q^2}} \overline{\Omega}$	Optical depth	$\tau = \kappa \Sigma / 2 \gg 1$
$\rho = \overline{2H}$	Turbulent viscosity	$\nu = \alpha c H$

Disk model Review: Pringle 1981

the standard ID accretion disk model:

Keplerian

Sound speed

Self Gravity

Scale Height

Average Density

$\sqrt{\frac{GM}{r^3}}$	Active Midplane	$\dot{M} = 2\pi\nu\Sigma$
= $\sqrt{kT/m_n}$	Local heating T_s	$= \left(\frac{3\dot{M}\Omega^2}{8\pi\sigma}\right)^{\frac{1}{4}}$
$\frac{c_s\Omega}{\pi G\Sigma}$	Plane-parallel stellar atmosphere	$\sigma T^4 = \frac{3}{8} \tau \sigma T_s^4$
$\underline{\qquad 2Q \qquad c_s}$	model	
$\frac{1}{1 + \sqrt{1 + 4Q^2}} \overline{\Omega}$	Optical depth	$\tau = \kappa \Sigma / 2 \gg 1$
$\rho = \overline{2H}$	Turbulent viscosity	$\nu = \alpha c H$

Opacity model



Alpha

... quantifies the strength of turbulent viscosity.

Viscosity in alpha model (Shakura & Sunyaev 1973) $v = \alpha c_s H \longrightarrow$ length scale velocity scale

Observations and MRI simulations give α_{sat} ~0.001-0.1 (King+2007)

In modelling α is typically taken to be uniform at the maximum value BUT this requires ideal MHD.

If Ohmic or Hall diffusivity, **n**, is important: (Sano & Stone 02)

$$\alpha = \begin{cases} \alpha_{\text{sat}} v_a^2 / (\eta \Omega) & \text{for an MRI field,} \\ \alpha_{\text{sat}} c_s^2 / (\eta \Omega) & \text{for a vertical field.} \end{cases}$$

Disk model

Equation to solve for the radial temperature profile with root-finding in each opacity regime

$$T^{\frac{3}{2}a-b+5} = \frac{9\kappa_i}{2^{2a+8}\sigma} \left(\frac{\mu m_p}{k}\right)^{\frac{3}{2}a+1} \alpha^{-(a+1)} \left(\frac{\dot{M}}{\pi}\right)^{a+2} \left(\frac{GM}{r^3}\right)^{a+\frac{3}{2}}$$
$$\alpha = \begin{cases} \alpha_{\rm sat} v_a^2 / (\eta \Omega) & \text{for an MRI field,} \\ \alpha_{\rm sat} c_s^2 / (\eta \Omega) & \text{for a vertical field.} \end{cases}$$

We calculate α self-consistently with the disk structure, according to the amount of diffusivity (η).

lonisation

Cold, outer regions Radioactive decay, cosmic rays, X-rays - rate equations

$$\frac{dn_i}{dt} = \zeta n - k_{ei}n_in_e - k_{ig}n_gn_i,$$

$$\frac{dn_e}{dt} = \zeta n - k_{ei}n_in_e - k_{eg}n_gn_e,$$

$$\frac{dZ_g}{dt} = k_{ig}n_i - k_{eg}n_e,$$

$$0 = n_i - n_e + Z_gn_g$$

>1000 K Hot, inner regions Thermal - Saha Equation

$$\frac{n_e n_{i,j}}{n_j} = g_e \left(\frac{2\pi m_e kT}{h^3}\right)^{\frac{3}{2}} \exp\left(-\frac{\chi_j}{kT}\right)$$
$$Z_g = \psi \tau - \frac{1}{1 + \sqrt{\tau_0/\tau}}$$

+ Charge Neutrality

Grains

$$n_i - n_e + Z_g n_g = 0.$$

lonisation

Cold, outer regions Radio ctive decay cosmic lonisation energy, χ_j

Element	Atomic weight (amu)	Abundance	Ionisation potential (eV)
Н	1.01	9.21×10^{-1}	13.60
He	4.00	7.84×10^{-2}	24.59
Na	22.98	1.60×10^{-6}	5.14
Mg	24.31	3.67×10^{-5}	7.65
Κ	39.10	9.87×10^{-8}	4.34

>1000 K Hot, inner regions

Thermal - Saha Equation

$$\frac{n_e n_{i,j}}{n_j} = g_e \left(\frac{2\pi m_e kT}{h^3}\right)^{\frac{3}{2}} \exp\left(-\frac{\chi_j}{kT}\right)$$
$$Z_g = \psi \tau - \frac{1}{1 + \sqrt{\tau_0/\tau}}$$

Treat ions as magnesium

 $n_i - n_e + Z_g n_g = 0.$

Not planet Disk magnetic field

MRI shearing box simulations (Sano+2004)

Vertical field Minimum strength

(Wardle 2007)

$$\alpha \approx 0.5\beta^{-1} = 0.5\frac{B^2}{8\pi P}$$
$$B_{\rm MRI} = \left(\frac{\dot{M}\Omega^2}{c_s}\right)^{\frac{1}{2}} \sim |G|$$

$$B_{\rm V} = \sqrt{\frac{\dot{M}\Omega}{2r}} \sim 0.1 \,{\rm G}$$

Determines and depends on inflow rate

c.f. present day surface field of Jupiter: 4.2 G, Inferred field in protoplanetary disk ~3mG-1G

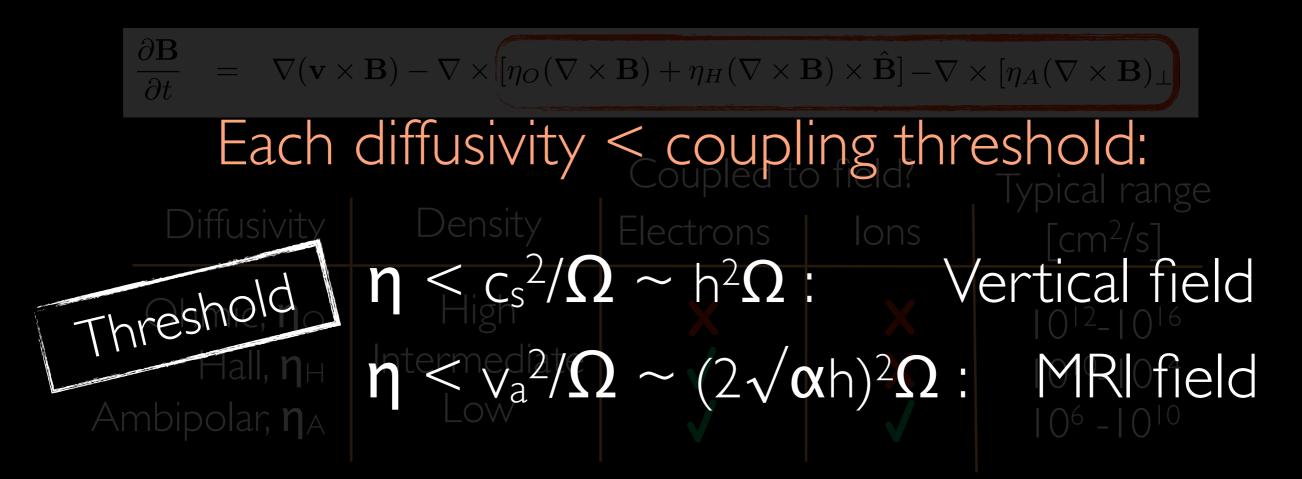
Magnetic Diffusivity

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla (\mathbf{v} \times \mathbf{B}) - \nabla \times \left[\eta_O (\nabla \times \mathbf{B}) + \eta_H (\nabla \times \mathbf{B}) \times \hat{\mathbf{B}} \right] - \nabla \times \left[\eta_A (\nabla \times \mathbf{B}) \right]$$

Diffusivity	Density	Coupled to Electrons	o field? Ions	Typical range [cm²/s]
Ohmic, η 0	High	×	X	0 ² - 0 ⁶
Hall, η н	Intermediate	、	X	0 ⁰ - 0 ⁴
Ambipolar, η А	Low	、	V	0 ⁶ - 0 ⁰

Low diffusivity - well coupled High diffusivity - poorly coupled

Magnetic Diffusivity



Low diffusivity - well coupled High diffusivity - poorly coupled

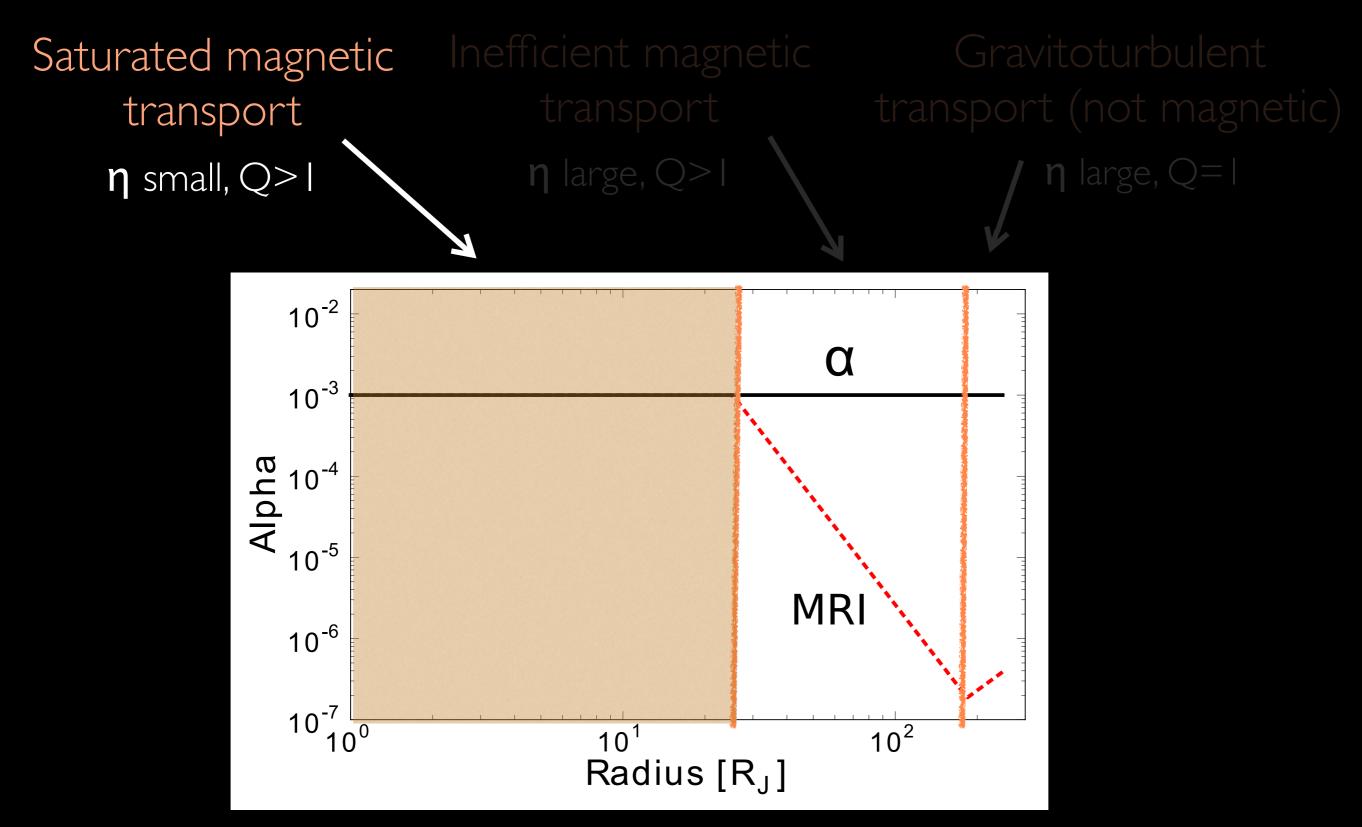
Results - models

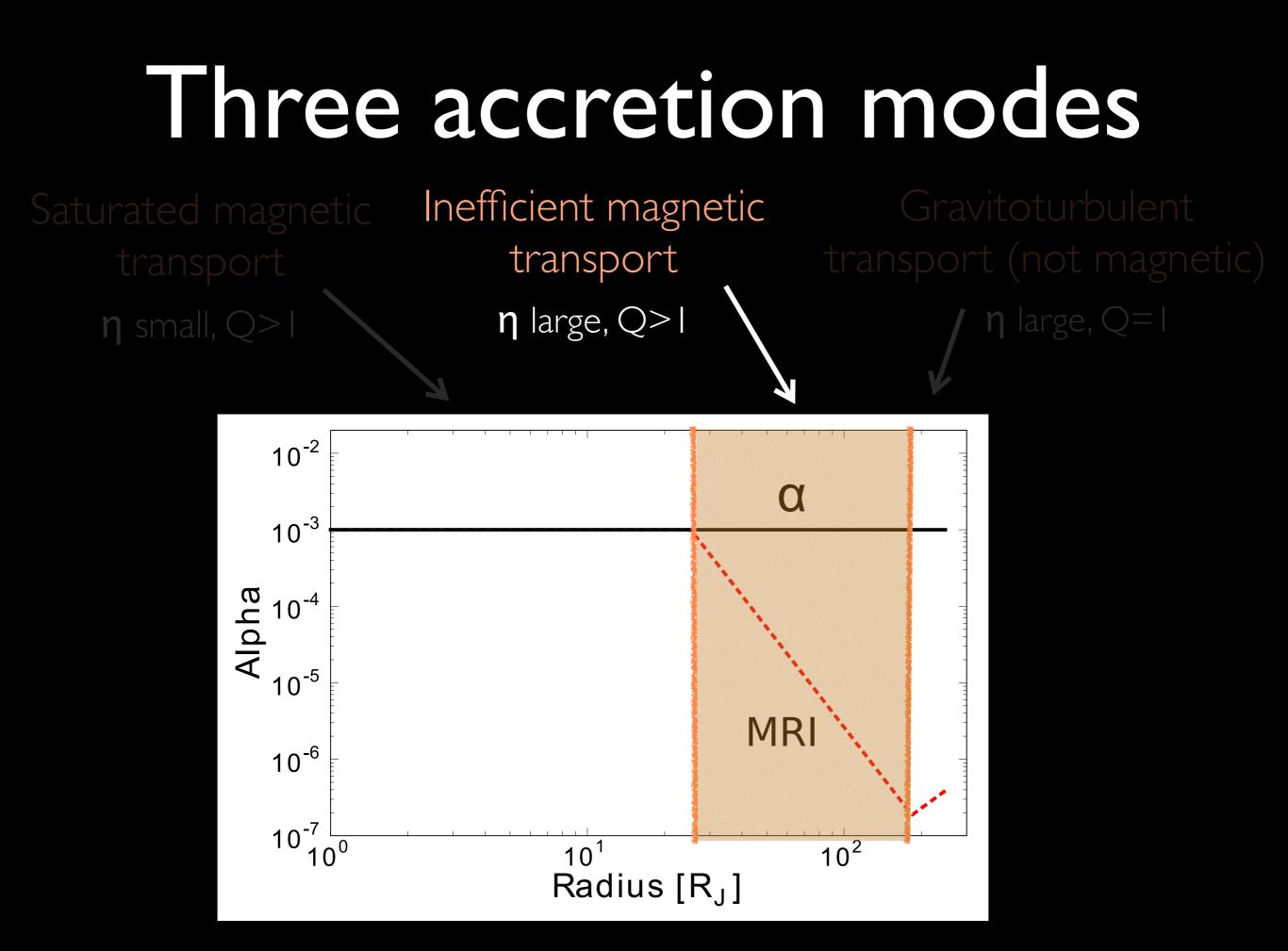
- Simple constant-alpha model α
- Self-consistent accretion with MRI field MRI

for comparison

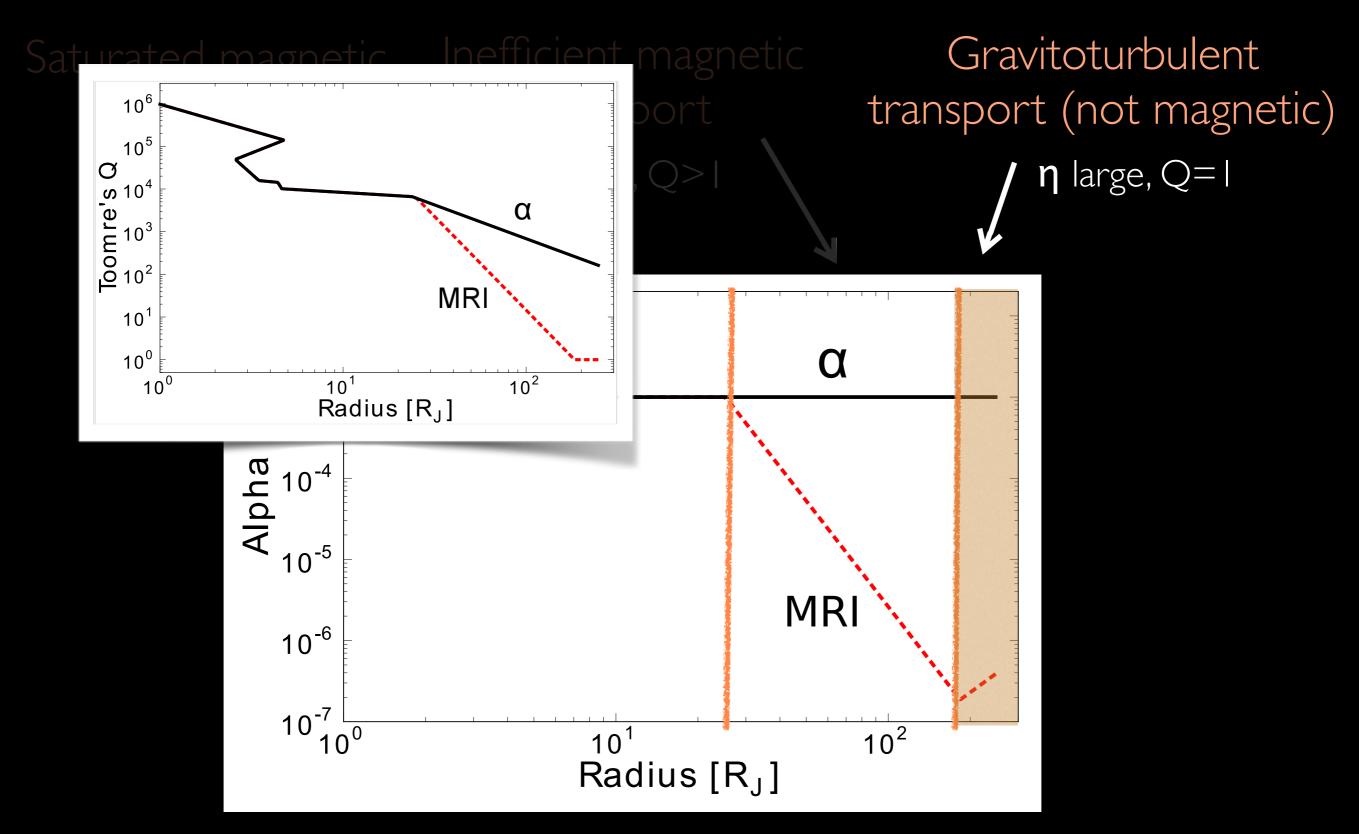
 Minimum mass Jovian Nebula from satellite system- MMJN

Three accretion modes

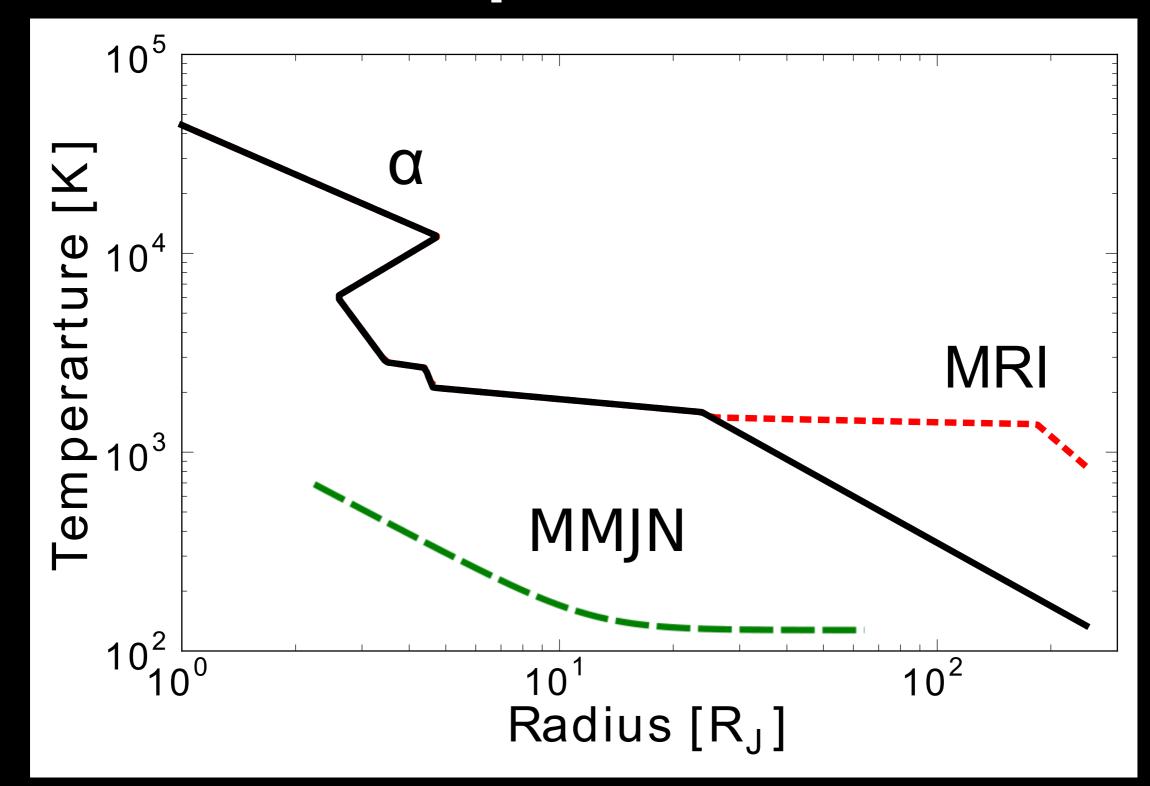




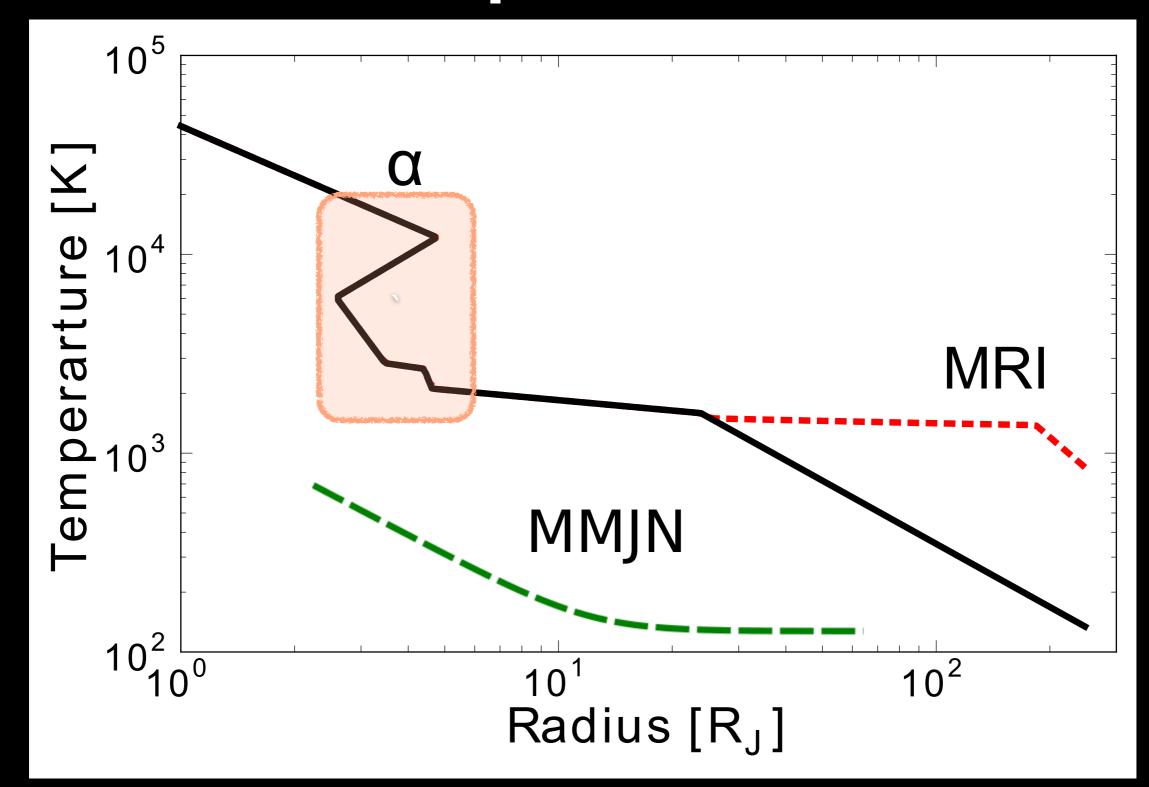
Three accretion modes



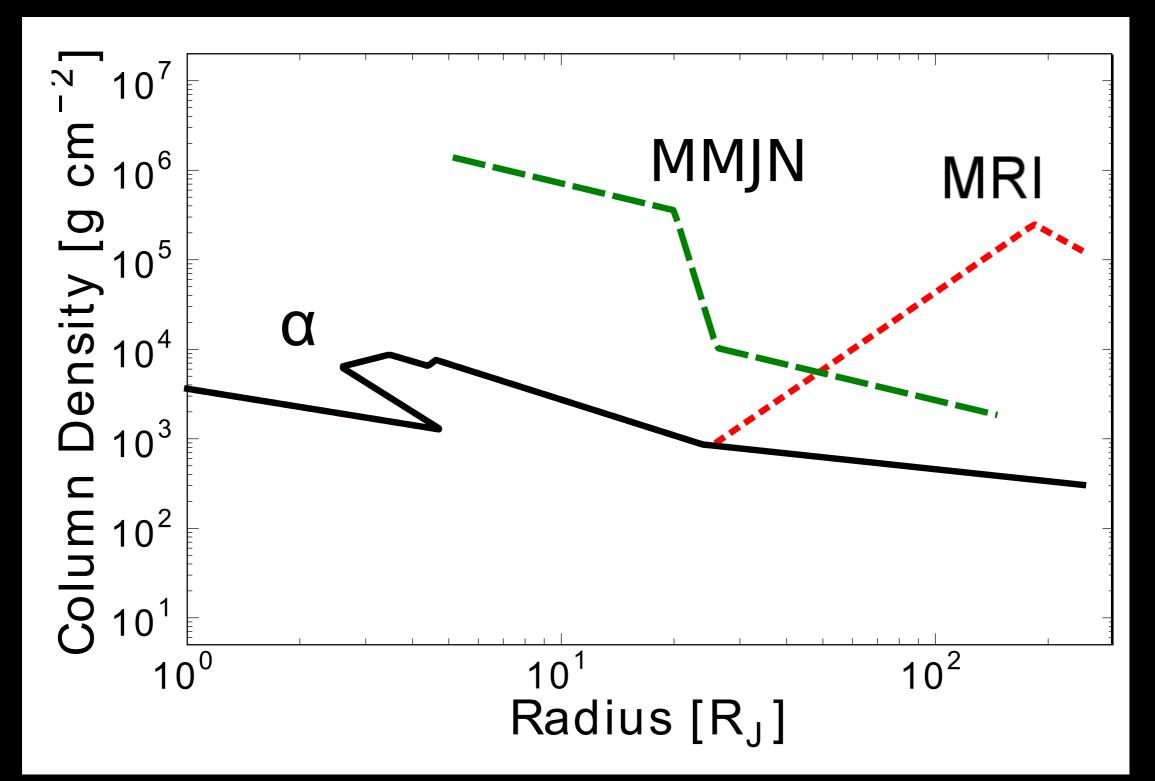
Temperature



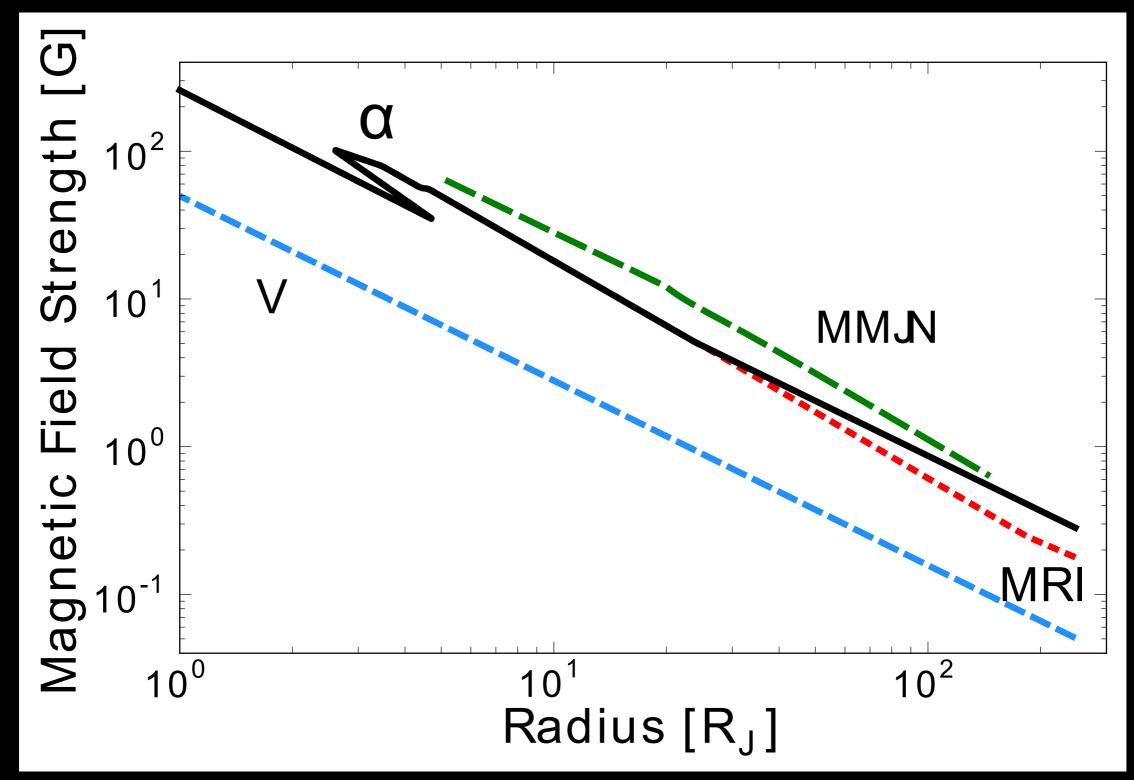
Temperature



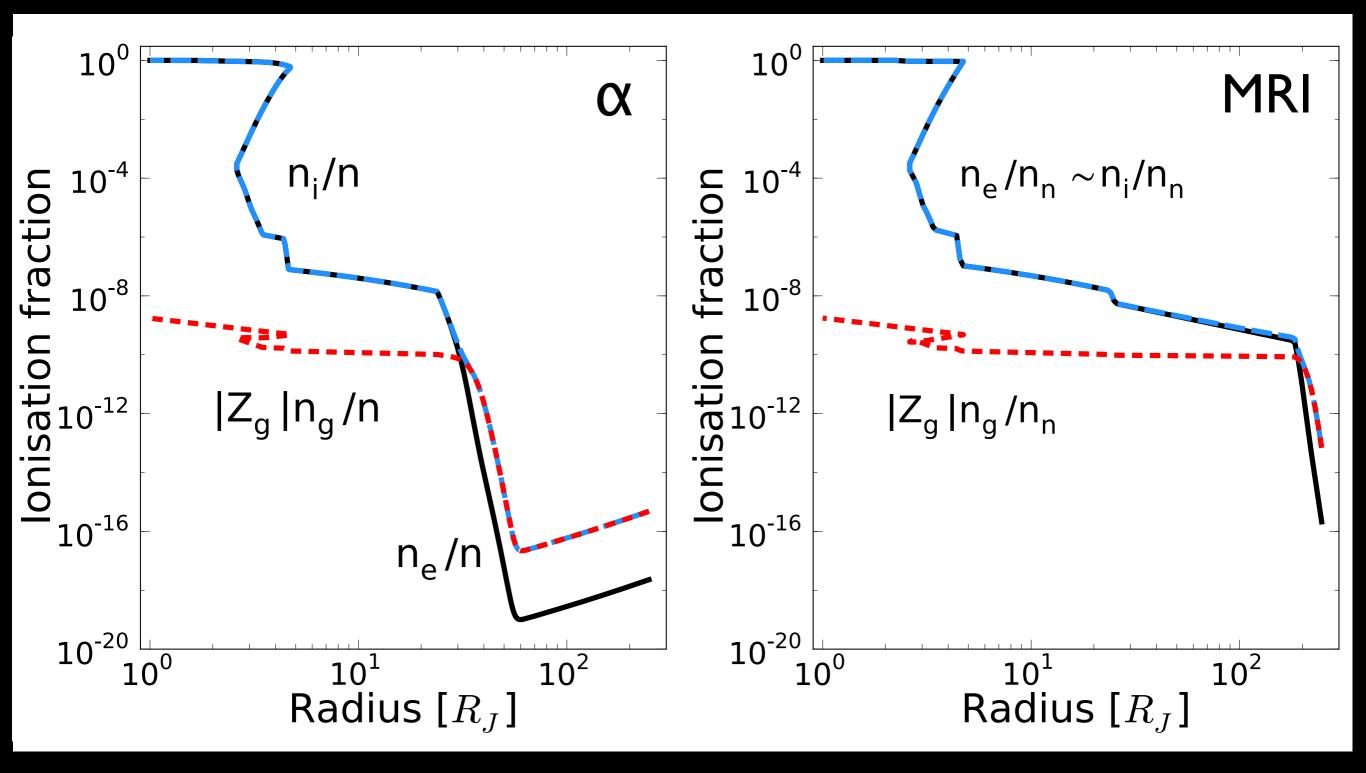
Column Density

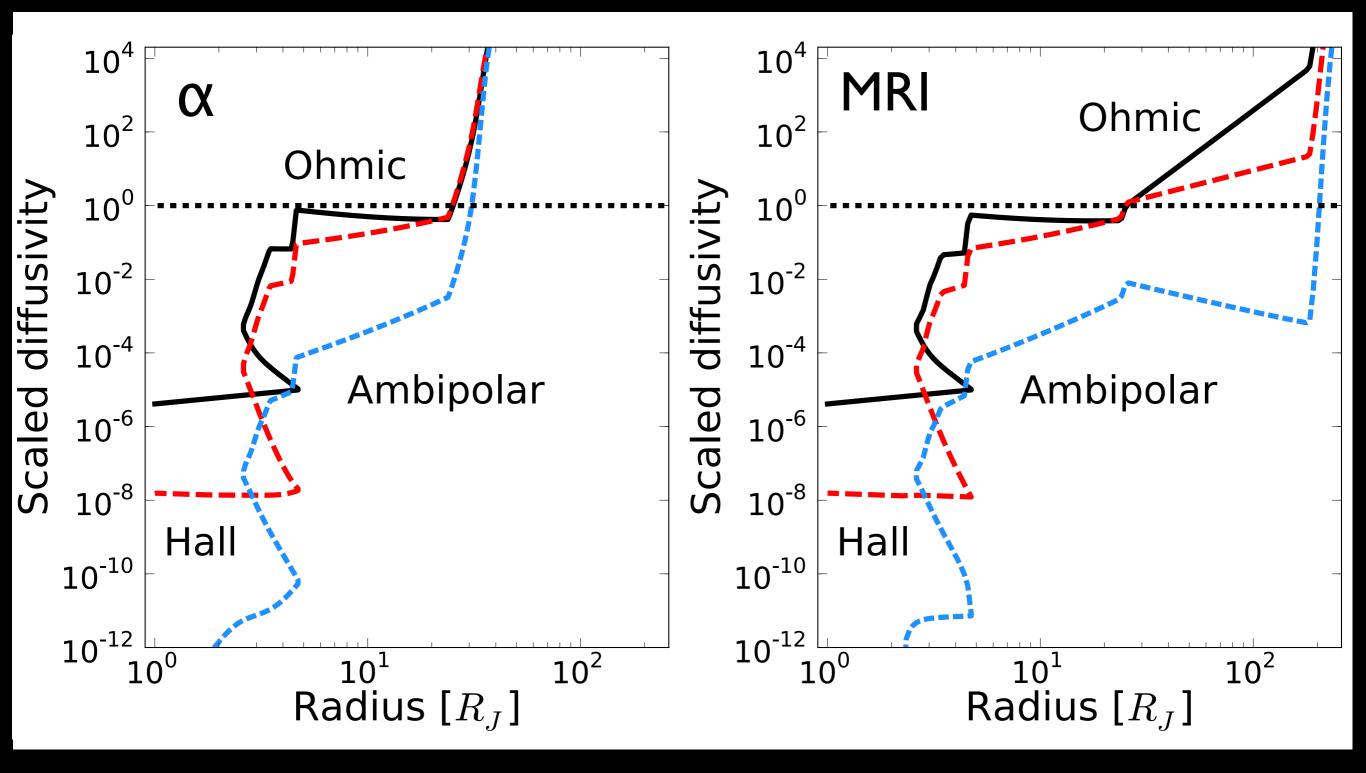


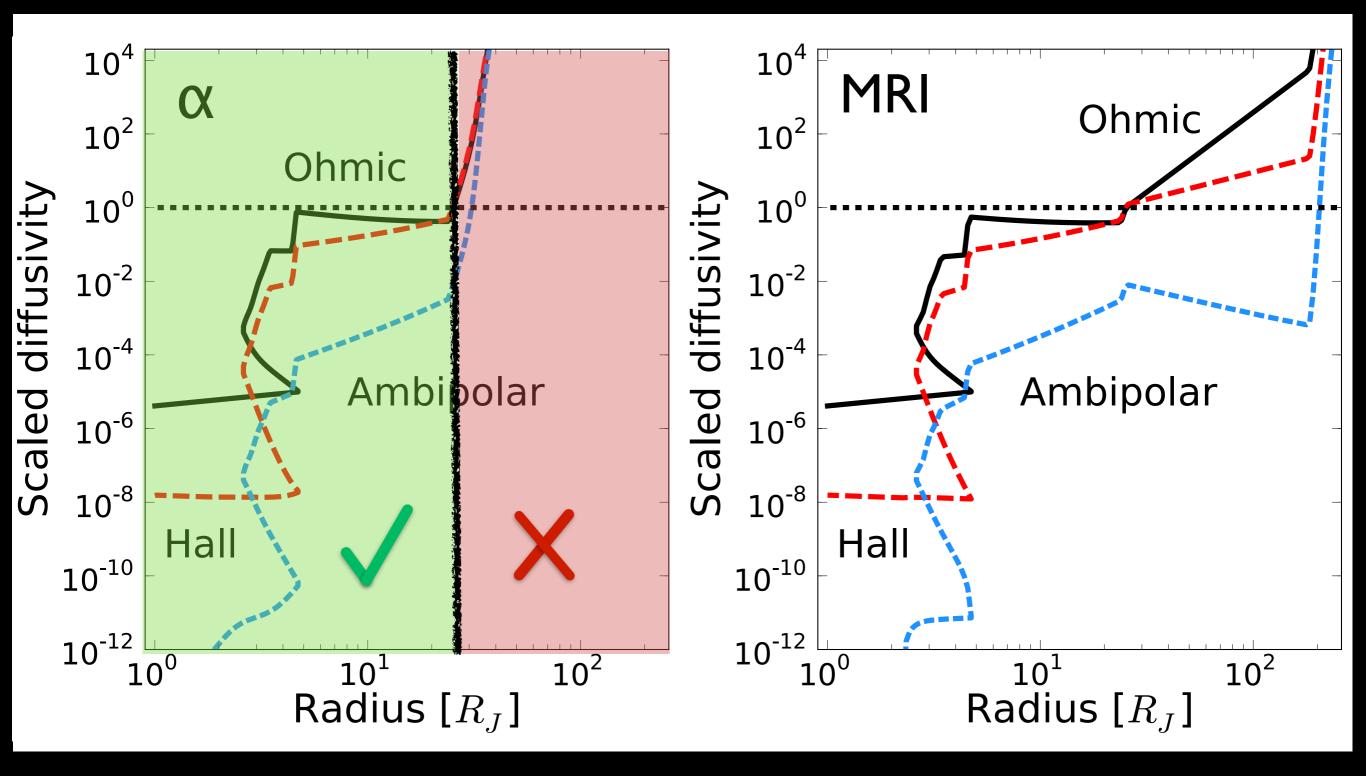
Magnetic Field

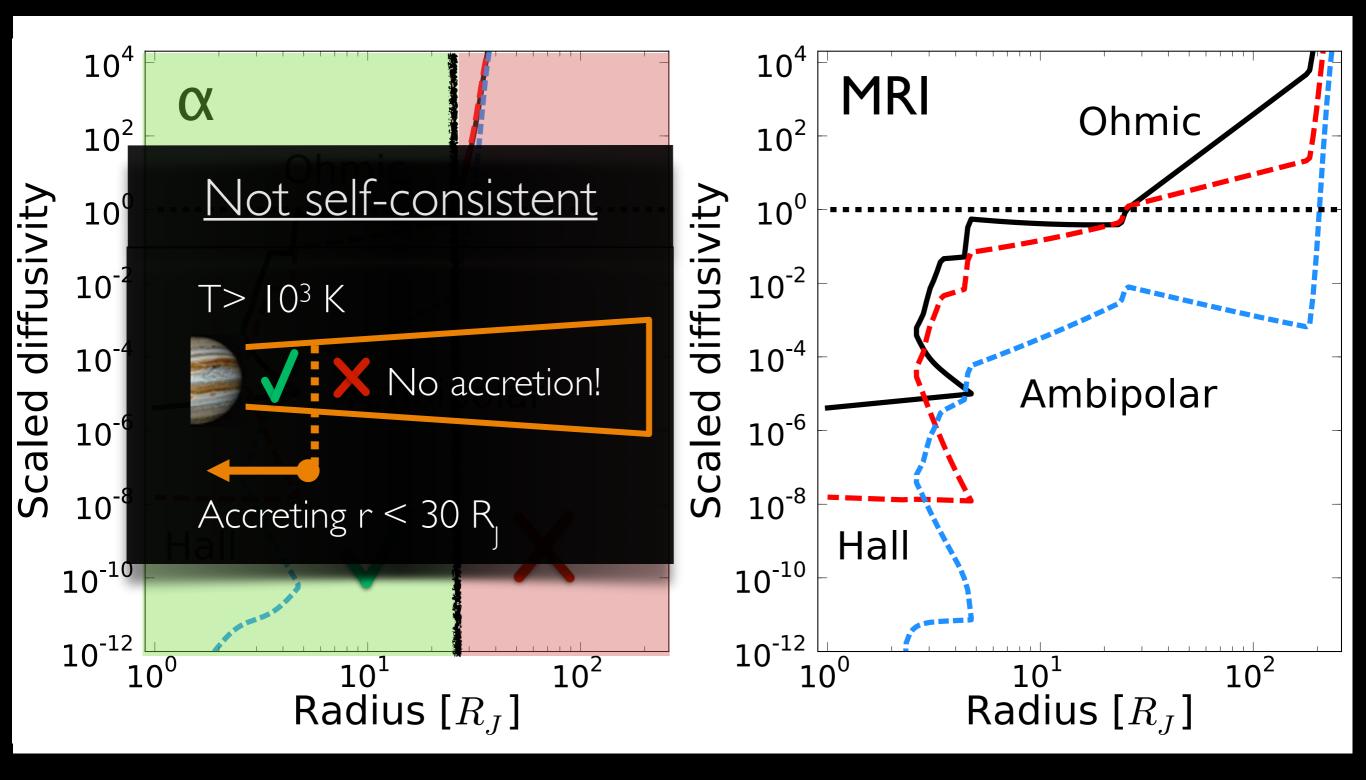


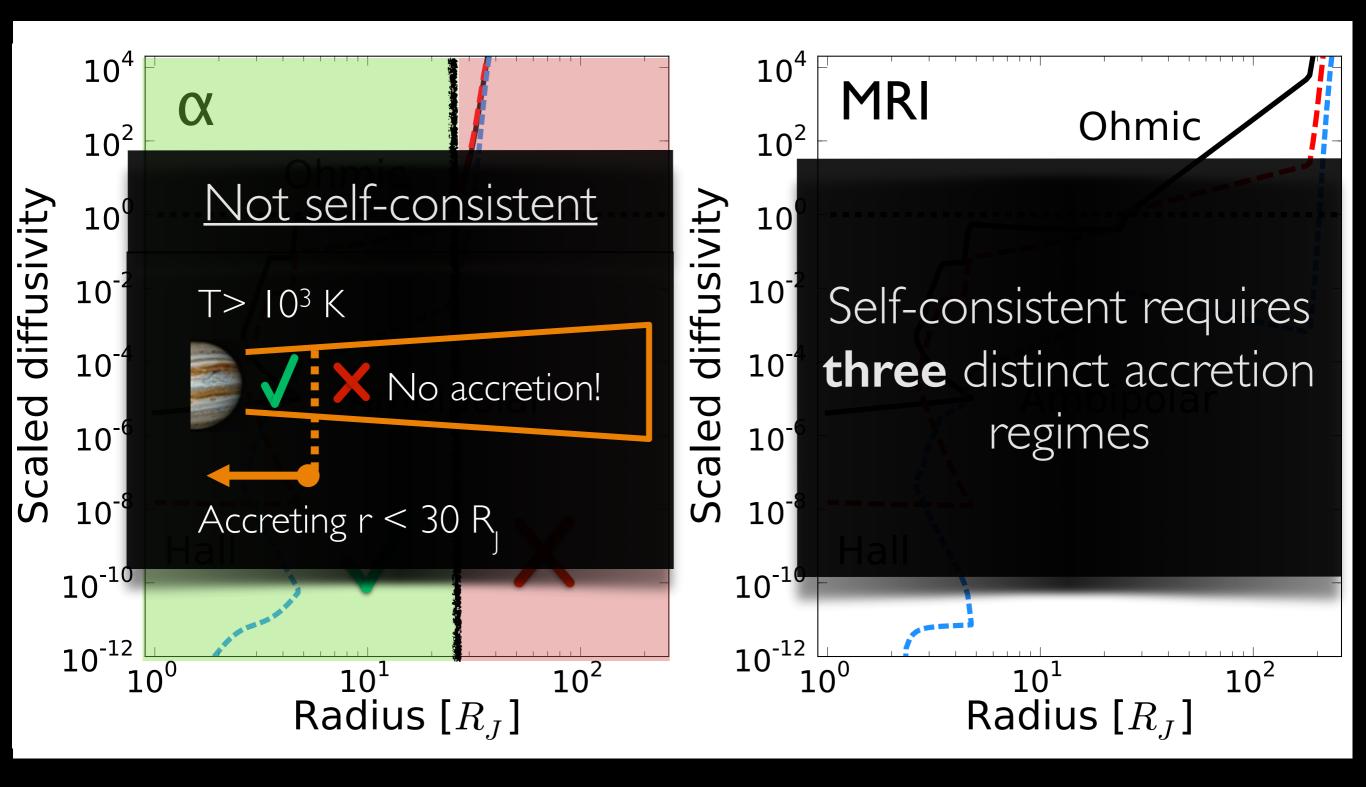
lonisation fraction











Conclusion

- Magnetically driven accretion requires T~800K across 80% of disk, as thermal ionisation is key.
- Disk is massive with M~0.5Mj
- Accretion occurs in three different modes saturated, marginally coupled, and gravitoturbulence.

0

- Similar results for transport by a Vertical field
- First circumplanetary disk model to include transport with imperfect magnetic coupling.