

Rayleigh–Taylor instability in partially ionized prominence plasma

E. Khomenko, A. Díaz, A. de Vicente, M. Collados & M. Luna

Departamento de Astrofísica, Universidad de La Laguna and Instituto de Astrofísica de Canarias (IAC),

La Laguna, Tenerife (Spain).

Main Astronomical Observatory, NAS, Kiev, (Ukraine)

http://www.iac.es/proyecto/spia/

Observations of instabilities

HINODE observations of quiescent solar prominence

Berger et al. 2008

Linear theory of magnetic RTI

Linear growth rate (Chandrasekhar 1961)

$$\omega^{2} = -gk\frac{\rho_{2}-\rho_{1}}{\rho_{2}+\rho_{1}} + \frac{2(\boldsymbol{B}_{0}\boldsymbol{k})^{2}}{\mu(\rho_{2}+\rho_{1})}$$

Critical wavelength below which instability is completely suppressed

$$\lambda_c = \frac{B_0^2 \cos^2 \theta}{(\rho_2 - \rho_1)g}$$

Magnetic RTI in partially ionized plasma

Prominence material is only partially ionized

Deviations from classical MHD are expected

Single-fluid vs multi-fluid approach

<u>Multi-fluid</u>: Díaz et al. (2012), Soler et al. (2012)

Only linear theory has been developed so far

Elena Khomenko

No critical wavelength, plasma always unstable

Single-fluid quasi-MHD equations

$$\begin{split} \frac{\partial \rho}{\partial t} + \vec{\nabla} \left(\rho \vec{u} \right) &= 0 & \text{Mass conservation} \\ \rho \frac{D \vec{u}}{D t} &= \vec{J} \times \vec{B} + \rho \vec{g} - \vec{\nabla} p & \text{Momentum conservation} \\ \frac{D e_{\text{int}}}{D t} + \gamma e_{\text{int}} \vec{\nabla} \vec{u} &= \vec{J} \vec{E}^* & \text{Energy conservation} \end{split}$$

+ Generalized Ohm's law:

Assumes strong collision coupling between the species

$$\vec{E^*} = \left[\vec{E} + \vec{u} \times \vec{B}\right] = \eta \vec{J} + \eta_H \left[\vec{J} \times \vec{b}\right] - \eta_A \left[(\vec{J} \times \vec{b}) \times \vec{b}\right]$$

Ohmic term

Hall term

Ambipolar term

Simulation setup

 $T \approx 5000$ K; $\rho \approx 3 \times 10^{\text{-13}}~g~\text{cm}^{\text{-3}}$

Neutral fraction $\rho_n/\rho \approx 0.9$

 $T \approx 400.000 \text{ K}; \rho \approx 4 \times 10^{\text{-15}} \text{ g cm}^{\text{-3}}$

Neutral fraction $\rho_n/\rho = 0$

Multi-mode perturbation of the interface
Spatial resolution of 1 km
Generalized Ohm's law (ambipolar term "on")

See Hillier et al (2011, 2012) for 3D MHD simulations of RTI in Kippenhahn-Schlüter prominence model

B_0 inclined away from normal to the plane

B₀ inclined away from normal to the plane

Growth rate of RTI modes

Small-scales appear first:
faster linear growth rate
Large-scales dominate later:
non-linear bubble interaction
Small-scales are suppressed by magnetic tension force
Field compression additionally increases λ_c

see Jun et al. (1995)

Velocity distribution in ~linear regime, θ=89°

"ambipolar" model has slightly larger velocities in the linear regime neutrals make plasma more unstable

Velocity distribution in non-linear regime, θ=90°

Asymmetric up- and down- flow distribution, ±10-20 km s⁻¹

"ambipolar" model has more extreme velocities

Growth rate of RTI modes, θ =90°

Similar mode growth rate in "ambipolar" and "mhd" models No critical wavelength λc

Power (ambipolar) / Power (mhd)

Temperature difference "mhd" vs "ambipolar"

Chromospheric material is more than 30% hotter in the "ambipolar" model (Joule heating due to current dissipation)

B=10 G, 0=89°

Diffusion velocity $w = u_i - u_n$

$$\boldsymbol{w} = \frac{\xi_n}{\alpha_n} \left[\boldsymbol{J} \times \boldsymbol{B} \right] - \frac{\left(2\xi_n \boldsymbol{\nabla} p_e - \xi_i \boldsymbol{\nabla} p_n \right)}{\alpha_n}$$

Currents Gradients of partial pressures

Negative values: neutrals fall faster than ions by a few km s⁻¹

Inclination θ=89°

Diffusion velocity $w = u_i - u_n$

$$\boldsymbol{w} = \frac{\xi_n}{\alpha_n} \left[\boldsymbol{J} \times \boldsymbol{B} \right] - \frac{\left(2\xi_n \boldsymbol{\nabla} p_e - \xi_i \boldsymbol{\nabla} p_n \right)}{\alpha_n}$$

Currents Gradients of partial pressures

Negative values: neutrals fall faster than ions by a few km s⁻¹

Inclination θ=90°

Ion-neutral momentum

 $\boldsymbol{p}_D = \sqrt{(\rho_i \rho_n)} \boldsymbol{w}.$

Summary

General dynamics

•Asymmetric velocity distribution; up flows are faster;

•Upflowing bubbles are more apparent in density images;

•Drops falling at constant speed \sim 3-5 km s⁻¹.

Ambipolar vs MHD differences:

Small scales grow faster with ambipolar term "on";
Larger speeds of bubbles in with ambipolar term "on";
Measurable diffusion velocities of the orders of a few km s⁻¹;
Temperature of bubbles is up to 30% different.

