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ABSTRACT

Alfvénic waves are ubiquitous in the solar atmosphere and their dissipation may play an important role in atmospheric heating. In the
partially ionized solar chromosphere, collisions between ions and neutrals are an efficient dissipative mechanism for Alfvén waves
with frequencies near the ion-neutral collision frequency. The collision frequency is proportional to the ion-neutral collision cross
section for momentum transfer. Here, we investigate Alfvén wave damping as a function of height in a simplified chromospheric
model and compare the results for two sets of collision cross sections, namely those of the classic hard-sphere model and those based
on recent quantum-mechanical computations. We find important differences between the results for the two sets of cross sections.
There is a critical interval of wavelengths for which impulsively excited Alfvén waves are overdamped as a result of the strong ion-
neutral dissipation. The critical wavelengths are in the range from 1 km to 50 km for the hard-sphere cross sections, and from 1 m
to 1 km for the quantum-mechanical cross sections. Equivalently, for periodically driven Alfvén waves there is an optimal frequency
for which the damping is most effective. The optimal frequency varies from 1 Hz to 102 Hz for the hard-sphere cross sections,
and from 102 Hz to 104 Hz for the quantum-mechanical cross sections. Future observations at sufficiently high spatial or temporal
resolution may show the importance of high-frequency Alfvén waves for chromospheric heating. For instance, the Atacama Large
Millimeter/submillimeter Array (ALMA) may be able to detect the critical wavelengths and optimal frequencies and so to test the
effective collision cross section in the chromospheric plasma.
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1. Introduction

Recent high-resolution observations indicate that Alfvén waves
are ubiquitous throughout the solar atmosphere. In particular,
Alfvénic waves have been detected propagating in the chro-
mosphere (e.g., Kukhianidze et al. 2006; Zaqarashvili et al.
2007; De Pontieu et al. 2007; Okamoto & De Pontieu 2011;
Kuridze et al. 2012; De Pontieu et al. 2012; Morton et al. 2013;
Morton 2014). It is believed that energy transport by Alfvénic-
type waves and its dissipation may play a relevant role in the
heating and energy balance in the atmospheric plasma (see, e.g.,
Erdélyi & Fedun 2007; Cargill & de Moortel 2011; McIntosh
et al. 2011; Hahn & Savin 2014). Both observations and theoret-
ical aspects of Alfvén wave propagation have been reviewed by
Zaqarashvili & Erdélyi (2009) and Mathioudakis et al. (2013).

The relatively cool temperature in the chromosphere causes
the plasma to be partially ionized, with a predominance of neu-
trals at low heights in the chromosphere. In this context, ion-
neutral collisions have been invoked as a viable energy dissi-
pation mechanism for Alfvén waves by, e.g., De Pontieu et al.
(2001); Khodachenko et al. (2004); Leake et al. (2005); Russell
& Fletcher (2013), among others. Estimations of the heating rate
due to Alfvén waves damped by ion-neutral collisions computed
by Song & Vasyliūnas (2011) and Goodman (2011) indicate that
this mechanism can generate sufficient heat to compensate the
radiative losses at low altitudes in the solar atmosphere. For
driven waves propagating from the photosphere to the corona,

numerical simulations by Tu & Song (2013) show that the wave
energy flux transmitted to the corona is at least one order of mag-
nitude smaller than that of the driving source due to the reflection
and strong damping in the chromosphere. Therefore, partial ion-
ization seems to be a crucial ingredient to correctly understand
the processes of plasma heating and energy transport in the chro-
mosphere (e.g., Khomenko & Collados 2012; Martínez-Sykora
et al. 2012; Leake et al. 2013), including those processes that
involve propagation and dissipation of Alfvén waves.

Damping of Alfvén waves due to ion-neutral collisions in
the solar chromosphere is usually investigated in the single-
fluid approximation, which assumes a strong coupling between
the various species in the plasma (e.g., De Pontieu et al. 2001;
Khodachenko et al. 2004). Theoretical studies demonstrate that
the damping is most efficient when the frequency of the wave
and the ion-neutral collision frequency are of the same order of
magnitude (see Zaqarashvili et al. 2011b; Soler et al. 2013b).
However, the single-fluid approximation breaks down for wave
frequencies near the ion-neutral collision frequency because the
dynamics of ions and neutrals decouple. Ions and neutrals have
to be considered as two separate fluids for those high frequen-
cies. Multi-fluid approaches are therefore necessary to correctly
investigate high-frequency Alfvén waves in the chromosphere
(Zaqarashvili et al. 2011b; Soler et al. 2013b,a,c). In a general
sense, both temporal and spatial scales should be taken into ac-
count to assess the applicability of the single-fluid approxima-
tion. For the waves of interest in this paper, however, it is enough
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to consider the criterion based on the wave frequency alone,
since frequencies and wavelengths are intrinsically related. High
frequencies are equivalent to short wavelengths, and vice versa.

The present paper deals with the theoretical study of Alfvén
wave damping in the partially ionized chromosphere using the
multi-fluid theory. The multi-fluid equations used here are rather
general and contain a number of physical effects that were not
considered in previous works (e.g., Soler et al. 2013b). For in-
stance, we consistently take into account ion-neutral collisions,
electron-neutral collisions, electron inertia, viscosity, Ohm’s
magnetic diffusion, and Hall’s current. This additional physics
provides a more realistic representation of the chromospheric
plasma. This investigation is also related to the recent work by
Vranjes & Kono (2014) although, as we explain later, our results
and those of Vranjes & Kono (2014) do not agree regarding the
existence of a strict frequency cut-off for Alfvén waves.

The three main goals of this work are summarized as follows.
(1) We discuss a fact usually ignored in the literature concerning
the applicability of the multi-fluid theory. The correct study of
waves with frequencies near the ion-neutral collision frequency
cannot be done in the usual framework of the multi-fluid theory
in the low chromosphere (see Vranjes & Krstic 2013). Fluid the-
ory is only applicable at sufficiently large heights (see Sect. 2 for
details). (2) We show that the ion-neutral collision cross section
is a very important parameter for determining the wavelengths
and wave frequencies that are most efficiently damped. Different
values of the ion-neutral collision cross section and frequency
can be found in the literature (see, e.g., the various expressions
of the collision frequency given in the Appendix of De Pontieu
et al. 2001). An important goal of the present work is to de-
termine whether the use of the more accurate cross sections re-
cently proposed by Vranjes & Krstic (2013) modifies substan-
tially the results obtained with the classical cross sections or, on
the contrary, the numerical value of the cross sections plays a
minor role. (3) In connection to the previous point, we suggest
that future observations with instruments operating at very high
temporal and spatial resolutions like, e.g., the Atacama Large
Millimeter/submillimeter Array (ALMA), may be crucial to un-
derstand how these waves actually propagate and damp in the
chromosphere and thus how they contribute to plasma heating
(see Karlický et al. 2011).

This paper is organized as follows. Section 2 contains the
description of the chromospheric model adopted in this work.
Discussions about the applicability of the fluid theory and the
importance of the ion-neutral collision cross section are also
given. The basic multi-fluid equations and the dispersion rela-
tion of Alfvén waves are given in Sect. 3. Then, Sect. 4 contains
computations of the quality factor for Alfvén wave damping as a
function of height in the chromosphere. Both the impusive driver
and the periodic driver scenarios are analyzed. Finally, the dis-
cussion of the results and their observational implications are
included in Sect. 5.

2. Chromospheric model
2.1. Variation with height of physical parameters

In this work, we adopt a simplified one-dimensional model for
the chromosphere. We treat the chromospheric medium as a par-
tially ionized hydrogen plasma composed of ions (protons), elec-
trons, and neutrals (hydrogen atoms). The influence of heavier
species, specially that of helium, is ignored. The specific effect
of helium on the damping of Alfvén waves was studied by Soler
et al. (2010) and Zaqarashvili et al. (2011a, 2013). The reader is
refereed to these previous works for details. The subscripts “i”,

Fig. 1. Dependence on height above the solar photosphere of the
a) plasma temperature and b) hydrogen ionization fraction, χ = ρn/ρi,
according to the FAL93-F model. c) Magnetic field strength as a func-
tion of height according to the semi-empirical relation of Eq. (1). We
note the logarithmic scale in the vertical axis of panel b).

“e”, and “n” denote ions, electrons, and neutrals, respectively,
while the subscript “β” is used to refer to a unspecified species.
MKS units are used throughout this paper.

We use the chromospheric bright region model F of Fontenla
et al. (1993), hereafter the FAL93-F model, to account for the
variation of the physical conditions with height, that here cor-
responds to the z-direction in Cartesian coordinates. Figures 1a
and b show the dependence on height above the photosphere, h,
of the plasma temperature, T , and the ionization fraction,
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χ = ρn/ρi, where ρi and ρn are the ion and neutral densities, re-
spectively. The photosphere corresponds to h = 0. The plasma
is permeated by a vertical magnetic field, namely B = Bêz, with
B the magnetic field strength. The dependence of the magnetic
field strength on height is taken after the semi-empirical formula
by Leake & Arber (2006), namely

B = Bph

(
ρ

ρph

)0.3

, (1)

where ρ is the total mass density, whose dependence on height
is prescribed by the FAL93-F model, ρph is the total density at
the photospheric level (also taken from the FAL93-F model),
and Bph is the photospheric magnetic field strength. Equation (1)
roughly represents the magnetic field strength in an intense mag-
netic flux tube expanding with height. We consider an intense
magnetic element at the photospheric level and use Bph = 2 kG.
Figure 1c shows the dependence on height of the magnetic field
strength. In this model the magnetic field strength decreases with
height and is B ≈ 190 G at 1000 km and B ≈ 35 G at 2000 km
above the photosphere. The largest variation of B takes place for
h <∼ 1000 km, that represents the strong expansion of the mag-
netic field at low heights in the chromosphere. On the contrary,
for h >∼ 1000 km the variation of B is much less important and
B becomes almost constant at large heights. We note that a hor-
izontal component of the magnetic field should be included in
order to satisfy the divergence-free condition. However, this ge-
ometrical effect would complicate matters substantially. For this
reason, we restrict ourselves to a purely vertical magnetic field
and neglect the horizontal component. This is approximately
valid near the axis of the flux tube, where the horizontal com-
ponent is much smaller than the vertical component.

It should be noted that the simplified model used here repre-
sents a static, gravitationally stratified chromosphere. Therefore,
the model misses part of the highly dynamical behavior of the
chromospheric medium seen in both high-resolution observa-
tions and numerical simulations (e.g., Martínez-Sykora et al.
2012). A time-dependent background is necessary to account for
all the fast, time-varying dynamics of the chromospheric plasma.
This is, however, far beyond the purpose of the present work.

2.2. Collision frequencies and applicability of the fluid theory

We use the three-fluid theory for a partially ionized plasma,
in which ions, electrons, and neutrals are considered as sepa-
rate fluids. The three fluids exchange momentum by means of
particle collisions. The collision frequency of species β with
species β′, namely νββ′ , is defined by means of the symmet-
ric friction coefficient αββ′ , so that νββ′ = αββ′/mβnβ, where
mβ and nβ are the mass and number density of species β, re-
spectively. The friction coefficient between two charged species,
namely β and β′, is (e.g., Spitzer 1962; Braginskii 1965)

αββ′ =
nβnβ′Z2

βZ
2
β′e

4 lnΛββ′

6π
√

2πε20 mββ′
(
kBTβ/mβ + kBTβ′/mβ′

)3/2
, (2)

while the friction coefficient between a charged or neutral
species, β, and a neutral species, n, is (e.g., Braginskii 1965;
Chapman & Cowling 1970)

αβn = nβnnmβn

[
8kB

π

(
Tβ
mβ
+

Tn

mn

)]1/2

σβn. (3)

In these expressions, mββ′ = mβmβ′/
(
mβ + mβ′

)
is the reduced

mass, Tβ is the temperature of species β, e is the electron charge,

kB is Boltzmann’s constant, ε0 is the permittivity of free space,
Zβ is the sign of the electric charge (Zi = 1 and Ze = −1),
σβn is the momentum transfer cross section for collisions involv-
ing neutrals, and lnΛββ′ is Coulomb’s logarithm given by (e.g.,
Spitzer 1962; Vranjes & Krstic 2013)

lnΛββ′ = ln

⎡⎢⎢⎢⎢⎢⎢⎣12πε3/20 k3/2
B

(
Tβ + Tβ′

)
∣∣∣ZβZβ′ ∣∣∣ e3

⎛⎜⎜⎜⎜⎜⎝ TβTβ′

Z2
βnβTβ′ + Z2

β′nβ′Tβ

⎞⎟⎟⎟⎟⎟⎠
1/2⎤⎥⎥⎥⎥⎥⎥⎦ ·

(4)

The expressions of the friction coefficients given above are also
valid for self-collisions, i.e., collisions between particles of the
same species. If for simplicity we assume the same temperature
for ions, electrons, and neutrals, i.e., Ti = Te = Tn, and take into
account that the number density of ions and electrons is the same
in a hydrogen plasma to satisfy quasi-neutrality, i.e., ni = ne,
we may drop the subscripts from the temperatures and from
Coulomb’s logarithm. In addition, we can substitute the numeri-
cal values of the various constant parameters into the expression
of Coulomb’s logarithm, so that it reduces to (e.g., Priest 1984)

lnΛ ≈ 30.5 − 1.15 log10 ne + 3.45 log10 T. (5)

We are interested in studying the damping of Alfvén waves in
the chromosphere. Specifically, we are interested in the role of
ion-neutral collisions. It is known from previous works (e.g.,
Zaqarashvili et al. 2011b; Soler et al. 2013b) that the damping is
most efficient when the wave frequency and the ion-neutral colli-
sion frequency are of the same order. We are therefore interested
in frequencies near the ion-neutral collision frequency. It is im-
portant to known whether the fluid theory used here is applicable
or breaks down for those wave frequencies. The fluid theory im-
plicitly assumes that self-collisions are frequent enough for fluid
behavior to be established in the three fluids separately. This im-
poses a minimum value for the self-collision frequency to keep
the velocity distribution close to a Maxwell-Boltzmann distribu-
tion. In other words, the self-collision frequency of a particular
species must be higher than the wave frequency and also higher
than any of the collision frequencies with the other species.

The collision frequencies between charged species are es-
sentially determined by the densities and the temperature (see
Eq. (2)), while the collision frequencies involving neutrals also
depend on the neutral collision cross section (see Eq. (3)). The
classical approach to compute the collision cross section is the
so-called model of hard spheres, from here on HS. In the HS
model the particles are considered as solid spheres that inter-
act by means of direct impacts only (e.g., Chapman & Cowling
1970). The HS cross section is usually computed as σββ′ =

π
(
rβ + rβ′

)2
, where rβ and rβ′ are the radii of particles β and

β′, respectively. In the case of ion-neutral and electron-neutral
collisions, the radii of both ions and electrons are much smaller
than the radius of neutral atoms, so that their HS cross sections
are approximately the same, namely σin ≈ σen ≈ 10−20 m2.
Likewise, the HS cross section for neutral-neutral collisions is
σnn ≈ 4 × 10−20 m2.

Recently, Vranjes & Krstic (2013), from here on VK, pre-
sented quantum-mechanical computations of collision cross sec-
tions that include several important ingredients missing from
the classic HS model. For instance, VK considered variations
of the cross section with temperature, quantum indistinguisha-
bility corrections, and charge transfer. The VK cross sections
coincide with the classical ones at high temperatures, but are
different from the HS cross sections at low temperatures akin to
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those in the chromosphere. In their paper, VK plot the computed
cross section as a function of the energy of the colliding species,
which is related to the temperature. For chromospheric temper-
atures of interest here, we have to consider the results at low
energies. The ion-neutral collision cross section from Fig. 1 of
VK is σin ≈ 10−18 m2, while the electron-neutral collision cross
section from their Fig. 4 is σen ≈ 3 × 10−19 m2. Concerning
neutral-neutral collisions, VK provide in their Fig. 3 different
cross sections for momentum transfer and viscosity. The cross
section for momentum transfer is σnn ≈ 10−18 m2, while the
cross section for viscosity is σnn ≈ 3 × 10−19 m2. In summary,
the VK cross sections are between one and two orders of magni-
tude larger than the classic HS cross sections.

The value of the cross section is not only important from
the academic point of view but also from the practical point of
view. The reason is that the value of the cross section directly
affects the collision frequency and, therefore, the cross section is
important to determine both the applicability of the fluid theory
and the optimal frequency for wave damping. Uncertainties in
the collision frequency also cause uncertainties in the various
transport coefficients that govern basic collisional phenomena in
the plasma (e.g., Martínez-Sykora et al. 2012). The value of the
collision cross section may play an important role in theoretical
computations.

Figure 2 shows the dependence on height of the relevant col-
lision frequencies for ions, electrons, and neutrals taking into ac-
count both HS and VK cross sections. Concerning ions (Fig. 2a),
we find that νin � νii in the low chromosphere. Collisions with
neutrals are too frequent for ions to reach a Maxwell-Boltzmann
distribution independently. In other words, ions collide too fre-
quently with neutrals so that ion-ion collisions do not have
enough time to make the ion distribution Maxwellian on their
own without the influence of neutrals. Ions are too coupled with
neutrals. This means that the condition for ions to be treated as
an individual fluid is not satisfied. The multi-fluid theory breaks
down for h <∼ 600 km using the HS cross sections and for
h <∼ 900 km using the VK cross sections. We also see that ions
would not be magnetized for h <∼ 700 km in the VK case since
νin > Ωi at those low heights, where Ωi = eB/mi is the ion
cyclotron frequency (see a discussion on this issue in Vranjes
et al. 2008). The dependence on height of the ion collision fre-
quencies shown here could be compared to those plotted in VK.
However, we note that the magnetic field model used here is dif-
ferent from that of VK. This causes our ion cyclotron frequency
to be slightly larger than in VK. We also note that VK used
the atmospheric model C of Fontenla et al. (1993), while here
we use model F. This leads to a different dependence of the
physical parameters (and so the collision frequencies) on height.
Concerning magnetization, VK argue that the largest collision
frequency of all the possible ones should be used to discuss
magnetization. According to VK (see their Fig. 7), that colli-
sion frequency corresponds to the collision frequency for elastic
scattering. However, we note that in Fig. 7 of VK the collision
frequency for elastic scattering is only slightly larger than that
for momentum transfer used here. The use of any of these two
frequencies leads essentially to the same results concerning mag-
netization of ions.

In the case of electrons (Fig. 2b), we also see that electrons
should not be treated as a separate fluid at low heights due to the
very frequent collisions with neutrals, i.e., νen � νee. At large
heights, however, it is found that νee � νen and νee ∼ νei, so that
electrons are strongly coupled to ions (they effectively behave
as an ion-electron single fluid) but are weakly affected by neu-
trals. In all cases, the electron cyclotron frequency,Ωe = eB/me,

Fig. 2. Dependence on height above the solar photosphere of the col-
lision frequencies for a) ions, b) electrons, and c) neutrals. HS and
VK denote collision frequencies with neutrals computed with the hard
sphere cross sections and the Vranjes & Krstic (2013) cross sections,
respectively. In panels a) and b), Ωi and Ωe denote the ion and electron
cyclotron frequencies, respectively.

remains larger than the electron-electron collision frequency. As
before, we could compare the electron frequencies computed
here to those given in VK. We note again that both the mag-
netic field dependence on height and the atmospheric model are
different in the present paper and in VK. This leads to variations
in the physical parameters that may explain the small differences
between our Fig. 2b and the corresponding graphs of VK.

Finally, the collision frequencies for neutrals (Fig. 2c) show
that νnn is always the largest frequency at all heights, so that
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treating neutrals as a separate fluid is a valid assumption. This
last result remains the same for both HS and VK cross sections.

The results discussed in the previous paragraphs indicate that
for the wave frequencies of interest here, i.e., for wave frequen-
cies near the ion-neutral collision frequency, ions should not
be considered as an individual fluid separate from neutrals at
low heights in the chromosphere. This was previously noted by
Vranjes & Krstic (2013). The same restriction applies to elec-
trons. The fluid theory is applicable for h >∼ 600 km using the
HS cross sections and for h >∼ 900 km using the VK cross
sections. Hence, the use of the more accurate VK cross sec-
tions results in a more restrictive criterion for the applicability
of the fluid theory than that obtained with the classical HS cross
sections. The correct study of high-frequency waves in the low
chromosphere should be done using hybrid fluid-kinetic mod-
els, or even fully kinetic models, since standard fluid theory
is not applicable for those high-frequencies. Here we consider
sufficiently large heights in the chromosphere for the fluid the-
ory to be applicable for the wave frequencies under study. Of
course, for wave frequencies lower than all the collision fre-
quencies the plasma dynamics can be studied using the single-
fluid approximation (e.g., De Pontieu et al. 2001; Khodachenko
et al. 2004), which assumes that ions, electrons, and neutrals
are strongly coupled. However, here we are interested in higher
frequencies beyond the range of applicability of the single-fluid
approximation.

3. Basic equations

3.1. Three-fluid model for the upper chromosphere

The general multi-fluid equations for a partially ionized plasma
can be found in, e.g., Zaqarashvili et al. (2011b), Meier &
Shumlak (2012), Khomenko et al. (2014) among others. Here,
we restrict ourselves the linearized version of the equations, that
govern the dynamics of small perturbations superimposed on the
equilibrium state. This approach is appropriate to study Alfvén
waves whose velocity amplitudes are much smaller than the
Alfvén velocity in the plasma. Since Alfvén waves are strictly
polarized in the plane perpendicular to the direction of the mag-
netic field, which is vertical in the present model, gravity has no
effect on the perturbations. In addition, we restrict ourselves to
values of the wavelength that are much shorter than the strati-
fication scale height, and so we perform a local analysis of the
perturbations. A limitation of the local analysis is that possible
cut-off frequencies and reflection due to the background gravita-
tional stratification are absent (see, e.g., Roberts 2006). This last
issue was recently explored analytically by Zaqarashvili et al.
(2013) and using numerical simulations by Tu & Song (2013).
It is beyond the purpose of the present investigation to take into
account the effects of gravitational cut-offs and wave reflection.
The reason is that gravitational cut-off may affect waves with
longer wavelengths than those studied here.

The linearized momentum equations of ions, electrons, and
neutrals are

ρi
∂ui
∂t
= −∇p′i − ∇ · π̂i + eni

(
E′ + ui × B

)
−αin (ui − un) − αie (ui − ue) , (6)

ρe
∂ue
∂t
= −∇p′e − ∇ · π̂e − ene

(
E′ + ue × B

)
−αen (ue − un) − αie (ue − ui) , (7)

ρn
∂un
∂t
= −∇p′n − ∇ · π̂n − αin (un − ui) − αen (un − ue) , (8)

where uβ, p′β, π̂β, and ρβ = mβnβ are the velocity perturbation,
scalar pressure perturbation, viscosity tensor, and mass density
of species β, and E′ is the electric field perturbation. Since
in the present paper we study incompressible Alfvén waves,
Eqs. (6)−(8) are complemented with the incompressibility con-
ditions for the three fluids, namely

∇ · ui = ∇ · ue = ∇ · un = 0. (9)

For Alfvén waves the z-components of the velocity perturba-
tions are zero, i.e., vi,z = ve,z = vn,z = 0. This means that it is
enough take the x- and y-components of Eqs. (6)−(8). Although
we include scalar pressure terms in the momentum equations for
completeness, we note that these forces do not act on incom-
pressible Alfvén waves and may be dropped. The terms with
αin, αie and αen in Eqs. (6)–(8) account for the transfer of mo-
mentum between species due to particle collisions. Concerning
viscosity, we take into account that the viscosity of a partially
ionized plasma is determined essentially by ions and neutrals by
virtue of their larger masses (see, e.g., Braginskii 1965; Meier
& Shumlak 2012). Therefore, the electron viscosity is neglected
compared to the ion and neutral viscosities. The ion viscosity
tensor is a complicated expression usually described as the sum
of five components accounting for compressive viscosity, shear
viscosity, and gyroviscosity (see the full expression in Braginskii
1965). Keeping the spatial variations (derivatives) of the velocity
along the direction of the magnetic field only, as appropriate for
Alfvén waves, the x- and y-components of the divergence of the
ion viscosity tensor reduce to

(∇ · π̂i)x = −ρi

(
ξi,⊥
∂2vi,x

∂z2
+ ξi,g

∂2vi,y

∂z2

)
, (10)

(∇ · π̂i)y = −ρi

(
ξi,⊥
∂2vi,y

∂z2
− ξi,g ∂

2vi,x

∂z2

)
, (11)

with ξi,⊥ and ξi,g the reduced coefficients of ion shear vis-
cosity and gyroviscosity, respectively, which are adapted from
Braginskii (1965), namely

ξi,⊥ =
6
5

nikBTνii
ρiΩ

2
i

=
6
5

c2
T,iνii

Ω2
i

, (12)

ξi,g =
nikBT
ρiΩi

=
c2

T,i

Ωi
, (13)

where cT,i =
√

kBT/mi is the ion thermal velocity. We note
that the coefficient of ion compressive viscosity (see Braginskii
1965) does not play a role in Alfvén waves. The reason for this
result is that Alfvén waves are incompressible and produce no
velocity perturbations along the magnetic field direction. In the
neutral fluid the form of the viscosity tensor is simpler because
of the absence of the effect of the magnetic field. Thus, the di-
vergence of the neutral viscosity tensor is

∇ · π̂n = −ρnξn∇2un, (14)

with ξn the isotropic coefficient of neutral viscosity given by

ξn =
2nnkBT
ρnνnn

=
2c2

T,n

νnn
, (15)

where cT,n =
√

kBT/mn is the neutral thermal velocity. Since
mn ≈ mi for hydrogen, cT,i ≈ cT,n and so we can drop the sub-
script from the thermal velocity.
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3.2. Reduction of the main equations

From here on we specialize in Alfvénic perturbations, and so we
drop pressure perturbations. It is frequent in the literature to ex-
clude the electric field perturbation, E′, from the equations and
to work with the magnetic field perturbation, B′, instead. In that
case, the induction equation governing the evolution of the mag-
netic field perturbation has to be obtained (see, e.g., Zaqarashvili
et al. 2011b). It is also useful to manipulate the equations so that
the electron velocity does not explicitly appear. To do so, we
define the current density perturbation as

j = e (niui − neue) , (16)

which is related to the magnetic field perturbation as

j =
1
μ
∇ × B′, (17)

where μ is the magnetic permeability. These relations are used
to express the electron velocity, ue, as

ue = ui − 1
μene
∇ × B′, (18)

where we used the quasi-neutrality condition ni = ne. This equa-
tion governs the electron dynamics and replaces their full mo-
mentum equation (Eq. (7)). In turn, Eqs. (6)–(8) and (18) can be
conveniently combined to eliminate E′ and ue from the ion and
neutral momentum equations, namely

ρi
∂ui
∂t
= −∇ · π̂i +

1
μ

(∇ × B′
) × B − (αin + αen) (ui − un)

+
me

μe

(
αen

mene
+
∂

∂t

)
∇ × B′, (19)

ρn
∂un
∂t
= −∇ · π̂n − (αin + αen) (un − ui) − αen

μene
∇ × B′, (20)

where we approximated ρi + ρe ≈ ρi.
Next, the expression for the electric field perturbation, E′, is

obtained from Eq. (7), namely

E′ = −ui × B +
αie + αen

μe2n2
e
∇ × B′ +

1
μene

(∇ × B′
) × B

−me

e
∂

∂t

(
ui − 1
μene
∇ × B′

)
+
αen

ene
(un − ui) . (21)

Finally, we use the Maxwell Equation,

∂B′

∂t
= −∇ × E′, (22)

and arrive at the equation governing the evolution of the mag-
netic field perturbation, namely

∂B′

∂t
= ∇ × (ui × B) −

(
η0 + η1

∂

∂t

)
∇ × ∇ × B′ +

me

e
∂

∂t
∇ × ui

−ηH∇ × [(∇ × B′
) × B

] − η2∇ × (un − ui) . (23)

Equation (23) is the linearized induction equation in a pressure-
less three-fluid partially ionized plasma. The terms on the right-
hand side of Eq. (23) are the inductive term, Ohm’s magnetic
diffusion, a term due to electron inertia, Hall’s current, and a

term that mostly accounts for the effect of electron-neutral colli-
sions, respectively. We define the various coefficients in Eq. (23)
as follows

η0 =
αie + αen

μe2n2
e
, (24)

η1 =
me

μe2ne
, (25)

ηH =
1
μene
, (26)

η2 =
αen

ene
· (27)

Ohm’s term and the term due to electron-neutral collisions rep-
resent diffusion of the magnetic field due to collisions between
particles. Hall’s current and the electron inertia term are not dis-
sipative terms. The so-called Hall effect arises in a plasma when
electrons are able to drift with the magnetic field but the much
heavier ions are not completely frozen to the magnetic field. As
a result, the current density vector has a component normal to
the electric field vector (see, e.g., Priest 1984). Hall’s effect may
be enhanced by electron-neutral collisions, which tend to further
decouple ions and electrons (Pandey & Wardle 2008).

3.3. Dispersion relation and the quality factor

To obtain the dispersion relation of Alfvén waves, we take into
account that any disturbance in the plasma can be expressed as
a superposition of its Fourier modes and, for linear waves, it is
enough studying the behavior of the Fourier modes separately.
Thus, we put all perturbations proportional to exp (ikz − iωt),
where k is the wavenumber along the magnetic field direction,
and ω is the angular frequency. The wavelength, λ, and the wave
frequency, f , are related to these two parameters as λ = 2π/k
and f = ω/2π.

Equations (19), (20) and (23) define an eigenvalue problem
where the x- and y-components of ui, un, and B′ form the eigen-
vector, and either ω or k is the eigenvalue. The z-components of
ui, un, and B′ are zero for Alfvén waves. The eigenvalue is the
solution of the dispersion equation that relates the frequency to
the wavenumber. The dispersion relation is here expressed as a
6 × 6 determinant, namely∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Γi −k2ξi,g
αin+αen
ρi

0 ikB
μρi

−Σ
k2ξi,g Γi 0 αin+αen

ρi
Σ ikB

μρi

αin+αen
ρn

0 Γn 0 0 ikαen
μρnene

0 αin+αen
ρn

0 Γn − ikαen
μρnene

0
ikB −Ψ 0 ikη2 Γb −k2BηH

Ψ ikB −ikη2 0 k2BηH Γb

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (28)

with

Γi = iω − k2ξi,⊥ − αin + αen

ρi
, (29)

Γn = iω − k2ξn − αin + αen

ρn
, (30)

Γb = iω − k2 (η0 − iωη1) , (31)

Σ = ik
me

μρie

(
αen

mene
− iω

)
, (32)

Ψ = k
(
ω

me

e
+ iη2

)
. (33)
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We consider the paradigmatic case that the effects of partial ion-
ization, viscosity, Ohm’s diffusion, and Hall’s current are all
dropped from the dispersion relation. In that case, the dispersion
relation reduces to a 2 × 2 determinant, namely∣∣∣∣∣∣ iω ikB

μρi

ikB iω

∣∣∣∣∣∣ = 0, (34)

whose solutions are the well-known ideal linearly polarized
Alfvén waves in a fully ionized plasma, namely

ω = ±kcA,i, (35)

where cA,i = B/
√
μρi is the ion Alfvén velocity, and the + and −

signs stand for forward and backward propagating waves, re-
spectively. The ideal Alfvén waves are modified when non-ideal
mechanisms are taken into account.

Alfvén waves efficiently transport energy in magnetized
plasmas. Due to the presence of dissipation mechanisms, wave
energy can be deposited in the plasma. For instance, ion shear
viscosity, neutral isotropic viscosity, collisions, and Ohm’s diffu-
sion are dissipation mechanisms that produce the damping of the
waves. Hall’s current and ion gyroviscosity, however, do not pro-
duce dissipation but dispersion. Hall’s current and gyroviscosity
are able to break the symmetry between the two possible circular
polarizations of the electric field, namely left and right circular
polarizations (see, e.g., Zhelyazkov et al. 1996; Cramer 2001),
which increases the number of different waves that can propa-
gate in the plasma. Formally, a linearly polarized Alfvén wave
can be written as a sum of a left circularly polarized wave and a
right circularly polarized wave, with the implicit assumption that
both waves have the same frequency (see, e.g., Pécseli 2013).
When the two circular polarizations have different frequencies
a pure linearly polarized Alfvén wave cannot be formed, and so
the two waves with opposite circular polarization appear as dif-
ferent solutions of the dispersion relation.

The dispersion relation (Eq. (28)) applies to both the spatial
and the temporal regimes, depending on whether ω or k is pre-
scribed. On the one hand, the solutions in the temporal regime
can be related to the impulsively driven or initial-value problem,
in which the waves are excited by an impulsive driver of short
duration that generate local perturbations in the plasma with a
certain spatial extent. In the temporal regime the wavenumber,
k, is a prescribed real quantity and the angular frequency, ω, is
obtained from the dispersion relation. Due to the presence of
dissipation mechanisms the waves are damped in time. Temporal
damping is mathematically represented by the fact thatω is com-
plex. The real part of ω is related to the oscillatory behavior of
the wave, i.e., the period. In turn, the imaginary part of ω cor-
responds to the temporal damping rate. On the other hand, the
solutions in the spatial regime can be linked to the periodically
driven or boundary-value problem, in which the waves are ex-
cited by a periodic driver with a certain frequency. In the spatial
regime ω is a prescribed real quantity and k is the complex so-
lution of the dispersion relation. In this case, the real part of k
is related to the actual wavelength and the imaginary part of k
corresponds to the spatial damping length.

The quality factor, Q, is a dimensionless parameter that char-
acterizes how efficiently damped a wave is. In the case of tem-
poral damping for a prescribed k, the standard definition of the
quality factor is

Q ≡ 1
2

∣∣∣∣∣Re(ω)
Im(ω)

∣∣∣∣∣ · (36)

The quality factor compares the frequency at which a wave os-
cillates to the rate at which it damps. Equivalently, in the case of
spatial damping for a prescribed ω, the quality factor is

Q ≡ 1
2

∣∣∣∣∣Re(k)
Im(k)

∣∣∣∣∣ , (37)

so that Q compares the wavelength with the damping length. The
behavior of the waves depends on the value of Q. When Q > 1/2
perturbations are underdamped, meaning that the perturbations
oscillate while their amplitude decrease in time or space. Most
of the energy of the perturbations can propagate away as weakly
damped Alfvén waves. The larger Q, the weaker the damping
and so the farther the wave can propagate from the excitation
location until all the wave energy is dissipated in the plasma.
If Q → ∞, the wave is undamped and no energy dissipation
takes place. Conversely, when Q < 1/2 the dissipation is very
strong and the perturbation is overdamped. Most of the energy
stored in the perturbation is dissipated in situ instead of being
transported away in the form of a propagating Alfvén wave. The
case Q = 1/2 that separates the two regimes is often called crit-
ical damping. The most extreme situation, however, takes place
when Q = 0. In such a case, the wave has a so-called cut-off. In
a cut-off scenario, perturbations are evanescent in time or space
instead of oscillatory and therefore Alfvén waves cannot propa-
gate at all. The remainder of this paper is devoted to investigating
the quality factor of Alfvén waves in the solar chromosphere.

4. Alfvén wave damping in the upper chromosphere

4.1. Impulsive driver

We start by investigating the case of Alfvén waves excited by
an impulsive driver. Hence, the temporal damping of the waves
for a fixed wavelength is explored. The dispersion relation is
solved to obtain the complex wave frequency, and so the qual-
ity factor, as a function of height. The dispersion relation has
six solutions for the frequency. Four solutions correspond to for-
ward and backward, left and right circularly polarized Alfvén
waves, while the two remaining solution are vortex modes (see
Zaqarashvili et al. 2011b; Soler et al. 2013b), also called forced
neutral oscillations (Vranjes & Kono 2014). Vortex modes are
associated with vorticity perturbations in the neutral fluid and do
not represent Alfvén waves. Hence, the solutions corresponding
to vortex modes are discarded from the present study. We focus
on studying the quality factor of the Alfvén waves.

Figure 3 shows contour plots of the quality factor (in loga-
rithmic scale) as a function of height, h, above the photosphere
for wavelengths, λ = 2π/k, in between 1 m and 106 m. We note
that the pressure scale height in the chromosphere is around
300 km, hence wavelengths above 105 m are probably stretch-
ing the assumptions behind the local analysis. The quality factor
does not show a strong dependence on the wave circular polar-
ization, and both left and right polarized solutions have similar
values of Q. However, the quality factor is found to be strongly
dependent on the set of cross sections used in the computations.
Figure 3 displays some regions where Alfvén waves are over-
damped, i.e., Q < 1/2 (see the regions denoted by red dotted
lines in the various panels). The position of these regions of over-
damping is different depending on the cross sections used. For
instance, the region of overdamping takes place at longer wave-
lengths for the HS cross sections than for the VK cross sections.
Hence, the use of the more accurate VK cross sections has here
a very strong impact. The presence of regions of overdamping
has important implications concerning the dissipation of wave
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Fig. 3. Contour plots of the quality factor Q (in logarithmic scale) of impulsively driven Alfvén waves in the upper solar chromosphere as function
of the wavelength λ (vertical axis in logarithmic scale) and height above the photosphere (horizontal axis). Top and botton panels correspond to
the left and right polarized waves, respectively. Left and right panels are the results obtained using the hard-sphere cross sections (HS) and the
Vranjes & Krstic (2013) cross sections (VK), respectively. The red dotted lines enclose zones where Alfvén waves are overdamped, i.e., Q < 1/2.
The white dashed lines correspond to the approximate critical wavelengths given in Eqs. (39) and (40). We note that the VK results are only strictly
valid for heights larger than 900 km.

energy (see Soler et al. 2013b,a). Perturbations in the plasma
whose wavelengths fall within those regions cannot propagate
away from the location of the excitation in the form of traveling
Alfvén waves. Instead, all the energy stored in the perturbations
is necessarily dissipated in situ. This may translate in a strong
plasma heating in those locations (see also Song & Vasyliūnas
2011).

The regions of overdamping shown in Fig. 3 can be directly
related to the cut-off interval of wavelengths explored by Soler
et al. (2013b). These authors found that there is an interval of
wavelengths, namely λ1 < λ < λ2, for which the ion-neutral
friction force becomes dominant over the restoring magnetic ten-
sion force. As a consequence, magnetic field perturbations de-
cay in a time scale much shorter than the wave period, which
result in the suppression of the Alfvén wave magnetic field os-
cillations. The existence of a critical interval of wavelengths for
Alfvén waves in a partially ionized plasma was first reported by
Kulsrud & Pearce (1969) and was subsequently investigated by,
e.g., Mouschovias (1987), Kamaya & Nishi (1998), Soler et al.
(2013b,a,c), among others. The overall physical picture taking
into account the dynamics of ions, electrons, and neutrals can
be summarized as follows. Ions, electrons, and neutrals move as

a single fluid when λ > λ2. When λ1 < λ < λ2, the strength of
friction becomes larger than that of magnetic tension and the flu-
ids cannot oscillate as a whole any more, i.e., magnetic tension
is not strong enough to move the whole plasma. When λ < λ1
neutrals decouple from ions and electrons, i.e., magnetic tension
is again able to put ions and electrons into motion, but neutrals
remain at rest. Thus, when λ < λ1 Alfvén waves only produce
perturbations in the ion and electron fluids, whereas neutrals are
not perturbed. The critical interval of wavelengths represents the
transition from the regime where ions, electrons, and neutrals
support Alfvén waves to the regime where Alfvén waves perturb
ions and electrons only (see an extended discussion in Kamaya
& Nishi 1998).

As explained in Soler et al. (2013b), the presence or absence
of the critical interval of wavelengths depends upon the value of
the ionization fraction, χ = ρn/ρi. The condition to be satisfied
is that χ > 8, which takes place for h <∼ 1500 km in the present
chromospheric model. Analytic expressions of λ1 and λ2 were
obtained by Soler et al. (2013b), namely

λ1,2 = 2π
χcA,i

νin

√
χ2 + 20χ − 8

8 (1 + χ)3
± χ

1/2 (χ − 8)3/2

8 (1 + χ)3
, (38)
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where the − and the + signs stand for λ1 and λ2, respectively.
Simplified expressions for these wavelengths can be obtained
assuming weak ionization, i.e., χ � 1, so that the approxima-
tions are

λ1 ≈ 2π
cA,i

νin

2χ
χ + 1

≈ 4π
cA,i

νin
=

4π
νin

B√
μρi
, (39)

λ2 ≈ 2π
cA,i

νin

χ

2
√
χ + 1

≈ πcA,i
√
χ

νin
=
π

νni

B√
μρn
· (40)

These approximate wavelengths agree reasonably well with the
boundaries of the regions of overdamping in Fig. 3. The differ-
ences may be attributed to the additional physical processes in-
cluded here and that were absent from the analysis of Soler et al.
(2013b). The ratio of the two critical wavelengths is

λ2

λ1
≈ 1

4

√
ρn

ρi
· (41)

Importantly, λ2/λ1 is independent of the ion-neutral collision
cross section and is only a function of the ratio of neutral to ion
densities. Equation (41) could be used to indirectly estimate the
plasma ionization degree if the values of λ1 and λ2 were inferred
from observations.

The effects of Hall’s current, electron-neutral collisions,
electron inertia, magnetic difussion, and viscosity were absent
from the work of Soler et al. (2013b). The additional physical
effects considered here provide a more realistic representation
of the chromospheric plasma and have an impact on the behav-
ior of the waves. The presence of Hall’s current and electron
inertia cause the strict frequency cut-offs obtained by Soler et al.
(2013b) to be replaced by zones where Alfvén waves are over-
damped. This result was also discussed in the previous work by
Zaqarashvili et al. (2012). In simple physical terms, the effect
of Hall’s current and electron inertia for removing the strict fre-
quency cut-off can be understood as follows. In the absence of
Hall’s current and electron inertia, electrons can be considered
as tightly coupled to ions, in the sense that electrons just fol-
low the behavior of ions. Both ions and electrons are frozen into
the magnetic field. In this case, ion-neutral collisions can com-
pletely suppress the magnetic field perturbations and so cause
the cut-off, as discussed in Soler et al. (2013b). However, when
either Hall’s current or electron inertia are included, electrons
can have a different dynamics than that of ions. Ions may not
be able follow the magnetic field fluctuations due to the effect of
ion-neutral collisions, but it is easier for electrons to remain cou-
pled to magnetic field. Therefore, ion-neutral collisions cannot
completely suppress the fluid oscillations because of the distinct
behavior of electrons when Hall’s current and/or electron inertia
are included (see also the discussion in Pandey & Wardle 2008).

The influence of Hall’s current also allows us to understand
why, within the regions of overdamping, the damping is stronger
for the HS model than for the VK model. Hall’s current helps to
reduce the efficiency of damping, i.e., the influence of Hall’s cur-
rent increases the quality factor. The importance of Hall’s cur-
rent grows when the wave frequency increases and approaches
the ion cyclotron frequency. Since the region of strongest damp-
ing takes place at higher frequencies (shorter wavelengths) in the
VK case than in the HS case, the effect of Hall’s current in the
regions of overdamping is more important in the VK case than
in the HS case. Thus, the strength of the damping appears to be
slightly lower in the VK case than in the HS case when the value
of the quality factor within the regions of overdamping of Fig. 3
is compared.

4.2. Periodic driver

Here we move to study the case of Alfvén waves excited by a pe-
riodic driver. Thus, we explore the spatial damping of the waves
for a fixed frequency. Now the dispersion relation is solved to
obtain the complex wavenumber and to compute the quality fac-
tor afterwards. The dispersion relation has twelve solutions for
the wavenumber. As in the case of the solutions for the frequency
explored in the previous subsection, some of the solutions do not
actually correspond to propagating Alfvén waves. Instead, these
solutions are heavily damped modes because they are directly
related to the various dissipative mechanisms included in the
main equations. As before, these solutions are discarded from
our study and we only focus on investigating the quality factor
of the Alfvén waves.

Figure 4 shows contour plots of the quality factor as a func-
tion of height, h, above the photosphere for frequencies, f =
ω/2π, in between 10−3 Hz and 106 Hz. We note that the wave-
lengths associated with the frequencies of the lower part of this
range may be greater than the pressure scale height in the chro-
mosphere. Hence, the local analysis may be compromized for
the lowest frequencies considered in Fig. 4. Visually, in Fig. 4
we do not see noticeable differences between the left and right
polarized solutions. This is so because the considered wave fre-
quencies are lower than the ion cyclotron frequency. A remark-
able difference with the case of temporal damping displayed in
Fig. 3 is that the quality factor never goes below Q = 1/2. In the
case of spatial damping the waves are not overdamped. There is,
however, a region around a certain optimal frequency where the
damping is maximal, i.e., Q reaches its lowest value. This opti-
mal frequency varies with height and depends on the cross sec-
tions used in the computations. The optimal frequency is about
two orders of magnitude higher in the VK case than in the HS
case. Again, the use of the more accurate VK cross sections has
a strong impact on the results.

As before, we can use the previous results by Soler et al.
(2013b) in order to better understand the computations displayed
in Fig. 4. From Eqs. (37) and (38) of Soler et al. (2013b) we can
derive the optimal frequency for the damping of Alfvén waves
due to ion-neutral collisions exclusively. Equations (37) and (38)
of Soler et al. (2013b) correspond to the real and imaginary parts
of the wavenumber, so that an expression of the quality factor
can be straightforwardly computed as

Q =

√√
1
4
+

⎛⎜⎜⎜⎜⎝ω2 + (1 + χ) ν2ni

χνniω

⎞⎟⎟⎟⎟⎠2

· (42)

We find that the quality factor is minimal, i.e., the damping is
maximal, whenω = νni

√
1 + χ, which corresponds to an optimal

wave frequency, fop, given by

fop =
νni

2π

√
1 +
ρn

ρi
. (43)

We overplot in Fig. 4 the optimal frequency computed from
Eq. (43) and an excellent agreement is found. In this case, the
improved physics taken into account in the present work does
not significantly modify the main results by Soler et al. (2013b)
concerning the efficiency of ion-neutral collisions as a damping
mechanism for periodically driven Alfvén waves.

5. Discussion

In this paper we have investigated theoretically the damping
of Alfvén waves in the partially ionized chromosphere. The
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Fig. 4. Contour plots of the quality factor Q (in logarithmic scale) of periodically driven Alfvén waves in the upper solar chromosphere as function
of the frequency f (vertical axis in logarithmic scale) and height above the photosphere (horizontal axis). Top and botton panels correspond to the
left and right polarized waves, respectively. Left and right panels are the results obtained using the hard-sphere cross sections (HS) and the Vranjes
& Krstic (2013) cross sections (VK), respectively. The black dashed line corresponds to the approximate optimal frequency given in Eq. (43). We
note that the VK results are only strictly valid for heights larger than 900 km.

present analysis improves the physical description of the chro-
mospheric plasma considered in previous computations by, e.g.,
Soler et al. (2013b), by including several processes missing
from the previous works. Ion-neutral collisions have a strong
impact on the damping of both impulsively driven and period-
ically driven Alfvén waves in the chromosphere. Thus, Alfvén
waves with frequencies near the ion-neutral collision frequency
are very efficiently damped. Ion-neutral collisions are the most
important damping mechanism in that frequency range, while
the other damping mechanisms considered in this work, namely
viscosity, magnetic diffusion, and electron-neutral collisions,
provide corrections to the damping by ion-neutral collisions.
The implications of this strong damping for plasma heating are
straightforward.

In the case of waves excited by an impulsive driver, we found
that the strict frequency cut-off due to ion-neutral collisions com-
monly discussed in the literature (e.g., Kulsrud & Pearce 1969;
Kamaya & Nishi 1998; Soler et al. 2013b) is here replaced
by a critical interval of wavelengths for which Alfvén waves
are overdamped, i.e., their propagation is inhibited due to the
very strong damping. Hall’s current and electron inertia are the
main physical effects responsible for removing the strict cut-off

(see Zaqarashvili et al. 2012). In a recent work, Vranjes & Kono
(2014) claim that the strict cut-off occurs regardless of the pres-
ence of Hall’s current and the electron inertia term. Although
Vranjes & Kono (2014) use a set of equations similar to the one
used here and their mathematical analysis is correct, their con-
clusions concerning the presence of the strict cut-off do not agree
with our findings. The present results, and those of Zaqarashvili
et al. (2012), indicate that strict cut-offs should also be absent
from the results of Vranjes & Kono (2014). In connection to the
amount of wave energy that can be dissipated in the plasma, the
fact that the waves have strict cut-offs (Q = 0) or are overdamped
(0 < Q < 1/2) makes no practical difference. In both cases, all
the energy of the disturbance is dissipated in situ instead of trav-
eling far away as a propagating wave.

All the energy stored in the impulsively generated pertur-
bations with wavelengths belonging to the critical interval is
necessarily dissipated in the vicinity of the location of the im-
pulsive driver instead of begin transported away by propagat-
ing waves. Strong plasma heating might therefore be produced
by these overdamped waves. It is seen from Fig. 3 that the im-
pulsively driven waves are overdamped when the spatial extent
of the perturbation is in the range from 1 km to 50 km in the
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Fig. 5. Contour plots of the ratio of Ohm’s heating rate to ion-neutral collisions heating rate (in logarithmic scale) for periodically driven Alfvén
waves in the upper solar chromosphere as function of the frequency f (vertical axis in logarithmic scale) and height above the photosphere
(horizontal axis). We used the expression derived by Song & Vasyliūnas (2011, Eq. (A.5)). Left and right panels are the results obtained using the
hard-sphere cross sections (HS) and the Vranjes & Krstic (2013) cross sections (VK), respectively. The red dotted line denotes the same heating
rate for both mechanisms. We note that the VK results are only strictly valid for heights larger than 900 km.

HS case, and from 1 m to 1 km in the VK case, while the per-
turbations with spatial extents outside these intervals generate
regular propagating waves. In a realistic chromosphere, where
the plasma and the magnetic field dynamically evolve in time,
Alfvén waves are most likely to be impulsively driven con-
tinuously and everywhere in the chromosphere, meaning that
overdamped Alfvénic perturbations may contribute significantly
to chromospheric heating. Another way to excite overdamped,
short-wavelength Alfvén waves in the chromosphere is by means
processes like cascades of energy via magnetohydrodynamic tur-
bulence. However, to determine how the waves are excited and
what is the actual heating rate generated by the overdamped
waves, it is necessary, first, to consider self-consistent numeri-
cal simulations including the excitation and back reaction of the
waves on the plasma and, second, to use the full form of the en-
ergy equation taking into account all the possible sources and
sinks of energy.

Periodically driven Alfvén waves are not overdamped, but
there is an optimal driving frequency that produces the strongest
damping and thus the strongest energy dissipation. From Fig. 4
we see that the optimal driving frequency varies from 1 Hz to
102 Hz in the HS case, and from 102 Hz to 104 Hz in the VK case.
Ion-neutral collisions and Ohmic dissipation are two possible
processes that can produce heating for the periodically driven
waves. Song & Vasyliūnas (2011) derived an expression for the
heating rate due to Ohmic dissipation and ion-neutral collisions
as a function of the frequency (see their Eq. (A.5)). From the
expression derived by Song & Vasyliūnas (2011), the ratio of
Ohm’s heating rate to ion-neutral collisions heating rate is

〈q〉Ohm

〈q〉in
=

(νei + νen) νin
ΩiΩe

⎡⎢⎢⎢⎢⎢⎣
(
1 + χ
χ

)2

+

(
ω

νin

)2⎤⎥⎥⎥⎥⎥⎦ · (44)

Equation (44) compares the efficiency of the two heating mech-
anisms. Figure 5 displays the ratio of heating rates computed
from Eq. (44). Ion-neutral collisions heating is much more im-
portant that Ohmic heating in the upper chromosphere unless
high driving frequencies are considered. Importantly, ion-neutral

collisions heating dominates over Ohmic heating not only for
frequencies near the optimal frequency but also for lower fre-
quencies. Again, there are differences between the results for the
HS and the VK cross sections. The VK case requires higher fre-
quencies than the HS case for Ohmic heating to be of importance
compared to ion-neutral collisions heating. Viscosity is another
dissipative mechanism capable of producing plasma heating.

Throughout this paper it has been stressed that the value
of the ion-neutral cross section plays a very relevant role. This
parameter directly determines, among other things, what wave-
lengths and frequencies are most efficiently damped and how
they vary with height in the chromosphere. We found signifi-
cant differences in the estimations of the critical wavelengths
and optimal frequencies depending on the set of cross sections
used in the computations. The classic hard-sphere value of the
cross section differs about two orders of magnitude from the
recent quantum-mechanical calculations of this parameter by
Vranjes & Krstic (2013). The values proposed by Vranjes &
Krstic (2013) take into account several physical effects missing
in the hard-sphere model, so that the VK cross sections are more
physically accurate than the HS cross sections. Since the numer-
ical value of the cross sections plays an important role, in prin-
ciple the more accurate VK values are the ones that should be
used in theoretical computations.

However, although the basic atomic physics is obviously
the same for laboratory plasmas and the chromospheric plasma,
the chromosphere is far from being a controlled environment
like a laboratory plasma. The chromosphere is a multi-thermal,
multi-fluid environment. The cross sections measured in con-
trolled laboratory plasmas or those theoretically computed in
idealized models, as in Vranjes & Krstic (2013), may not nec-
essarily match the effective ion-neutral collision cross section
in the chromospheric plasma. The use of observations of mag-
netohydrodynamic waves in the solar atmosphere in combina-
tion with the predicted behavior of these waves in theoretical
models is an indirect method infer physical properties of the
plasma and/or the magnetic field called magnetohydrodynamic
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seismology (see, e.g., Uchida 1970; Roberts et al. 1984). We pro-
pose that future observations with sufficiently high temporal and
spatial resolutions may be able to detect the optimal wavelengths
and frequencies for the damping of Alfvén waves in the chromo-
sphere. Thus, a seismological test of the effective ion-neutral col-
lision frequency and cross section in the chromospheric plasma
may be possible if the required observations become available.
In this direction, solar observations performed with ALMA (see
Karlický et al. 2011) may shed some light on these important
problems and on the role of high-frequency Alfvén waves in
chromospheric heating.

While in this paper we have investigated Alfvén waves, most
of the results can be extrapolated to the case of magnetohydrody-
namic kink waves, which have a predominantly Alfvénic char-
acter (Goossens et al. 2012). Kink waves have been observed in
the chromosphere (e.g., Kukhianidze et al. 2006; Zaqarashvili
et al. 2007; Okamoto & De Pontieu 2011; Pietarila et al. 2011;
Kuridze et al. 2012; Morton 2014). Results from Soler et al.
(2012, 2013c) indicate that ion-neutral collisions affect kink
waves in a similar manner as they affect pure Alfvén waves. The
critical wavelengths and optimal frequencies that maximize the
damping would be the same for both pure Alfvén waves and kink
waves. Hence, the main conclusions of this paper are also valid
in the case of kink waves.

Finally, we should discuss some of the limitations of this
study. The two main simplifications are, first, the static chro-
mospheric model and, second, the local analysis of the pertur-
bations. On the one hand, the chromospheric model is based on
the FAL93-F static one-dimensional model, which misses part
of the highly dynamical behavior observed in the actual chro-
mosphere. On the other hand, the local analysis does not fully
capture the behavior of waves with wavelengths similar to or
longer than the stratification scale height and ignores their pos-
sible reflection (Zaqarashvili et al. 2013; Tu & Song 2013). This
second limitation may be overcome in future studies by investi-
gating the propagation and damping of the waves using numer-
ical simulations that consistently include the effect of gravita-
tional stratification as in, e.g., Russell & Fletcher (2013) and Tu
& Song (2013). Furthermore, in order to properly address the
first of the limitations discussed above, these numerical simula-
tions should include a time-dependent dynamic background in-
stead of the static model adopted here. This is an interesting task
to be done in forthcoming investigations.
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