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Outline and Challenges

• Turbulence vs SOC paradigm
– Transport is intermittent
– Bursts are important at all scales
– Particle density flux described by PDF

• Fractional diffusion equation (FDE)
– with fractional time derivative
– with fractional space derivative

An additional amplification mechanism is needed to produce
a FDE with fractional derivative in space!

1.  SOC (BTW) will produce a time-fractional FDE

2.  SOC (BTW, DP) will NOT produce space-fractional FDE

3.  DW turbulence (HW) will NOT produce space-fractional FDE



Turbulence or Self-organized criticality?

Both involve many degrees of freedom and scale-free size-distributions of the
dynamical entities: vortices in turbulence, avalanches in SOC. No wonder that the
notions of turbulence and SOC have been considered difficult to reconcile.

SOC shares with turbulence implications
of multi-scale behavior and nonlinear
interaction



Turbulence: K41

Spectral energy density:
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K41: Inertial range

Assumptions:
1. space filling, homogeneous,

isotropic turbulence
2. k-independent energy

cascade rate
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Kinetic energy density of the turbulent flow:

Nonlinear (eddy turnover) time scale:
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2D Hydrodynamic
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•  2 inviscid constants of motion
•  2 formal inertial ranges

–  kinetic energy (-5/3, backward)
–  mean-square vorticity (-3, direct)

•   The phenomenon of vortex stretching is forbidden



Why -3 spectrum?

Assumptions:
1. space filling, homogeneous,

isotropic turbulence
2. k-independent enstrophy

cascade rate

Enstrophy density of 2D turbulent flow:

Nonlinear (eddy turnover) time scale:
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   2D drift-wave turbulence: Hasegawa-Wakatani Eqs

The Poisson bracket is used to denote
the nonlinear terms originating from
advection with the ExB drift
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The nonadiabaticity parameter δ characterizes deviation between the
potential and the density fluctuations and absorbs the parameters of the
parallel dynamics. It constitutes an internal drive for the turbulence,
offering a max growth rate δ/8
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   2D drift-wave turbulence

V. Naulin et al., Phys. Lett. A 321, 355 (2004)

Bursting
flux!

Flux PDFFlux PDF
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Properties:
• Plasma turbulence and transport

strongly intermittent
• No easy parametrization
• Not simple diffusion in Fickian

sense
• PDF’s of radial displacements of

tracer particles are non-Gaussian
with exponential tails and the
moments indicating superdiffusive
transport



Self-organized criticality (SOC) -- NESS…
• A paradigm for complex dissipative systems that relax through bursts
• Self-organized state ➨ critical state (at the border of chaos) reached

without fine tuning of any external or control parameters
• Critical state ➨ attractor, robust with respect to variations of parameters

and with respect to randomness

SANDPILE: PROTOTYPE MODEL
OF SOC (BTW 1987)



The fundamental physics of the SOC state

Near equilibrium and far from the critical state, the system produces no avalanches

Near criticality and far from equilibrium, series of relaxations of widely varying
size are generated



SOC: Cellular-automation (CA) models

the local slope or pressure        exceeds
the critical value
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In model 2 the slope is increased by repeatedly letting
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The fundamental physics of the SOC state

Crackling noise (1/f type noise)

White noise



   2D drift-wave turbulence

V. Naulin et al., Phys. Lett. A 321, 355 (2004)

Bursting
flux!

Flux PDFFlux PDF
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Properties:
• Plasma turbulence and transport

strongly intermittent
• No easy parametrization
• Not simple diffusion in Fickian

sense
• PDF’s of radial displacements of

tracer particles are non-Gaussian
with exponential tails and the
moments indicating superdiffusive
transport



Turbulence vs SOC: Boundaries & Dynamical feedback

Feedback
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The SOC phenomena involve a feedback of the
relaxation (particle loss) process on the dynamical
state of the system at criticality, whereas turbulence
pursues as a cascade (simple branching process) in
reciprocal space.



SOC hypothesis for edge turbulence in tokamaks

Classic measurements of avalanche-type
transport include the analysis of edge
plasma turbulence, yielding non-Gaussian
probability distribution functions that are
long-tailed. One unresolved problem here
is the complex nature of coexistence of
collective effects due to turbulence,
turbulent transport, and SOC.

Avalanches?



The normalized electron temperature fluctuations (δT/T) for L-mode plasma
discharges vs time in the DIII-D tokamak. The highlighted bands indicate examples
of avalanche-like events, outwardly propagating disturbances, moving at 300 m/s.

L-mode tokamak plasmas
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R. Sanchez et al., PRE
74, 016305 (2005)

P. Politzer et al., Phys. Plasmas 9, 1962 (2002)
SOC hypothesis

suggested as an explanation?



Fractional diffusion models for radial transport in
tokamaks

1. D. del-Castillo-Negrete, Phys. Plasmas 13, 082308 (2006).
2. D. del-Castillo-Negrete, B. A. Carreras, and V. E. Lynch, Phys. Plasmas 11,

3854 (2004).
3. R. Sanchez, B. A. Carreras, D. E. Newman, V. E. Lynch, and B. Ph. van

Milligen, Phys. Rev. E 74, 016305 (2006).



Bi-fractional diffusion equation
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Revisiting the realm of Brownian diffusion…
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Generalization I: Heavy-tailed waiting time pdf
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Generalization II: Heavy-tailed step-size pdf

2nd moment diverges
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Bi-fractional diffusion equation

J. Liouville
(1809-1882)
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Sub-, super-, and diffusive transport
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Random walks on percolation cluster
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Dynamic Polarization Random Walk model

The state of critical percolation occurs dynamically via random walks
on a self-adjusting random cluster

Feedback
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   Polarization response:   Kramers-Kronig relation:
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   Linear-response theory for the frequency-dependent conductivity 
   specialized to hopping conduction:
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Hopping on percolation geometry:
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   Continuity implies that:

Self-consistent model of dielectric relaxation

In the frequency domain:
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  From Mittag-Leffler relaxation function to the Kohlrausch-Williams-Watts
  stretched-exponential decay function:

Distribution of relaxation times

where the weighting function is expressible in terms of Levy (stable) 
distribution
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   This stretched-exponential relaxation function can conveniently be
   considered as a weighted average of single-exponential relaxation
   functions - each associated with a single relaxation event in the system:

Heavy-tailed!



Fractional diffusion equation

where
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The Mittag-Leffler function describes the relaxation dynamics of particles
governed by the fractional diffusion equation
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is the Riemann-Liouville fractional derivative.

This equation is a hallmark of systems with a broad distribution of
relaxation times (e.g., the SOC systems)



Critical exponents of the DPRW model

• By examining Table 1 one can see that the DPRW model reproduces
with remarkable accuracy the critical exponents from major sand-pile
models: Zhang (1989); Tang & Bak (1988).

SANDPILE: PROTOTYPE MODEL
OF SOC (BTW 1987)



   2D drift-wave turbulence

V. Naulin et al., Phys. Lett. A 321, 355 (2004)

Bursting
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Flux PDFFlux PDF
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Properties:
• Plasma turbulence and transport

strongly intermittent
• No easy parametrization
• Not simple diffusion in Fickian

sense
• PDF’s of radial displacements of

tracer particles are non-Gaussian
with exponential tails and the
moments indicating superdiffusive
transport



Particle density flux:
flux surface averaged

The probability distribution function for the plasma flux across the magnetic
field is strongly non-Gaussian with exponential tails!

Turbulent particle density flux

The log-normal distribution as well as the
EVD yields a good approximation of the flux-
surface averaged plasma transport



Global model for interchange driven turbulence (Edge-SOL)

Edge-SOLEdge-SOL

Flux PDFFlux PDF
Particle density (left) and vorticity (right)
during a burst. In the edge/scrape-off layer
(SOL) region transport is strongly
intermittent and characterized by large-
amplitude, radially propagating blob-like
structures of particles and heat, generated
close to the last closed flux surface. Garcia et
al., PPCF 48, L1 (2006)



Stimulated vortex formation + merging:

Turbulent amplification:! 
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Amplification of the range of log-normal behavior:

Space-fractional diffusion equation:

Levy!

! 

"n(x, t)

"t
=
" q

" x
q
Dqn(x, t)[ ]

Montroll & Shlesinger, 1982



Time-scale separation:

In drift-wave turbulence, the so-called
Rhines length designates the spatial
scale separating vortex motion from
drift wave-like motion

Avalanching dynamics:
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The nonadiabaticity parameter,     , characterizes
deviation between the potential and the density
fluctuations in the Hasegawa-Wakatani (HW)
model
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Vortex avalanches: Propagating drift-wave turbulence

Self-Organized Critical Directed Percolation:! 
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Maslov & Zhang, 1996



Stimulated galaxy formation:

Schulman & Seiden, 1986

If the original process of
galaxy formation occurs
through the stimulated
birth of one galaxy due to
a nearby recently formed
galaxy, and if this process
occurs near its percolation
threshold, then a
hierarchical structure with
power-law correlations
arises at the time of
galaxy formation.

Amplification mechanism provided by galaxy merging

      Image credit: P. Hopkins
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Conclusions

• An amplification mechanism is needed to introduce nonlocality into the
dynamics

• Amplification of a log-normal distribution generates a new distribution of
the Levy type

• Synergetic coupling between SOC and turbulence: Amplification of SOC-
associated avalanches via the inverse turbulence cascade produces large-
amplitude bursts of transport

• Consistent derivation of a Levy fractional diffusion equation: A random
walker driven by a Levy white noise

• Nonlocal diffusion explains the behavior of cold pulses



Abstract. - The phenomena of nonlocal transport in magnetically conned plasma are
theoretically analyzed. A hybrid model is proposed, which brings together the notion of
inverse energy cascade, typical of drift-wave and two-dimensional fluid turbulence, and
the ideas of avalanching behavior, associable with self-organized critical (SOC) behavior.
Using statistical arguments, it is shown that an amplification mechanism is needed to
introduce nonlocality into dynamics. We obtain a consistent derivation of nonlocal Fokker-
Planck equation with space-fractional derivatives from a stochastic Markovian process
with the transition probabilities defined in reciprocal space.


