
Similarity and scaling- what the principle of 
similitude can tell us about turbulence, SOC, and 

ecosystems 

 
S. C. Chapman1 

with N. W. Watkins², G.Rowlands¹, E.J.Murphy2, A. Clarke2 

1CFSA, Physics Dept., Univ. of Warwick,2British Antarctic Survey, 

 Order and control parameters 

 Formal dimensional analysis (Buckingham’s Pi theorem) an introduction 

 Some examples, flocking ‘birds’, turbulence- finding order and control 

parameters 

 Implications for SOC 

 Macroecological patterns- from Pi theorem 

 A ‘Reynolds number’ for life? 

 

more details in SCC et al, POP 2009, SCC et al PPCF 2009, Wicks, SCC 

et al PRE 2007 (method), SCC et al arXiv:1108.4802 (ecology) 
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Universality-  

the details are irrelevant, only need relevant parameters 
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Macroecological patters…plotting the wrong variables? 

 

 

 

 

 

 

density-body size 

within an ecosystem, across ecosystems 

 

Cohen et al (2009) Brown et al (2004)  

species-area 

Diamond and Mayr (1976) 

Predator density-prey biomass 

Carbone & Gittleman (2002) 

Macroecological patterns for: 

diversity (richness, no. of species) 

density (abundance, no. of individuals/species) 

metabolic rate 

with: size(mass), area, trophic level, productivity, latitude… 

(and exceptions, complications, caveats..) 
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Order and control parameters 
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Blah 
? blah ?! 

COFFEE 

order 

Control parameter=(desire for knowledge)/(desire for coffee) 

few d.o.f. 

many d.o.f. 

disorder 
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Competition between order and disorder 

 

1

1

1

Rules: random fluctuation plus 'following the neighbours'

,    constant

,  ,  iid random variable

1
order parameter: total speed  
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Vicsek PRL 1995 ‘bird’ model 

Control parameter depends on noise 

Using MI: March, SCC et al, Physica D 2005,  

Wicks, SCC et al PRE 2007 
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Similarity analysis- 

a method to obtain parameters 
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The principle of similitude and parameters… 
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Similarity in action… 

Peck and Sigurdson, A Gallery of Fluid Motion, CUP(2003) 

See also G. I. Taylor, Proc. Roy. Soc., (1950) 
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1 1..

1.. 1..

System described by ( ... ) where  are the relevant macroscopic variables

 must be a function of dimensionless groups ( )

if there are  physical dimensions (mass,

Buckingham  theorem 

p p

M p

F Q Q Q

F Q

R





1..

 length, time etc.)

there are  distinct dimensionless groups.

Then ( )  is the general solution for this universality class.

To proceed further we need to make some intelligent guesses for (

M

M P R

F C

F





 



1.. )

See e.g. 

also 

M

Barenblatt, Scaling, self - similarity and intermediate asymptotics, CUP, [1996] 

Longair, Theoretical concepts in physics, Chap 8, CUP [2003]

Buckingham, Phys. Rev., 1914 
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1

1.. 1..

System described by ( ... ) where  is a macroscopic variable

 must be a function of dimensionless groups ( )

if there are  physical dimensions (mass, 

Example: simple (nonlinear) pendulum

p k

M p

F Q Q Q

F Q

R



 
 

  

0

2

Step 1: write down the relevant macroscopic va

length, time etc.) there are  dimensionless groups

variable dimension description

angle of release

mass of bob

p

ria

eriod of pendulum

gravit

bles:
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
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20
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Step 2: form dimensionless groups: 

Step 3: make s

eration 

length of pendulum

         

5, 3 so 2

,  and no dimensionless group can contain 

then solution is ( ,

ome

)
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0

( )  then the period:

NB ( ) is universal ie same for all pendula- 

we can find it knowing some other

simplifying assumption: 

 property eg conser

( )

vation of energy..

lff
g

f
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Similarity analysis Vicsek flocking model 

  
 
 

 

1

0
2

1

0

2

quantity dimension description

noise

'bird' speed

interaction radius

timestep

av. 'bird' density

5, 2, 3 dimensionless groups:

   -  random fluctuations

  - dist. per timest

u L T

R L

u t

R

t T

L

P R M P R


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

 







    

2

3

ep/interaction radius

  -  av. no. of birds in interaction radius

true for system size  with ,  finiteR

R



 



 

Position of phase transition 

Wicks, SCC et al, PRE (2007) 
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1

1.. 1..

System described by ( ... ) where  is a macroscopic variable

 must be a function of dimensionless groups ( )

if there are  p

Example: fluid turbulence, the Kolmogorov '5/3 power spectrum'

p k

M p

F Q Q Q

F Q

R



   
3 2

Step 1: write down the relevant variables

hysical dimensions (mass, length, time etc.

 (incompressible so energy/mass):

) there are  dimensionless groups

variable dimension description

( ) energy/u
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3,Step 2: form dimensionless groups: 

Step 3: make some simplifying assumption

2,  so 1

( )

( )  where  is a non u

:

niver

L T

k L

P R M

E k k

F C C






 





  



 
52
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3 2

2 3

0

1

variable dimension description

Buckingham  theore

(

m (similarity analysis)

universal s

) energy/unit wave no.
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lous scaling
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 
 

  

   

0

1

2 1

:

variable dimension d

Step 1: write down the relevant variabl

escription

driving scale

dissipation scale

bulk (driving ) flow speed

visc

es

os

Homogeneous Isotropic Turbulence and Reynolds Number

L L

L
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
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4, 2,  so 2

, where  is no. of d

Step 2: form dimensionless groups: 

 and importantly ( ),

Step 3: d.o.f from scali

.o.f

 ie ( ) ~  here ~ ,or  or ~  ng

S

o

tep 4:

r ...
N

E

P R M

L
N

L L
f N

UL L
R f N

N N N 

 



 

 

  

  

3 3 3

4

0

1 2

 of the dynamical quantity, here 
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 assume steady state and conservation energy...

r
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 
 

  

  

0

1

1

variable dimension description

system size

grid size

 average driving rate per node

system ave

Step 1:

Step 2: form dimensionless g

rage dissipation/lo

u

ss

ro ps

Avalanche model (a la BTW 1987 SOC)
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, where  is no. of d.o.f.

 ie ( ) ~ , ~  with Euclidean d
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00

How is SOC different to turbulence? consider...

Intermediate driving (or what happens as we change ~

If  we can consider intermediate behaviour 

where the smallest avalanches are s

)

w

:A
hR

gL h t gL l l





reducing 

amped, bu

the avail

t large avalanches

able d.o.f. by inc

 persis

reasing

t.

Corresponds

 ,  and henc

 to:

e Ah R

SCC et al, Phys. Plasmas 2009,  

SCC et al Plas. Phys. Cont. Fusion 2009 
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Centre driven BTW 

sandpile  

box 400400   

h=1,4,8,16 

[*♦●■] 
Top- constant drive 

Bottom- broadband 

white noise drive 
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Centre driven BTW 

sandpile  

box 400400   

h=1,4,8,16 

[*♦●■] 
Top- constant drive 

Bottom- broadband 

white noise drive 

(curves displaced for 

clarity) 
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A cautionary tale.. 

p-model for intermittent turbulence- shows finite 

range power law avalanches 
p-model timeseries shows multifractal  

behaviour in structure functions as expected 

Thresholding the timeseries to form  

an avalanche distribution- finite range power law 

Watkins, SCC et al, PRL, 2009 

( )

 

Structure Functions:

| ( ) ( ) | ~p p

pS x l r x l r  
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Fractal dynamics- Edwards Wilkinson 

A linear model 

Shown: 100² grid D=0.3 

Solves: 

 

 2

0

where  is iid 'white' 

random source of grains

'height' 

blue patches are 

h
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Edwards Wilkinson- statistics 

Statistics of instantaneous 

patch size are power law 

 

Linear model- driver (random 

rain of particles) has inherent 

fractal scaling (Brownian 

surface) +selfsimilar diffusion 

which preserves scaling 

 

 
SCC et al, PPCF (2004) 
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Cascade can be ‘anything’:Turbulence, food web... 

1

Generalize the idea of a Reynolds Number... 

a control parameter for the onset of disorder  (turbulence, 

Cascade - forward or inverse- with:

 the Reynolds Number, 

at 

burstine

least one other  

ss)

,

E

k

R





 ( ) where  is the number of degrees of freedom

flux of some dynamical quantity is conserved- steady state

f N N

S C
 C

ha
pm

an
 IS

SI 2
01

2



Order and control parameters- 

 in macroecology 
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A Reynolds number for ecosystems? 

  (interchangeable) categories occupy a particular niche in the web 

 caregories all linked by predation/consumption which processes some resource 
(energy, biomass..) 

 System driven by primary producers introducing energy/biomass and all categories 
removing it 

 It does not matter what the resource is as long as we can conserve flux  

 still ok if there are losses i.e. a fraction is passed from one category to the next, or if 
there is recycling (bottom species feeding off dead top predators)- we will sum over 
the ecosystem 

 Steady state: timescale over which we change R is slow compared to timescale to 
propagate the resource through the web (recycling time) 
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Macroecological patterns, some examples… 

 

 

 

 

 

 

density-body size 

within an ecosystem, across ecosystems 

 

Cohen et al (2009) Brown et al (2004)  

species-area 

Diamond and Mayr (1976) 

Predator density-prey biomass 

Carbone & Gittleman (2002) 

Macroecological patterns for: 

diversity (richness, no. of species) 

density (abundance, no. of individuals/species) 

metabolic rate 

with: size(mass), area, trophic level, productivity, latitude… 

(and exceptions, complications, caveats..) 
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Π theorem – find relevant ecosystem variables.. 

 
1. Statistical properties of pth category  

2. Resource flow into ecosystem 

3. Characteristic lengthscales 

 

 We assume that the ecosystem is in a 

                       dynamically balanced steady state 

implies a separation of timescales-  

ecosystem can adapt [quickly enough] to [external changes] to  

maintain a balance between  

the rate of uptake and utilization of resource  

 

 

[cf ‘homeostatis’ White et al (2004), Ernest and Brown (2001)] 
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Observed histograms of body size of 

category found to be peaked 

N(B) 

B 

1) Statistical properties of pth category-  
 all species in the category have similar average size, metabolic rate 

 all connected into same resource flow 

  

Mean size B(p) 
Observe characteristic: 

 Size (no of cells) B(p) 

 Abundance n(p) 

 Richness S(p) 

 Metabolic rate R per cell  

pth category members all connected to the ecosystem by resource flow- 

Size, abundance, richness, metabolic rate all depend on available resource  
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2) Resource flow into ecosystem 

 
pth category members all connected to the ecosystem by resource flow- 

Size, abundance, richness, metabolic rate all depend on available resource 

B* 

PLD 

B 
 Position in foodweb (and available 

resource) is relative to other categories- 

we need to know at least one, B* 

 Primary producers nett productivity P 

 

[LD is habitat size, so resource rate of supply 

is PLD] 
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3) Characteristic length-scales 

Habitat size LD so rate of 

supply of resource is PLD 

category characteristic length-scale r 

 

[reflects how individuals are dispersed] 
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 

 

 

  

*

*

*

1

variable dimension description

mean body size  category

mean density/abundance of  category 

(no of individuals/unit area/vol.)

richness/no of species in  category

mean metabolic rat

th

th
D

th

B p

p
n L

S p

R T









    
 
 
 

    

1 2

*

2 2

e per cell

rate of energy supply/unit area

primary producer efficiency

characteristic length-scale,  category 

habitat size

dimensions of energy =

th

P T L

r L p

L L

M L T







 





Ecosystem macroscopic variables... 

8, 3,

5 dimensionless groups

P R

M P R

 

  

2

*
1 2 * 3 * 4 * 5, , , ,DPL r

n L S B
R L


         
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2

1 2

2

1 2

1

,  or  

threshold for li

,

fe:

1

D

D

PL
nL

R

PL
nL

R





   

   

 

Go through this slowly… bottom up ecosystem 

Single cell organisms- all identical ‘type’ or species 

 single cell in  with metabolic rate Done L R

l.h.s is control parameter, r.h.s. are order parameters 

L 

n 

P 
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2

1 2

1

1

3

2

1
( ) ( )

(

, ,

)

S

k

k

S
D

k

D

D

PL
nL S

R

PL
nSL

R

n n k n k
S

n k L









 

  



   







S types (species) and there is a species label k=1..S, 

 the density of the kth species is n(k) 

Average density per species: 

Single cell organisms- more than one ‘type’ or species 

L 

P 

n
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now possible to distinguish types of organism- 

label the different types or categories distinguished  

in this way with index p. 

pth category clustered around an  average body size,  

on average composed of  B(p) cells with metabolic rate RB(p)  

Within each p there are k=1..S(p)  differentiable species 

each with density n(k,p), average body size B(p)   

 

average density:  
( )

1

1
( ) ( , ) ( , )

( )

S p

k

k

n p n k p n k p
S p 

   

Multi-cell organisms- more than one ‘type’ or species 
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2

1 2 * 3 * 4

* * * * *

* *

2 ( )

1

2

* * *

*

now observe a given category ( ), ( )

with characterist

,

ic average size ( )

then

( , ) ( ) ( ) ( ) ( )

( ) (

,

, ,

 

ow

) ( )

(

n

S p
D D

p k p

D

D

PL

p n n p S S p

B B p

PL
n k p B p L n p S p B p L

R

PL n p S p B p
n S B L

R n p

n L S B
R









    

 



 



  

 

* * *

*

*

2

* * * *

*

) ( ) ( )

( ) is dimensionless;

 1 / ( ( )) fraction of total rate of resource 

supplied to the ecosystem uti  categorylized 

( )

by 

p

th

DPL
n S B L

S p B p

p

p

R

p

p






 



S C
 C

ha
pm

an
 IS

SI 2
01

2



organisms not uniformly distributed in space so density depends 

on length scale r over which it is observed,  n=n(r,k,p), 

efficiency of primary producers  α=α(r) 

( ) ( )

1 1

* *

2

( , , ) ( , , ) / ( , , / )

( ) ( ) / ( / )

1 1 ( , , )
( , ) ( , , ) ( , , ) ( , ) / ( , / )

( ) ( ) ( , , / )

with ( )

( )
( , ) ( ) ( ) ( , ) ( , / ) ( ) ( )

S p S p

k

k k

D D
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So it follows that… for any ecosystem (as specified) there 

will be the following macroscopic patterns or trends 

Species diversity/richness S* 

S*~PL2 -increases with total nett productivity summed over habitat 

 Wrights rule (Wright 1983) 

S*~1/R   -decreases with typical metabolic rate 

 

abundance (density of individuals) n* –ditto 

 

cf latitudinal gradient rule- dependence on temperature, sunlight etc… 

 

Range of body size  relates to number of trophic levels –ditto 

π theorem has given these trends/patterns without knowing Ψ 
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   
*

* *

power law SAR:

~  observed ~ [0.15 0.4]

~

depends on both primary producers and observed category,

available surface area (fractally rough terrain) 

also habitat ie trees, coral, foraging/disper

zS L z

r r
G

L L





sal

Spatial dependence gives the species area rule 

See eg Haskell et al (2002), Ritchie and Olff (1999),Palmer (2007), Milne (1992), Kunin (1992) 
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species-area rule 

[actually tells us that S* must relate to how habitat, dispersal grow with scale] 
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Macroecological patterns, trends and scatter… 

 

 

 

 

 

 

density-body size 

within an ecosystem, across ecosystems 

 

Cohen et al (2009) Brown et al (2004)  

species-area 

Diamond and Mayr (1976) 

Predator density-prey biomass 

Carbone & Gittleman (2002) 

Macroecological patterns for: 

diversity (richness, no. of species) 

density (abundance, no. of individuals/species) 

metabolic rate 

with: size(mass), area, trophic level, productivity, latitude… 

(and exceptions, complications, caveats..) 
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So species- area is actually: 

‘normalized’ or dimensionless diversity 

Testing for species-area rule .. synthetic data 
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* * *

* * *
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Extracting Ψ from single ecosystem data… synthetic data shown 
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Ψ is ‘ecosystem function’ captures level of complexity of the ecosystem 

 and/or how observed species/guilds are categorized 
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Summary 
Dimensional analysis+ conservation/ dynamical steady state 

→control / order parameters 

Distinguishing SOC/turbulence 

Framework for systems where there is a flow of 

something… 

leads to many of the observed macroecological patterns in 

ecology- is this why they are ubiquitous? 

Where these patterns fail- may imply fast change ie 

ecological collapse 

 ecosystems data normalization to isolate trends/refine 

patterns, Ecosystem ‘classes’ in the ‘complexity’ function Ψ 

- is it universal? 

Thresholds for life? 
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