Similarity and scaling- what the principle of similitude can tell us about turbulence, SOC, and ecosystems

S. C. Chapman¹ with N. W. Watkins², G.Rowlands¹, E.J.Murphy², A. Clarke² ¹CFSA, Physics Dept., Univ. of Warwick,²British Antarctic Survey,

- Order and control parameters
- > Formal dimensional analysis (Buckingham's Pi theorem) an introduction
- Some examples, flocking 'birds', turbulence- finding order and control parameters
- Implications for SOC
- > Macroecological patterns- from Pi theorem
- > A 'Reynolds number' for life?

➤ more details in SCC et al, POP 2009, SCC et al PPCF 2009, Wicks, SCC et al PRE 2007 (method), SCC et al arXiv:1108.4802 (ecology)

centre for fusion, space and astrophysics

Universalitythe details are irrelevant, only need *relevant* parameters

Pendulum

centre for fusion, space and astrophysics

Macroecological patters...plotting the wrong variables?

Order and control parameters

centre for fusion, space and astrophysics

Competition between order and disorder

Rules: random fluctuation plus 'following the neighbours'

 $\mathbf{x}_{n+1}^{k} = \mathbf{x}_{n}^{k} + \mathbf{v}_{n}^{k} dt, \quad \left| \mathbf{v}_{n}^{k} \right| \text{ constant}$

 $\theta_{n+1}^{k} = \left\langle \theta_{n}^{k} \right\rangle_{k \cap R} + \delta \theta, \ \delta \theta = \left[-\eta, \eta \right] \text{ iid random variable}$

order parameter: total speed $\frac{1}{N} \left| \sum_{i=1}^{N} \mathbf{v}_{i} \right|$

Control parameter depends on noise

centre for fusion, space and astrophysics

Similarity analysisa method to obtain parameters

centre for fusion, space and astrophysics

The principle of similitude and parameters...

centre for fusion, space and astrophysics

Similarity in action...

Peck and Sigurdson, A Gallery of Fluid Motion, CUP(2003) See also G. I. Taylor, Proc. Roy. Soc., (1950)

centre for fusion, space and astrophysics

Buckingham, Phys. Rev., 1914

Buckingham π theorem

System described by $F(Q_1...Q_p)$ where $Q_{1..p}$ are the relevant macroscopic variables

- F must be a function of dimensionless groups $\pi_{1..M}(Q_{1..p})$
- if there are R physical dimensions (mass, length, time etc.)
- there are M = P R distinct dimensionless groups.
- Then $F(\pi_{1..M}) = C$ is the general solution for this universality class.
- To proceed further we need to make some intelligent guesses for $F(\pi_{1..M})$

See e.g. Barenblatt, Scaling, self - similarity and intermediate asymptotics, CUP, [1996] also Longair, Theoretical concepts in physics, Chap 8, CUP [2003]

centre for fusion, space and astrophysics

THE UNIVERSITY OF

Example: simple (nonlinear) pendulum

System described by $F(Q_1...Q_p)$ where Q_k is a macroscopic variable

F must be a function of dimensionless groups $\pi_{1..M}(Q_{1..p})$

if there are R physical dimensions (mass, length, time etc.) there are M = P - R dimensionless groups

a .			• .							•		
Ster	n	I۰.	write	down	the	rel	evant	macro	OSCO	n ₁ C	variah	les.
	-	••		u 0 11 11	uite	101	e runit	macr	0000		, al lao	100.

variable	dimension	description
θ_0	_	angle of release
m	[M]	mass of bob
τ	$\begin{bmatrix} T \end{bmatrix}$	period of pendulum
8	$[L][T]^{-2}$	gravitational acceleration
l	$\begin{bmatrix} L \end{bmatrix}$	length of pendulum

Step 2: form dimensionless groups: P = 5, R = 3 so M =

$$\pi_1 = \theta_0, \pi_2 = \frac{l}{g\tau^2}$$
 and no dimensionless group can contain m

then solution is $F(\theta_0, \frac{l}{g\tau^2}) = C$

Step 3: make some simplifying assumption: $f(\pi_1) = \pi_2$ then the period: $\tau = f(\theta_0) \sqrt{\frac{l}{g}}$

NB $f(\theta_0)$ is universal ie same for all pendula-

we can find it knowing some other property eg conservation of energy..

centre for fusion, space and astrophysics

Similarity analysis Vicsek flocking model

PHYSICAL REVIEW E 75, 051125 (2007)

centre for fusion, space and astrophysics

Example: fluid turbulence, the Kolmogorov '5/3 power spectrum'

System described by $F(Q_1...Q_p)$ where Q_k is a macroscopic variable

F must be a function of dimensionless groups $\pi_{1..M}(Q_{1..p})$

if there are R physical dimensions (mass, length, time etc.) there are M = P - R dimensionless groups

Step 1: write down the relevant variables (incompressible so energy/mass):

variable	dimension	description
E(k)	$\begin{bmatrix} L \end{bmatrix}^3 \begin{bmatrix} T \end{bmatrix}^{-2}$	energy/unit wave no.
\mathcal{E}_0	$\begin{bmatrix} L \end{bmatrix}^2 \begin{bmatrix} T \end{bmatrix}^{-3}$	rate of energy input
k	$\begin{bmatrix} L \end{bmatrix}^{-1}$	wavenumber

Step 2: form dimensionless groups: P = 3, R = 2, so M = 1

$$\pi_1 = \frac{E^3(k)k^5}{\varepsilon_0^2}$$

Step 3: make some simplifying assumption:

 $F(\pi_1) = \pi_1 = C$ where C is a non universal constant, then: $E(k) \sim \varepsilon_0^{2/3} k^{-5/3}$

call this the 'inertial range'

centre for fusion, space and astrophysics

Buckingham π theorem (similarity analysis) universal scaling, anomalous scaling

Turbulence:

variable	dimension	description						
E(k)	$L^{3}T^{-2}$ energy/unit wave no			$E^{3}(k)k^{5}$ $E(k) = \frac{2}{3}k^{-5/3}$				
\mathcal{E}_0	L^2T^{-3}	rate of energy input	$M = 1, \pi_1 = -$	$\frac{1}{\varepsilon_0^2}, E(\kappa) \sim \varepsilon_0^2 \kappa + \varepsilon_0^2$				
k	L^{-1}	wavenumber						
introduce	introduce another characteristic speed							
variable	dimension	description						
E(k)	$L^{3}T^{-2}$	energy/unit wave no.		$r^{3}(1)15$ 2				
\mathcal{E}_0	L^2T^{-3}	rate of energy input	$M = 2, \pi_1 = -$	$\frac{E^{*}(k)k^{*}}{c^{2}}, \pi_{2} = \frac{V^{*}}{E^{k}}$				
k	L^{-1}	wavenumber		\mathcal{E}_0 $\mathcal{E}\mathcal{K}$				
V	LT^{-1}	characteristic speed						
)) *	lot $\pi = \pi^{\alpha}$	$E(l_z) = l_z \frac{(5+\alpha)}{(3+\alpha)}$				
			$\operatorname{Ict} n_1 \sim n_2 ,$	$L(K) \sim K$				
	centre f	for fusion, space and a	strophysics	THE UNIVERSITY O $\frac{1}{1000}$				
SA (or juston, space and a	our opinysies	VVAL VVICI				

UNIVERSITY OF

Homogeneous Isotropic Turbulence and Reynolds Number

Step 1: write down the relevant variables:

variable dimension description driving scale |L| L_0 |L|dissipation scale η $U \qquad [L][T]^{-1}$ bulk (driving) flow speed $v \qquad \left[L\right]^2 \left[T\right]^{-1} \qquad \text{viscosity}$ Step 2: form dimensionless groups: P = 4, R = 2, so M = 2 $\pi_1 = \frac{UL_0}{V} = R_E, \pi_2 = \frac{L_0}{n}$ and importantly $\frac{L_0}{n} = f(N)$, where N is no. of d.o.f Step 3: d.o.f from scaling ie $f(N) \sim N^{\alpha}$ here $\frac{L_0}{n} \sim N^3$, or $N^{3\beta}$ or $\frac{L_0}{n} \sim \lambda^{N/3}$ or ... Step 4: assume steady state and conservation of the dynamical quantity, here energy... transfer rate $\varepsilon_r \sim \frac{u_r^3}{r}$, injection rate $\varepsilon_{inj} \sim \frac{U^3}{L_0}$, dissipation rate $\varepsilon_{diss} \sim \frac{V^3}{\eta^4}$ - gives $\varepsilon_{inj} \sim \varepsilon_r \sim \varepsilon_{diss}$ this relates π_1 to π_2 giving: $R_E = \frac{UL_0}{v} \sim \left(\frac{L_0}{n}\right)^{\frac{4}{3}} \sim N^{\alpha}, \alpha > 0$ thus N grows with R_E

centre for fusion, space and astrophysics

Avalanche model (a la BTW 1987 SOC)

Step 1:

variable	dimension	description	$(\bigcirc) \bigcirc (\bigcirc)$			
L_0	$\begin{bmatrix} L \end{bmatrix}$	system size				
δl	$\begin{bmatrix} L \end{bmatrix}$	grid size				
h	$[S][T]^{-1}$	average driving rate per node				
Е	$[S][T]^{-1}$	⁻¹ system average dissipation/loss				
Step 2: fo	orm dimensio	onless groups: $P = 4, R = 2$, so N	M = 2			
$\pi_1 = \frac{h}{\varepsilon} = R_A, \pi_2 = \frac{L_0}{\delta l} = f(N) \text{ where } N \text{ is no. of d.o.f.}$ Step 3: d.o.f from scaling ie $f(N) \sim N^{\alpha}, N \sim \left(\frac{L_0}{\delta l}\right)^{\alpha}$ with Euclidean dimension $D \ge \alpha > 0$						
Step 4: assume steady state and conservation of the dynamical quantity, here sandS						
conservation of flux of sand gives $h \times (no \text{ of nodes}) \sim \varepsilon$						
so $h\left(\frac{L_0}{\delta l}\right)^D \sim \varepsilon$ this relates π_1 to π_2 giving $R_A = \frac{h}{\varepsilon} \sim \left(\frac{\delta l}{L_0}\right)^D \sim N^{-\frac{D}{\alpha}}$ this is in the opposite sense to fluid turbulence, N is maximal when $R_A \to 0$						

centre for fusion, space and astrophysics

How is SOC different to turbulence? consider...,

Intermediate driving (or what happens as we change $R_A \sim \frac{h}{c}$):

If $L_0 \gg \delta l$ we can consider intermediate behaviour $gL_0 \gg h\delta t > g\delta l$ where the smallest avalanches are swamped, but large avalanches persist. Corresponds to:

reducing the available d.o.f. by increasing h, and hence R_A

SCC et al, Phys. Plasmas 2009,
SCC et al Plas. Phys. Cont. Fusion 2009

centre for fusion, space and astrophysics

Centre driven BTW sandpile box 400×400 h=1,4,8,16[* • • • •] Top- constant drive Bottom- broadband white noise drive

centre for fusion, space and astrophysics

centre for fusion, space and astrophysics

A cautionary tale.. p-model for intermittent turbulence- shows finite range power law avalanches

p-model timeseries shows multifractal behaviour in structure functions as expected

Fractal dynamics- Edwards Wilkinson

A *linear* model Shown: 100² grid D=0.3 Solves:

 $\frac{\partial \overline{h}}{\partial t} = D\nabla^2 \overline{h} + \eta$

where η is iid 'white' random source of grains

'height' $\overline{h} = h - \langle h \rangle$

blue patches are $h > h_0$

centre for fusion, space and astrophysics

Edwards Wilkinson- statistics

Statistics of instantaneous patch size are power law

Linear model- driver (random rain of particles) has inherent fractal scaling (Brownian surface) +selfsimilar diffusion which preserves scaling

SCC et al, PPCF (2004)

centre for fusion, space and astrophysics

Cascade can be 'anything':Turbulence, food web...

Cascade - forward or inverse- with:

 $\pi_1 = R_E$ the Reynolds Number,

at least one other, $\pi_k = f(N)$ where N is the number of degrees of freedom flux of some dynamical quantity is conserved- steady state

centre for fusion, space and astrophysics

Order and control parametersin macroecology

centre for fusion, space and astrophysics

A Reynolds number for ecosystems?

- (interchangeable) categories occupy a particular niche in the web
- caregories all linked by predation/censumption which processes some resource (energy, biomass..)
- System driven by primary producers introducing energy/biomass and all categories removing it
- > It does not matter what the resource is as long as we can conserve flux
- still ok if there are losses i.e. a fraction is passed from one category to the next, or if there is recycling (pottom species feeding off dead top predators)- we will sum over the ecosystem
- Steady state: timescale over which we change R is slow compared to timescale to propagate the resource through the web (recycling time)

THE UNIVERSITY OF

centre for fusion, space and astrophysics

Macroecological patterns, some examples...

Π theorem – find relevant ecosystem variables..

- 1. Statistical properties of *p*th category
- 2. Resource flow into ecosystem
- 3. Characteristic lengthscales
- We assume that the ecosystem is in a dynamically balanced steady state

implies a separation of timescalesecosystem can adapt [quickly enough] to [external changes] to maintain a balance between the rate of uptake and utilization of resource

[cf 'homeostatis' White et al (2004), Ernest and Brown (2001)]

centre for fusion, space and astrophysics

centre for fusion, space and astrophysics

2) Resource flow into ecosystem

pth category members all connected to the ecosystem by resource flow-Size, abundance, richness, metabolic rate all depend on available resource

3) Characteristic length-scales

Habitat size L^{D} so rate of supply of resource is PL^{D}

category characteristic length-scale r

[reflects how individuals are dispersed]

centre for fusion, space and astrophysics

Ecosystem macroscopic variables...

P=8, R=3,			$\Pi = \alpha P L^2 \qquad \qquad$
M = P - R = 5 dir	nens	sionless gro	ups $\begin{bmatrix} \Pi_1 & -\frac{1}{R} & \Pi_2 & -n_*L & \Pi_3 & -S_*, \Pi_4 & -D_*, \Pi_5 & -\frac{1}{L} \end{bmatrix}$
vari	able	dimension	description
Ē	3 _*	[-]	mean body size p^{th} category
		[<i>r</i>] ^{-D}	mean density/abundance of p^{th} category
Y	n_* $\lfloor L \rfloor$		(no of individuals/unit area/vol.)
S	S_*	[-]	richness/no of species in p^{th} category
1	R	$[\varepsilon][T]^{-1}$	mean metabolic rate per cell
Ĩ	Р	$[\varepsilon][T]^{-1}[L]^{-2}$	rate of energy supply/unit area
C	χ	[-]	primary producer efficiency
1	r _*		characteristic length-scale, <i>p</i> th category
i			habitat size
dim	ensio	ns of energy $\varepsilon =$	$[M][L]^2[T]^{-2}$
\bigcirc		<i>)</i>	
	1		

centre for fusion, space and astrophysics

Multi-cell organisms- more than one 'type' or species

now possible to distinguish types of organismlabel the different types or categories distinguished in this way with index *p*.

 p^{th} category clustered around an average body size, on average composed of B(p) cells with metabolic rate RB(p)Within each p there are k=1...S(p) differentiable species each with density n(k,p), average body size B(p)

average density:

$$\overline{n}(p) = < n(k, p) >_{k} = \frac{1}{S(p)} \sum_{k=1}^{S(p)} n(k, p)$$

centre for fusion, space and astrophysics

now observe a given category p_* , $n_* = \overline{n}(p_*)$, $S_* = S(p_*)$ with characteristic average size $B_* = B(p_*)$

then

$$\Pi_1 = \frac{\alpha P L^2}{R}, \Pi_2 = n_* L^D, \Pi_3 = S_*, \Pi_4 = B_*$$

now

R

 αPL^2

$$\frac{\alpha PL^2}{R} = \sum_{p} \sum_{k=1}^{S(p)} n(k, p) B(p) L^D = \sum_{p} \overline{n}(p) S(p) B(p) L^D$$
$$\frac{\alpha PL^2}{R} = n S B L^D \sum_{p} \frac{\overline{n}(p) S(p) B(p)}{P}$$

 $\sum_{p} \overline{n}(p_*) S(p_*) \mathcal{B}(p_*)$

$$\frac{\alpha PL^2}{R} = n_* S_* B_* L^D \Psi(p_*)$$

$$\Psi(p_*) \text{ is dimensionless;}$$

$$1/(\Psi(p_*)) \text{ fraction of total rate of resource}$$

supplied to the ecosystem utilized by p_*^{th} category

centre for fusion, space and astrophysics

THE UNIVERSIT

organisms not uniformly distributed in space so density depends on length scale r over which it is observed, n=n(r,k,p), efficiency of primary producers $\alpha = \alpha(r)$ $\left|\Pi_{1} = \frac{\alpha_{*}PL^{2}}{R}, \Pi_{2} = n_{*}L^{D}, \Pi_{3} = S_{*}, \Pi_{4} = B_{*}, \Pi_{5} = \frac{r_{*}}{L}\right|$ n(r,k,p) = n(L,k,p) / g(k,p,r/L) $\alpha(r) = \alpha(L) / g_{\alpha}(r / L)$ $\overline{n}(r,p) = \langle n(r,k,p) \rangle_{k} = \frac{1}{S(p)} \sum_{k=1}^{S(p)} n(r,k,p) = \frac{1}{S(p)} \sum_{k=1}^{S(p)} \frac{n(L,k,p)}{g(k,p,r/L)} = \overline{n}(L,p) / \overline{g}(p,r/L)$ with $g_* = \overline{g}(p_*)$ $\frac{\alpha(L)PL^2}{R} = \sum_{p} \overline{n}(L,p)S(p)B(p)L^{D} = \sum_{p} \overline{n}(r,p)\overline{g}(p,r/L)S(p)B(p)L^{D}$ $= n_* S_* B_* g_* (\frac{r_*}{L}) L^D \sum_p \frac{\overline{n}(p) \overline{g}(p, r \land L) S(p) B(p)}{\overline{n}(p_*) \overline{g}(p_*, r_* \land L) S(p_*) B(p_*)}$ $\implies \frac{\alpha_* PL^2}{R} = n_* S_* B_* G(\frac{r_*}{L}) L^D \Psi(p_*)$ or with $G(r/L) = \overline{g}(r/L)/g_{\alpha}(r/L)$ which is $\Pi_1 = \Pi_2 \Pi_3 \Pi_4 G(\Pi_5) \Psi(p_*)$ centre for fusion, space and astrophysics WARN

So it follows that... for any ecosystem (as specified) there will be the following macroscopic patterns or trends

$$\frac{\alpha_* PL^2}{R} = n_* S_* B_* G(\frac{r_*}{L}) L^D \Psi(p_*)$$

Species diversity/richness S_* $S_* \sim PL^2$ -increases with total nett productivity summed over habitat Wrights rule (Wright 1983) $S_* \sim 1/R$ -decreases with typical metabolic rate

abundance (density of individuals) n_{*}-ditto

cf latitudinal gradient rule- dependence on temperature, sunlight etc...

Range of body size relates to number of trophic levels –ditto π theorem has given these trends/patterns without knowing Ψ

centre for fusion, space and astrophysics

Spatial dependence gives the species area rule

species-area rule

THE UNIVERSITY OF

$$\frac{\alpha_* PL^2}{R} = n_* S_* B_* G(\frac{r_*}{L}) L^D \Psi(p_*)$$

power law SAR:

$$S_* \sim L^z$$
 observed $z \sim [0.15 - 0.4]$

 $G\left(\frac{r_{*}}{L}\right) \sim \left(\frac{r_{*}}{L}\right)^{\gamma}$

depends on both primary producers and observed category, available surface area (fractally rough terrain) also habitat ie trees, coral, foraging/dispersal

See eg Haskell et al (2002), Ritchie and Olff (1999), Palmer (2007), Milne (1992), Kunin (1992)

centre for fusion, space and astrophysics

Macroecological patterns, trends and scatter...

 Ψ is 'ecosystem function' captures level of complexity of the ecosystem and/or how observed species/guilds are categorized

centre for fusion, space and astrophysics

Summary

Dimensional analysis+ conservation/ dynamical steady state

- \rightarrow control / order parameters
- Distinguishing SOC/turbulence
- Framework for systems where there is a flow of something...
- Ieads to many of the observed macroecological patterns in ecology- is this why they are ubiquitous?
- >Where these patterns fail- may imply fast change ie ecological collapse

 ecosystems data normalization to isolate trends/refine patterns, Ecosystem 'classes' in the 'complexity' function Ψ
 is it universal?

➤Thresholds for life?

centre for fusion, space and astrophysics