SOC in Natural Hazards

Stefan Hergarten

Institut für Geowissenschaften Albert-Ludwigs-Universität Freiburg

Gutenberg-Richter law

Gutenberg-Richter law

Number of earthquakes with magnitude *m* or greater:

$$\log_{10} N(m) = a - bm$$

with $b \approx 1$ ($b \in [0.8, 1.2]$)

Magnitude m is a logarithmic measure of the seismic moment.

Power-law distribution of the seismic moments (or energies, rupture areas etc.).

Temporal correlations

Characteristic earthquakes: large earthquakes occurring almost periodically

Foreshocks and aftershocks according to Omori's law:

$$N(t) \propto |t-t_m|^{-p}$$

where

N(t) = number of earthquakes per time t_m = time of mainshock occurrence $p \approx 1$

Olami-Feder-Christensen model

Relaxation rule

$$F_{nn(i)} := F_{nn(i)} + \alpha F_i \quad (nn = \text{nearest neighbors})$$

$$F_i := 0$$

Conservative for $\alpha = \frac{1}{4}$, nonconservative for $\alpha < \frac{1}{4}$

Arguments for the nonconservative version

- Scaling exponent of the event-size distribution (Gutenberg-Richter law)
- Characteristic earthquakes
- Foreshocks and aftershocks according to Omori's law

Arguments for the conservative version

- Elastic driver plate or three-dimensional realization: conservative with long-range interactions (Jansen & Hergarten, PRE, 2006)
- Relation between seismic moment M and rupture area A:

$$M \propto A^\gamma$$
, $\gamma > 1$

How does the nonconservative OFC model work?

- (Apparent) criticality arises from long-term synchronization of almost periodic events (Middleton & Tang, PRL, 1995).
- Universal scaling exponent $\tau = 1.775$ was derived from the scaling properties of the accessible perimeter of the rupture areas (Hergarten & Krenn, NPG, 2011).

$$b=rac{3}{2}\left(au-1
ight)=1.16$$
 Not too bad compared to $b\in[0.8,1.2]$ in nature

How does the nonconservative OFC model work?

• Foreshocks and aftershocks originate from desynchronization of characteristic earthquakes (Hergarten & Krenn, NPG, 2011).

• Explains why some large earthquakes are not accompanied by any foreshocks or aftershocks.

- Sizes of characteristic earthquakes decrease during a sequence, while the number of foreshocks and aftershocks increases.
- Omori exponent p < 1 in contradiction to p > 1 for many real earthquake series

Summary

- Overwhelming evidence for power-law distributions in earthquakes suggests a relationship to SOC.
- Nonconservative OFC model predicts several statistical properties of earthquakes more or less well.
- But also several arguments why the OFC model is unrealistic, e.g.,
 - relation between seismic moment and rupture area,
 - Omori exponent.

Wildfires

Power-law distribution

Power-law distribution

- Strong variation in the scaling exponents, majority in the interval $\tau \in [1.1, 2.0]$.
- Presumably not just an artefact of data sampling

Wildfires

Natural and man-made fires in Canada

Drossel-Schwabl forest-fire model

- Older than knowledge on power-law distribution of wildfires
- Scaling exponent $\tau = 1.19$ at the lower edge of the range $\tau \in [1.1, 2.0]$.
- Not widely accepted in forest ecology
- Main criticism: simplicity, random growth of trees
- Apparently even reproduces some geometric properties of real wildfires

Wildfires

Extension of the forest-fire model towards man-made fires

Ignition only at the accessible perimeter of a cluster of trees (Krenn & Hergarten, NHESS, 2009)

Scaling exponents:

	Model	Data
Lightning	1.19	1.20
Man made	1.51	1.61

Wildfires

Extension of the forest-fire model by fire suppression

Summary

- Strong evidence for power-law distributions in wildfire sizes suggests a relationship to SOC.
- Drossel-Schwabl forest-fire model has great potential with respect to real wildfire dynamics.

Different materials

- (Fractured) rock
- Regolith cover (soil)

Types of movement

- Sliding
- Falling
- Rolling
- Avalanching
- Toppling

Example of a regolith landslide

Example of a large rockslide: Randa $(1991, 30 \text{ mil. m}^3)$

Photo: S. Hergarten

Flims rockslide (10,000 years b.p., 10 km³)

Photo: K. Stüwe & R. Homberger (www.alpengeologie.org)

Power-law distribution of rockfalls and rockslides

Power-law distribution of rockfalls and rockslides

Rockfalls and rockslides vs. regolith landslides

	$ au_V$	$ au_{\mathcal{A}}$
Rockfalls and rockslides	1.07 1.52	
Regolith landslides		2.4

Rockfalls and rockslides vs. regolith landslides

	$ au_V$	$ au_{\mathcal{A}}$
Rockfalls and rockslides	1.07 1.52	
Regolith landslides	2.0	2.4

Mechanical models

Regolith landslide on a given slip plane

Realistic scaling exponents: Non-conservative: Piegari et al. (GRL, 2006) Conservative with time-dependent weakening: Hergarten & Neugebauer (PRE, 2000)

Geomorphic models

- Regolith landslides: Densmore et al. (JGR, 1998), Hergarten & Neugebauer (GRL, 1998)
 - Power-law distribution over a very small range of scales
 - No serious parameter studies
- Rockfalls and rockslides:
 - BTW model

Realistic scaling exponent, but relationship to topography questionable

• New "sandpile model" (Hergarten, GRL, 2012)

New "sandpile model"

- Based on local slope *s* in direction of steepest descent among the 8 nearest and diagonal neighbors
- Random triggering
 - $s \leq s_{\min}$: stable
 - $s \ge s_{\max}$: unstable
 - $s_{\min} < s < s_{\max}$: probability of instability

$$p = rac{s - s_{\min}}{s_{\max} - s_{\min}}$$

• In case of instability:

- Remove material until $s = s_{\min}$
- Trigger all neighbors

New "sandpile model"

• Various ways of long-term driving

or

• Direct application to a real topography

Application to the European Alps

Application to other mountain belts

New "sandpile model"

- Scaling exponent $\tau_V = 1.35$
 - $ullet\in [1.07, 1.52]$
 - almost independent on s_{\min} and s_{\max}
 - almost the same for the three mountain belts

Regional differences only reflected in the cutoff at large sizes

Different levels of (sub)criticality

Summary

- Strong evidence for power-law distributions in rockfalls and rockslides suggests a relationship to SOC.
- Power-law distribution of regolith landslides only within a narrow range of scales
- Geomorphic models seem to capture the phenomena better than mechanical models.
- Still no clear explanation of the difference in the statistics of the two types of landslides

Volcanic eruptions

Statistics of large eruptions

Spatio-temporal patterns

- Worldwide distribution may be a power law.
- Individual volcanoes seem to behave more regularly over long times (constant volume per time, eruptions of similar sizes).
- Relationship to SOC is unclear.